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Background: Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell
functioning and human health. While methods to establish where a TF binds to DNA are well established, these
methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind
the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect
relationships beyond motif similarity, or not applied to TF-TF interactions.

Methods: Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq
or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the
Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We
then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for

an example TF.

Results: We show that our method produces small, manageable clusters that encapsulate many known,
experimentally validated transcription factor interactions and that our method is capable of capturing interactions that
motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS
searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions.

Conclusion: The interactions identified by our method correspond to biological reality and allow for fast exploration

of TF clustering and regulatory dynamics.
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Background

Transcription factors (TFs) are proteins that specifically
regulate the transcription of DNA to RNA within the cell.
There are an estimated 1300 human TFs, and they can
act as suppressors or enhancers of transcription in a vari-
ety of ways, either directly, by binding and remodeling
the structure of DNA itself, or indirectly, by binding to
and influencing other TFs [1]. The transcriptional regu-
lation brought about by TFs is crucial to the health of
the cell and of the organism, with transcriptional regula-
tion central to cell cycle control [2], cell homeostasis [3],
and cell differentiation [4]. The consequences of TF failure
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can be severe, with one-third of human developmental
disorders attributed to TF errors [5]. As such, it is critical
to understand the complex regulatory network that TFs
create.

While chromatin immunoprecipitation and sequencing
(ChIP-seq) assays [6, 7] and motif analysis [8, 9] can be
used to determine where TFs bind DNA, neither provides
information on how the TFs bind. TFs tend to cooper-
atively bind the genome as large complexes, or clusters,
binding to the DNA, one another, or both [10, 11]. In
these situations, one or more “anchor” TFs bind the DNA
directly, and then other TFs bind the anchors rather
than the DNA. This creates a combinatorial problem,
wherein a given anchor TF may be bound by several dif-
ferent other TFs depending on time, cellular conditions,
etc., and a given association (non-anchor) TF may bind
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several different anchor TFs. This “second dimension” of
TF binding is largely unexplored, and it may even explain
part of the discrepancy between motif sequence quality
among TFs. Given that anchor TFs bind the DNA directly,
they are expected to have high-quality motif sequences.
The associating TFs, however, would be expected to have
poorer, degenerate motif sequences due to the fact that
they may not directly bind the DNA and may be associated
with different anchor TFs under different conditions.

Understanding the makeup of TF complexes, then,
would allow for better utilization of motif sequences in
TFBS prediction as well as promote further understanding
of the TF regulatory framework of the genome in gen-
eral. Neither ChIP-seq nor motif sequences provide TF
complex information on their own, however, so various
algorithmic and data integration approaches have been
taken to discover TF clusters. These methods can each be
roughly assigned to one of three categories: experimental,
similarity, and proximity.

Experimental TF complex investigations focus on dis-
covering and characterizing one complex at a time (see
[12-14] as representative examples). While these methods
use accurate in vitro or in vivo assays, they are low-
throughput and narrow, unable to identify interactions
beyond those their assays search for.

Similarity-based methods, such as those in [15] and
[16], exploit the inherent basis of PWMs as simple matri-
ces. They assume that TFs which bind similar sequences
are likely to bind at the same locations and interact with
one another, and they calculate similarity scores between
individual TFs’ PWMs and cluster based on these scores.
These methods have the advantage of not needing PWMs
to be aligned to the genome first, but they inherently
miss TE-TF interactions not based on affinity for the
same sequence, such as the anchor-association paradigm
described above.

Finally, proximity-based methods, including [17, 18],
and [11], use TFBS data (either putative, from motifs,
or experimental, from ChIP-seq) to cluster TFs based
on their co-occurrence in close proximity. They make
the assumption that TFs which interact will inherently
appear with one another more often than the genomic
background. Because they use proximity data rather than
PWMs, they are able to cluster TFs which possibly inter-
act but have differing PWMs. However, the methods in
[17] and [18] are not applied directly to cluster explo-
ration, instead focusing on TFBS density and association
with other regulatory elements, respectively. Addition-
ally, while the method in [11] does focus directly on TF
clustering, it requires supplementary input from a mass-
spectroscopy dataset.

From the above, we can see that the TF regulatory
framework is highly complex, including not only a large
number of TFs but a myriad of interactions between
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them. Neither ChIP-seq nor motif searching can identify
TF interactions on their own, and existing cluster-finding
methods are either limited in scope, unable to detect
non-similarity relationships, or not applied to TF-TF
interactions. As a result, there is a need for a proximity-
based clustering method which focuses on discerning and
exploring TE-TF clusters and interactions.

Here, we demonstrate the usefulness of such a
proximity-based graph clustering method for the identifi-
cation, exploration, and application of TE-TF clusters. By
transforming TF co-occurrence data into a graph which
is then clustered using the Markov Clustering Algorithm,
our method putatively identifies all of the TF clusters
within a given cell type in one pass and requires only two
parameters to function. Clusters can be produced using
either ChIP-seq or motif TFBS data as inputs, and we test
our method using 111 ChIP-seq experiments and 585 TF
PWMs. We show that the returned clusters agree with
known, experimentally confirmed TE-TF interactions. We
use an empirical method to set the false positive rate (FPR)
and show that clustering performance remains stable even
at very low FPRs. We also show that our method’s clus-
ters incorporate more information than similarity alone,
demonstrating that connection in our method’s graph is
not highly correlated with PWM similarity. Finally, we
provide an example of utilizing the graph information
to significantly improve the accuracy of TFBS searching
using motif sequences.

Methods

Method overview

Our method exploited the simple fact that TFs which
often interact must have binding sites, as labeled by ChIP-
seq or detected by motif searching, near one another,
developing a graph with edges weighted by a normal-
ized TF-TF co-occurrence score. To calculate this score
for each TFE-TF pair, we first created co-occurrence matri-
ces, one for each TF, that contained the neighboring TFs
at each TFBS of the given transcription factor. These
co-occurrence matrices were then transformed to create
a series of normalized co-occurrence vectors which con-
tained the co-occurrence frequencies for a set of potential
TE-TF interactions. These vectors were assembled into
the adjacency matrix.

If the adjacency matrix was used for clustering, its edges
were first filtered by selecting an FPR and removing edges
with weight lower than a threshold empirically deter-
mined to uphold the selected FPR. Markov clustering was
then performed on the filtered matrix. It is important
to note that the resulting clusters partitioned TFs, rather
than individual TFBSs, producing results similar to that of
a protein-protein interaction database, except specific to
a given cell type and based on genomic regulation rather
than general protein interaction.
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The graph was also used to filter putative TFBSs in order
to increase the precision and recall of motif searching,
exploiting the fact that motif matches are less likely to be
false positives if they fall near the motif matches of their
highly co-occurring counterparts. In this case, no FDR fil-
tering was done. Instead, summed edge weights were used
to threshold and remove putative TFBSs which do not fit
the co-occurrence profile in the graph. Figure 1 provides a
flowchart overview of our method.

Data sources and preprocessing

We used two datasets in our analysis. The first, the
ChIP-seq dataset, used ChIP-seq data for 111 TFs in the
cell type K562 from the Encyclopedia of DNA Elements
(ENCODE) Project [19]. Each ChIP-seq experiment’s data
was uniformly processed by ENCODE to identify the loca-
tion of ChIP-seq “peaks’, or ChIP-seq identified TFBSs,
within the genome. The TFBSs from the separate exper-
iments were assembled and sorted into one large dataset
containing over 1.4 million TFBSs. We chose the K562
cell type because it contains the most ChIP-seq data of all
cell types within ENCODE. Because TF-TF interactions
change between cell types (and in many ways define their
different behaviors), the clusters produced by our method
were therefore specific to K562.

The second dataset was the ENCODE-motif dataset.
To develop ENCODE-motif, Kheradpour and Kellis char-
acterized, categorized, and discovered motifs using the
ENCODE ChIP-seq experiments, and they provide a col-
lection of genomic motif match locations (putative TFBSs)
for every motif used in their analysis [20]. This collec-
tion contains over 144 million putative TFBSs across 585
transcription factors, and was used in our analysis for
clustering of motif-based TFBSs as well as to demonstrate
putative TFBS filtering. Kheradpour and Kellis discov-
ered motifs as well as characterized known motifs for
their analysis; the former were excluded to focus only
on pre-established motifs as well as to reduce the size
of the dataset somewhat to 124 million putative TFBSs.
To reduce its memory requirements, the dataset was
divided into 100 segments and one of every four seg-
ments was selected, leaving a final total of 31.4 million
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putative TFBSs analyzed. If any transcription factor within
the ENCODE-motif dataset was represented by multiple
motif PWMs, we considered each PWM equivalent, per-
forming our clustering and analysis at the TF level rather
than the PWM level.

Construction of the adjacency matrix
To construct the adjacency matrix, we first constructed a
co-occurrence matrix for each TF in the dataset. To do
0, we:

Let T be the set of all TFs.

Let B be the set of all TFBSs.

Let By; be TEBS i in the subset of B encompassing only
the TFBSs of TF ¢.

Let f(b € B,t € T) = 0if TF ¢ has no binding sites
within 1000 bp of TFBS b, and 1 otherwise.

Then the co-occurrence matrix was an n x m binary
matrix such that

fBs, T1) ... f(Bun, T1)
Mier =f(B,T) = | - -
B, Ty) ... fBoms Tp)

where 7 is the length of T and m is the length of B;.

These matrices represent the raw co-occurrence of TFs
with one another along the genome; each entry states
whether a given TF was found to co-occur (appear within
1000 bp) with another at a particular TFBS. Figure 2
illustrates the construction of these matrices.

Next, a vector f; was produced for each TF ¢ € T such
that

ijil M;y;
ft = m
eril M

f; was therefore the row means of M; for each TF ¢t
Because M; is a binary matrix, this produced a vector
of co-occurrence frequencies, where each element rep-
resented the fraction of TF ¢t TFBSs where a given TF
was found in close proximity. These frequencies, however,
were subject to skew due to the overall genomic bind-
ing frequencies of their respective TFs. The TF CTCE, for

-1

Fig. 1 Overview of the method
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Fig. 2 The construction of co-occurrence matrices. For each TFBS of a given TF, the other TFs within a 1000 base-pair window are recorded in that
TF's co-occurrence matrix. The amount of co-occurrence is inversely proportional to the sparsity of the rows; in the above example, TF B is most

example, binds the genome very frequently, with entire
databases devoted to its binding sites, while others, such
as GTF2B, bind more rarely [21]. Thus, it is relatively
more “important” if GTF2B binds in close proximity to a
given TF than CTCF due to CTCF being more prevalent
in the background. To account for this, each vector f; was
normalized such that

fr =1 —fan

with

vv—fl

2 ter 2 Muj

fall =

D ter 2 M

where f'; is the normalized co-occurrence frequency vec-
tor, w is the length of B, and fy) is the overall frequency
vector - the row mean of all of the M; matrices concate-
nated on the horizontal axes. fy; was similar to each f;
matrix, except while each element in f; represented the
co-binding frequencies of a particular TF with TF ¢, each
element in f,)) represented the binding frequency of a par-
ticular TF to the genome overall. Using the example above,
we would expect GTF2B to have a lower entry in f,y than
CTCE

Subtracting f,; from f; ensured that each element in
f'; represented only the magnitude of the TF-TF interac-
tions, and not the background prevalence of that TF. Using
subtraction for normalization penalizes the co-occurrence
frequencies evenly; if the subtraction was substituted with
division, high-frequency TFs such as CTCF would be
overpenalized, while the co-occurrence of low-frequency
TFs would be exaggerated. It also allows for negative fre-
quencies, a factor which is utilized in the TEBS filtering
described later. See Fig. 3 for an example of co-occurrence
frequencies before and after normalization.

The adjacency matrix A is constructed by concatenating
the normalized co-occurrence frequency vectors such that

f/Tll f/Tnl
A= :

Crin . f1n

and is used to create an undirected graph where normal-
ized co-occurrence frequencies weight edges and TFs are
nodes. For the ChIP-seq dataset, the graph contained 111
nodes with 6216 edges. For the ENCODE-motif dataset,
the graph contained 585 nodes with 171,405 edges. For the
ChIP-seq dataset, construction of the adjacency matrix
required 3 min, 52 s on a Core i5-6300U CPU, using less
than 5 GB of memory. For the ENCODE-motif dataset,
construction of the adjacency matrix required 23 min, 44
s when using four cores in parallel and required less than
14 GB of memory.

Comparing edge weight and motif similarity

An advantage of our method is its ability to detect interac-
tions between TFs which are not based on binding motif
similarity. That is, if a certain TF binds the genome com-
binatorially with other TFs at multiple sequences, a PWM
matrix-based clustering method would fail to identify its
interactions because of the TF’s weak association with
a any particular sequence. Our proximity-based method,
however, compares genomic positions rather than PWM
matrices, and would therefore be able to detect such
interactions.

To demonstrate that our method is capable of captur-
ing TF interaction information beyond that represented
by motif similarity, we compared the co-occurrence values
derived by our method with the PWM similarities pro-
vided by the ENCODE-motif dataset. For each pair of TFs,
we found the PWM similarity score within the ENCODE-
motif dataset, averaging similarity scores whenever a
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Fig. 3 The first fifteen elements in the co-occurrence frequency vector for TF ATF3, shown as a bar graph, before and after normalization. Note how
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given TF had multiple PWMs. We set up a simple lin-
ear regression, examining the extent to which these TF-TF
PWM similarity scores predicted our method’s co-
occurrence edge weights. We expected a low R?, sig-
nifying that motif similarity explained only part of the
TE-TF interaction information captured by our method.
The results of this analysis are presented in the section
“Motif co-occurrence provides more information than
similarity alone” in the Results.

Edge filtering using the FPR

Before the graph was clustered, its edges were filtered
to remove edges with statistically insignificant weights.
While the normalization procedure outlined above did
involve subtracting a population mean from a sample
mean, this sample was inherently non-random, as the
binding sites associated with a TF are non-random. Para-
metric methods, then, could not be used to determine an
ideal cutoff below which edges can be considered insignif-
icant. Instead, an empirical, permuation-based method
targeting a user-selected false positive rate (FPR) was
employed. In this context, the FPR is the ratio of false posi-
tives, or insignificant edges wrongly considered significant
(Type I errors), to the total number of truly insignificant
edges [22].

In order to determine the edge weight cutoff for a given
FPR, the adjacency matrix construction procedure was
followed, but the co-occurrence matrices were replaced
with dummy matrices. Each row of the dummy matrices
was randomly generated, with its sparsity matching that
of its overall genomic background frequency (its entry
in fay). This created a situation where the overall preva-
lence of TFs was preserved, but their order throughout
the genome, and therefore their proximity to other TFs,
was randomly shuffled. All edge weights produced in

these circumstances were therefore the result of random
fluctuations rather than any real TE-TF associations. For
both the ChIP-seq and ENCODE-motif datasets, this pro-
cedure was repeated 25 times, generating 308,025 and
8,555,625 dummy edge weights, respectively.

An edge weight threshold was then selected; any edge
derived from the dummy matrices with weight greater
than this threshold was then a false positive, and any
with weight less was a true negative. Thresholds were
selected to reach various FPR values, namely 0.01, 0.001,
and 0.0001, and these thresholds were used to filter the
graph, with any edges with weight lower than the the
threshold removed. An FPR of 0.1 was also used for com-
parison purposes, to create a baseline graph with many
false positive edges against which the three filtered graphs
could be compared. This allowed us to assess whether
filtering edges using the FPR degraded clustering perfor-
mance. Using these FPRs, four new filtered graphs were
therefore created for each dataset, which were subse-
quently clustered. See Table 1 and the “Results” section for
a comparison of clustering at different FPR thresholds.

Comparison to protein-protein interaction data

To show that the TE-TF interactions found by our method
are valid, we compared our TF-TF interaction data to
the STRING protein-protein interaction database [23].
We first matched our TFs with entries in the STRING
database, excluding data for any TF which could not be
found in STRING. For the ChIP-seq dataset, 4 of 111
TFs (3.6%) could not be matched; for the ENCODE-motif
dataset, 45 of 585 TFs (7.7%) could not be matched. A
STRING adjacency matrix was then constructed with the
same structure as the TF adjacency matrix. Each element
i,j in the STRING adjacency matrix represented whether
or not (1 or 0) an interaction between TF i and TF j was
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Table 1 Clustered graph metrics

ChiP-seq ENCODE-motif
FPR 0.1 0.01 0.001 0.0001 0.1 0.01 0.001 0.0001
Nodes 1 585
Edges Filtered 3032 3429 3973 4349 132141 146638 155684 160755
Pct. Edges Filtered 48.8 552 63.9 69.6 77.1 85.6 90.8 93.8
Clusters 10 11 10 12 51 52 54 51
Med. Nodes per Cluster 6 6 45 6 5 5 5 4
Max. Nodes per Cluster 36 25 37 25 135 143 129 139
Unclustered Pct. 18.0 135 135 153 0 0.342 1.19 342

found in the STRING database. The STRING adjacency
matrix was then compared with the filtered adjacency
matrices produced by our method; a true positive was
counted if the two corresponding entries in each matrix
were both nonzero. True positives, false positives, true
negatives, and false negatives were counted and used to
calculate the precision, recall, and F-score of our predicted
interactions when compared to the STRING database.
For a more in-depth discussion of these metrics, see the
section “Filtering of putative TFBSs” We expected that our
predicted interactions would correspond to some extent
with the STRING database. However, because our data is
TF-specific and derived from TF proximity in reference
to the genome rather than the pathways, ontology, and
experimental data that underlie STRING interactions, we
expected a large number of novel and differing predictions
as well.

STRING further splits its interaction scores into
seven evidence categories: Co-expression, Experiments,
Database, Text-Mining, Neighborhood, Fusion, and Co-
occurrence. Given these diverse data sources, we also
explored if the interactions detected by our method were
significantly more enriched in one of the categories when
compared to the others. The Co-expression and Experi-
mental categories are the most relevant to our analysis.
The Co-expression score describes protein interactions
in terms of consistent appearance in expression studies,
as would be expected of interacting TFs, and the Exper-
iments category describes interactions that have been
confirmed in a lab rather than predicted or inferred.
The Neighborhood, Fusion, and Co-occurrence evidence
channels are least relevant, as they are designed for use
in bacteria and archaea protein-protein interaction analy-
sis [23]. Therefore, significant enrichment of our method’s
STRING matches in the Co-expression and Experimental
categories would provide support to our predictions.

MCL clustering

We chose the Markov Clustering Algorithm (MCL), a
graph paritioning algorithm, to cluster the filtered net-
works. Traditionally, hierarchical clustering, rather than

graph partitioning, has been used for similar tasks, but
we believe it bears significant downsides as opposed to
a true graph partitioning algorithm such as MCL [24].
First, while hierarchical clustering’s tree output provides
an intuitive representation of some inter-cluster relation-
ships, “how far up” in the tree to call clusters distinct
is not clear. Additionally, hierarchical clustering does not
allow nodes to belong to more than one group without
dramatically increasing the size of the group. Graph parti-
tioning algorithms simply cluster nodes while preserving
the structure of the graph, allowing for more relation-
ships between nodes and clusters and better exploration.
As a result, we chose a partitioning algorithm over a
hierarchical clustering algorithm.

In a review by Brohee and van Helden, the MCL algo-
rithm was shown to be better suited to clustering protein-
protein interactions than three other graph partitioning
algorithms, and was therefore chosen for this similar
task [25]. We used the MCL algorithm as part of the
ClusterMaker suite within graph visualization software
Cytoscape for our analysis [26, 27]. The MCL algorithm
attempts to partition graphs into clusters by simulat-
ing random walks among nodes, where the likelihood
of following a given path is based on edge weight. The
algorithm then trims paths with the lowest traversal like-
lihood and repeats the process. For a full discussion of the
algorithm, we refer the reader to Van Dongen’s original
publication [28].

MCL depends on three parameters, a granularity
parameter, pruning threshold, and an iteration limit; the
algorithm’s performance is relatively insensitive to all
three. We adjusted only the first, choosing it empirically
based on number of clusters produced. Regardless of the
dataset or filtering level, the best performing granularity
parameter was simple to acquire and always fell between
2 and 5.

Filtering of putative TFBSs

To demonstrate how the graph structure could be used
to improve the accuracy of TFBS searching, we per-
formed filtering of putative, motif-based TFBSs for the
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transcription factor ATF3 (the target TF). Here, our
method was based on the assumption that a putative TFBS
is more likely to be a true positive if it is found near its co-
occurring counterparts. We first generated the graph from
the ENCODE-motif dataset, but left it unfiltered and did
not remove negative edges. Negative edges were helpful in
this situation, as the more negative the edge was, the /less
likely the TF was to be found with the target.

The ChIP-seq dataset was not used for filtering, as its
data was the “ground truth” While the motif PWMs in
the ENCODE-motif dataset are derived from ChIP-seq
data, the individual putative TFBSs within the ENCODE-
motif dataset are found by scanning the PWMs across
the genome and checking for matches. As a result, the
ENCODE-motif TFBSs are putative, and contain a large
number of false positives. In the method below, no infor-
mation from the ChIP-seq dataset is used to filter the
ENCODE-motif dataset, and therefore, the ChIP-seq data
provides a ground truth with which to compare our filter-
ing results.

TFBS searching using motifs can be seen as an
information-retrieval problem. Information retrieval
attempts to maximize the number of relevant “docu-
ments” in a pool of retrieved documents [29]. In this
case, retrieved documents were the putative TFBSs, and
relevant documents were putative TFBSs which matched
actual (from ChIP-seq) TFBSs. The performance of
information-retrieval systems is often evaluated in terms
of recall, precision, and the F-score.

Recall, or sensitivity, is the fraction of relevant doc-
uments that are successfully retrieved - the fraction of
actual ChIP-seq TFBSs marked by putative motif TFBSs.
To determine the recall of the putative TFBSs, a 1000
base-pair window was created around each actual (ChIP-
seq determined) ATF3 binding site. The number of actual
TFBSs with putative (motif) TFBSs within their surround-
ing window were considered true positives; this sum was
divided by the total number of actual TFBSs to produce
the recall.

Precision, also known as positive predictive value, is
the fraction of retrieved documents that are relevant -
the fraction of putative TFBSs that correspond to true
ChIP-seq TFBSs. To determine the precision of the puta-
tive ATF3 TFBSs, the putative TFBSs were first merged,
such that any overlapping putative TFBSs were condensed
into one larger TFBS. Then the previous procedure was
repeated. In this case, however, the 1000 base-pair win-
dows were placed around the putative TFBSs and the
divisor was the total number of putative ATF3 TFBSs.

The F-score, the harmonic mean of precision and recall,
was also calculated as an overall measure of TFBS search-
ing performance.

To maximize precision with a minimal reduction in
recall, false putative TFBSs needed to be filtered out
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without removing those truly corresponding to ChIP-seq
TFEBSs. To accomplish this, a “sum-score” was assigned to
each putative ATF3 binding site. A 1000 base-pair win-
dow was created around each site, and all neighboring TFs
within this window were recorded. The score, then, was
the sum of all edges from ATF3 to its neighbors within
the window. If ATF3 was not often found with a neigh-
bor at a given TEBS, the score would be decreased due
to a negative edge, and the inverse also held. Thus, if
a window contained many highly co-associated TFs, the
score was maximized. A threshold was chosen, and all
putative TFBSs with scores less than this weight were
eliminated. Precision, recall, and the F-score were calcu-
lated on the filtered set. To produce a precision recall
curve (a close relative of the binary classification reciever
operating curve, see [30]) the threshold was adjusted from
its minimum (such that no putative TFBSs were removed)
to its maximum (such that all TFBSs were removed), and
the precision, recall, and F-score were recorded at each
point.

We compared the precision-recall curve and maxi-
mum F-score from our sum-score with those of three
alternate methods. The first removed the same num-
ber of TEBSs as the sum-score threshold, but did so
randomly, testing if any increase in accuracy was due
simply to reduction in the number of TFBSs returned
rather than any association between TFs. The second
was a score computed simply as the number of neigh-
boring TFBSs in each window; it tested if any increase
in accuracy was due to the raw number of neighbor-
ing TFs (indicating a possibly highly-active regulatory
region). Finally, we calculated a modified sum score,
where each window’s score was normalized by the number
of TFs within it; this tested whether co-association alone
could out-perform the combination of number of neigh-
bors and co-association which the unmodified sum-score
embodied.

Results

A low FPRyields discrete TF clusters

For both datasets, each FPR level produced a clustered
graph, each of which is summarized in Table 1. For each
graph, the first cluster was always significantly larger
than the others; this “omnibus” cluster was undesirable
as it prevented its constituents from joining other, more
interpretable clusters. On the other hand, a low median
nodes per cluster indicated that possible interactions were
being missed. There were also some nodes not assigned
to any cluster in each graph, though it was not clear if
these nodes were unclustered because they truly did not
belong to any clusters or because too many of thier edges
were removed as part of the filtering process. Thus, the
best performing graph for each dataset balanced a low
FPR, relatively low unclustered percentage, intermediate
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median nodes per cluster, lower maximum nodes per
cluster, and a higher number of clusters.

For the ChIP-seq dataset, FPR 0.01 offered this best bal-
ance, while for the ENCODE-motif dataset, FPR 0.001
was the best clustered graph. For both datasets, the
median nodes per cluster was manageable, with most
nodes congregating in small, interpretable clusters rather
than large ones. Between the two datasets, the ratio of
clusters to nodes and max nodes per cluster to nodes
were similar, but upon visual inspection, the ENCODE-
motif dataset appears to perform better, with more clus-
ters outside of the large “omnibus” cluster. This is most
likely due to the fact that the ENCODE-motif dataset
has more nodes to cluster and therefore more clusters to
produce. While the images of the entire graph are too
large to include in this manuscript with sufficient detail,
see the Additional files 1 and 2 section for Cytoscape
graph files of the both the ChIP-seq and ENCODE-motif
datasets.

When comparing to the high false-positive (FPR=0.1)
graphs, we see that good clustering performance was still
achieved at low FPRs. We saw that both the ChIP-seq and
ENCODE-motif datasets performed equally to the base-
line high-FPR (0.1) in terms of clusters, median nodes per
cluster, and maximum nodes per cluster, but differed in
terms of unclustered percentage. For the ENCODE-motif
dataset, we observed the intuitive increase in unclustered
nodes as the FPR, and therefore the number of edges fil-
tered, increased. As FPR increased and more edges were
cut, more nodes would become disconnected and there-
fore unclustered.

The ChIP-seq dataset, however, showed the opposite
trend, with the high-FPR (less edges filtered) dataset
having more unclustered nodes. This is due to the low
percentage of edges filtered at this FPR. The 0.1 FPR
ChIP-seq graph filters only 48.8% of the edges, while the
ENCODE-motif graph still filters 77.1%. We observed that
the MCL algorithm failed to adequately cluster the data
when there were too many edges included, leaving larger
“omnibus” clusters and more unclustered nodes. The FPR
of 0.1 for the ChIP-seq dataset, then, failed to trim enough
edges, causing an increase in the number of unclustered
nodes.

In this way, FPR acts as a tuning parameter. Increas-
ing it reduces noise at the cost of disconnecting nodes
and increasing unclustered nodes. Decreasing it increases
noise while allowing more nodes to be clustered, up to
the point that too few edges are filtered and MCL fails to
adequately cluster the nodes.

TF clusters agree with known TF-TF interactions

Many of the ChIP-seq and ENCODE-motif datasets’ clus-
ters embodied known TF-TF interactions, lending cre-
dence to our method’s accuracy. The ChIP-seq FPR 0.001
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graph includes the experimentally known SM3A-CTCE,
JUN-FOS, TAL1-EGR1, JUN-NFY, STAT1-GATA1, and
ELK1-STAT? interactions, among others [31-36] .

Many clusters from the ENCODE-motif dataset group
the different motifs from the same family, such as the
DMRT family in Fig. 6. This is expected, as motif PWMs
within the same family would be expected to be highly
similar. Other clusters, however, include both intra- and
extra-familial interactions, and these contain the known
CREB-ATF, BACH-NFE2, NFIL3-HLF, NR2F-HNF (see
Fig. 6), and YY-SRF interactions, among others [37-41].

When compared to the STRING protein-protein inter-
action database, the ChIP-seq dataset has a recall of
0.4342, a precision of 0.3736, and an F-Score of 0.4016,
with the FPR=0.01 graph performing best. The ENCODE-
motif dataset has a recall of 0.2051, a precision of 0.2282,
and an F-Score of 0.2161, with the FPR=0.01 graph
again performing best. Because our method finds TF-TF
interactions based on genomic colocation and is entirely
focused on transcription factors, while STRING is focused
on all protein-protein interactions and derives its interac-
tions from very diverse data sources, it is expected that
our method would produce many novel predictions when
compared to STRING. Even so, 37% (over 4000) and 22%
(over 75,000) of the TF-TF interactions predicted by our
method were also contained within the STRING database
for the ChIP-seq and ENCODE-motif datasets, respec-
tively, and our precision and recall values correspond to
those of several other in silico protein-protein interaction
prediction methods [11, 42-47]

For the ChIP-seq and ENCODE-motif datasets, we
found that our method identified TF-TF interactions
which were significantly (p < 0.05 and p < 0.001,
respectively) more enriched in the Co-expression evi-
dence category when compared to STRING interactions
which were not predicted by our method. This indicates
that our method preferentially identifies interactions con-
taining TFs that are consistently present in the same cell
at the same time, as would be expected of interacting TFs.
The ENCODE-motif dataset is also significantly enriched
in the Experimental, Database, and Text-mining cate-
gories (p < 0.001 for each). The Experiment and Database
enrichment is especially important, as it provides evi-
dence that our method preferentially captures interactions
which have been experimentally derived. Figure 4 com-
pares the evidence category enrichments for out method’s
TE-TF interactions.

The presence of many experimentally validated TF-
TF interactions among the clusters, a degree of cor-
respondence with previous protein-protein interaction
data similar to other in silico methods, and enrich-
ments in experimentally-derived interaction evidence cat-
egories leads us to conclude that our method provides a
cheap, high-throughput window into identifying TF-TF
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Fig. 4 A comparison of STRING evidence category enrichments between STRING interactions which matched our predicted TF-TF interactions and
those that did not, for (@) the ChIP-seq dataset, and (b) the ENCODE-motif dataset

interactions on a putative basis. Also, unlike experimen-
tal assays which are blind to the larger framework the
complexes they detect may participate in, our method
preserves inter-cluster edges, leaving cluster-cluster inter-
actions (see Fig. 5) or single-TF many-cluster interac-
tions free to be explored. Additionally, while the clusters
assigned by our method are putative, we believe the accu-
racy, cheapness, and speed of our method allows it to be
used as a springboard by which to direct future research,
allowing experimental investigators to start with potential
TE-TF interactions instead of “from scratch.”

Motif co-occurrence provides more information than

similarity alone

A potential advantage of our method is its ability to detect

TF interactions outside the realm of motif PWM similar-

ity. The regression outlined in “Comparing edge weight
and motif similarity” showed R? to be 0.262, indicating

that motif similarity accounted for only 26.2% of the
variance in normalized edge weight. This implies that
motif similarity does not automatically equal motif co-
occurrence, especially when co-occurrence is normalized
against total background occurrence as it has been in our
method.

Practically, this can mean the difference between spot-
ting a TF-TF interaction and missing one. In Fig. 6, our
method grouped the TFs together regardless of the fact
that their PWM similarities (signified by edge darkness)
are largely inconsistent, with some interactions within
the cluster having highly similar motifs and others weak
motif similarity. A similarity-based method would fail to
group the experimentally validated HNF-NR2F2 interac-
tion found in this cluster due their PWM dissimilarity
(lighter gray edge in Fig. 6), but our method was able cap-
ture the interaction because they co-occur often (thicker
edge in Fig. 6).

Fig. 5 A zoomed-out portion of the ENCODE-motif clusters, with some inter-cluster edges shown, demonstrating how entire clusters can be highly
connected to some clusters but not others and raising the possibility of cluster-cluster interactions
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Filtering of putative TFBSs significantly improves accuracy
Without filtering, the recall of ATF3’s putative TFBSs
was 0.277, while the precision was only 0.0053, giving
an F-score of 0.0104. Our method achieved a maximum
F-score of 0.0725, an increase of nearly seven times the
unfiltered F-score, and increased precision by a factor
12.6 to 0.0667. At the same time, recall at the maximum
F-score only decreased by a factor of 3.4 to 0.0795. Addi-
tionally, if the recall is held at the original, unfiltered level
of 0.277, the normalized sum-score doubles the unfil-
tered precision, at 0.0104. It should be noted that this
was achieved in a completely unsupervised manner, with
ground truth experimental ChIP-seq data used only to
determine after-the-fact accuracy.

Several interesting observations were taken from Fig. 7.
We found that the non-normalized sum score performed
the best compared to the other scores evaluated, achieving
the slowest drop in recall, the greatest increase in preci-
sion, and the best overall precision-recall curve. Both the
non-normalized and normalized sum-scores performed
much better than the random-removal null metric, indi-
cating that the motif co-occurrence used to create our
score truly captures information that allows it separate
true putative TFBSs from false ones.

Additionally, the number of TFs in each TFBS win-
dow performed significantly worse than both the random
removal and sum-score, with no increase in precision
and a faster decrease in recall. Upon further investiga-
tion, we found that number of neighboring TFBSs was
actually strongly negatively correlated with the sum-score
(R = —0.81). We flipped the thresholding to account
for this, such that the cutoffs went from high num-
ber of neighbors to low (reflected in the corresponding
curve in Fig. 7), but the performance was still worse than
random. This meant that “quality” of neighboring TFs

was more important than “quantitity” when filtering; as
the number of neighboring TFs increased, more erro-
neous TFs with negative edge weights crept in, decreasing
the score.

At the same time, however, the non-normalized sum-
score performed marginally better than the normalized
sum-score, meaning that removing the effect of the num-
ber of neighboring TFs in each window altogether was
detrimental rather than helpful. We believe this is due
to a “boosting” effect which the non-normalized sum-
score allows. In a situation where a putative TFBS not
only has frequently co-occurring neighbors but the added
benefit of many of them, the non-normalized score takes
this into account while the normalized cannot, giving the
non-normalized score a slight performance advantage.

While the normalized sum-score performed slightly
worse in terms of raw F-score, it cannot be discounted, as
the normalized score achieved only slightly lower metrics
while maintaining a lower cutoff value. This meant that
the normalized score left more TFBSs in the filtered set,
which would be ideal if further processing on the filtered
set was desired.

From the above results, we can conclude that on a proof
of concept basis, our unsupervised co-occurrence based
method can significantly increase the accuracy of motif
searching, capturing information beyond that given by
density of TFBSs or motif similarity (see previous section).
Moreover, this filtering method requires no supervised
training with experimental data. The success of this co-
occurrence method filtering further lends credence to the
clustering results described above; if co-occurrence cap-
tures relationships between TFs to the extent that it can
veritably improve TFBS searching, the clusters based on
those same co-occurrences are likely to incorporate true
relationships.
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Discussion

The TF regulatory framework is essential to cellular
regulation and human health but is difficult to under-
stand, with interactions between TFs and the genome
as well as between TFs themselves. While established
methods exist to locate where TFs bind the genome, the
clustering and interaction of TFs themselves is largely
unexplored. Many clustering methods use motif PWM
similarity, which leaves out interactions not based on
sequence affinity, and methods which use proximity data
from ChIP-seq or motif analysis have not been applied to
true TF clustering. In this study, we presented a proximity-
based graph clustering solution for the identification of TF
clusters.

We used TF co-occurrence data from two TEBS datasets
to develop graphs, which were then filtered using an
empirical FPR thresholding method. MCL was applied
to the filtered graphs, producing many distinct, manage-
able clusters, with the motif-based dataset performing
best. Good clustering performance was achieved even at
very low FPRs where as much as 94% of graph edges
were filtered out. FPR represented a trade-off parameter;
a decreased FPR would decrease the maximum nodes per
cluster and increased the total number of clusters, but this
increased the number of orphaned, unclustered TFs.

Furthermore, we believe that our results provide evi-
dence that clusters produced by our method are accurate
and correspond to biological realities. First, many experi-
mentally known TF-TF interactions were identified within
our graphs’ clusters, and our graphs correspond well to
the protein-protein interactions found in the STRING
database, indicating on an empirical basis that our high-
throughput, one-pass method is capable of accurate clus-
ter assignment. Our use of the MCL algorithm leaves

inter-cluster edges intact, which more closely mirrors the
biological reality of a highly-connected, complex regula-
tory system and allows for further exploration of TF-TF
and cluster-cluster interactions.

Second, the information contained within the graph
structure was able to significantly improve the accuracy
of motif-based TFBS searching for the TF ATF3 when
compared to ground truth ChIP-seq data, which indi-
cates that the co-occurrence of TFs with one another
has direct biological relevance. Our filtering was based
on the simple assumption that if a given TF tends to
co-occur with a set of other TFs, a putative binding
site without the frequently co-occurring TFs is likely
to be a false positive. The unfiltered, unclustered graph
was used to generate scores for each putative TFBS,
and TFBSs with scores below a certain threshold were
filtered out. The precision-recall curves for the graph-
based scores significantly outperformed those based on
number (rather than identity) of co-occurring TFs as
well as a random control. The TF-TF relationships iden-
tified by our method must therefore have a biologi-
cal basis, as they bring the accuracy of motif-based
TEBS searching closer to that of the ChIP-seq biological
reality.

Finally, by regressing motif PWM similarity with the
edges of our graph, we demonstrated that our method
captures information beyond PWM similarity in the
ENCODE-motif dataset. PWM similarity only accounted
for 25% of the variance within our TF-TF associations,
allowing for TF-TF interactions to be found where they
otherwise would be missed (Fig. 8).

A primary limitation of our method is that while it
identifies many TF interactions in one pass, including
many which have been already experimentally confirmed,
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it does so on a putative basis, and it does not offer a quan-
titative level of likelihood for the clusters it produces. Our
method, however, is not meant to replace experimental
investigation or confirmation of TF clusters. Instead, it is
meant as a tool to quickly and easily explore TE-TF inter-
actions on a putative basis. Additionally, when used with
ChIP-seq datasets taken from different cell types or under
different cellular conditions, it allows for direct visual-
ization of how TF clusters, and therefore the regulatory
environment, change from cell to cell and condition to
condition.

Conclusions

Transcription factors form a complex regulatory network
which is crucial to human health but is difficult to under-
stand. Methods such as ChIP-seq and motif searching
can identify where a TF is likely to bind, but TFs also
interact among themselves in ways that are largely unex-
plored. To address this, we used TF co-occurrence data to
develop filtered, normalized graphs, with edges represent-
ing the degree of association between TFs. We clustered
these graphs using the MCL algorithm, which produced
many distinct clusters with known TF-TF interactions
while preserving inter-cluster edges. We also demon-
strated that our proximity-based co-occurrence method
captures information, and therefore TF interactions, that
PWM similarity methods cannot. The biological corre-
spondence of our graph output was also demonstrated
when we compared it to protein-protein interactions in
the STRING database, as well as when we used the graph
structure to filter putative TFBSs for ATF3, significantly
reducing the number of false positives and increasing
accuracy. Going forward, this method can be applied to
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examine how TF clusters change between cellular con-
ditions and cell types, opening doors into the “second
dimension” of TF regulatory dynamics.

Additional files

Additional file 1: chip_graphs.cys. Cytoscape file of the ChIP-seq
dataset graph and its clustered graphs as described in the Results section.
(CYS 318 kb)

Additional file 2: motif_graphs.cys. Cytoscape file of the ENCODE-motif
dataset graph and its clustered graphs as described in the Results section.
(CYS 9216 kb)
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