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Abstract

Background: Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and associated methods are
widely used to define the genome wide distribution of chromatin associated proteins, post-translational epigenetic
marks, and modifications found on DNA bases. An area of emerging interest is to study time dependent changes in
the distribution of such proteins and marks by using serial ChIP-seq experiments performed in a time resolved
manner. Despite such time resolved studies becoming increasingly common, software to facilitate analysis of such

data in a robust automated manner is limited.

Results: We have designed software called Time-Dependent ChIP-Sequencing Analyser (TDCA), which is the first
program to automate analysis of time-dependent ChIP-seq data by fitting to sigmoidal curves. We provide users
with guidance for experimental design of TDCA for modeling of time course (TC) ChIP-seq data using two
simulated data sets. Furthermore, we demonstrate that this fitting strategy is widely applicable by showing that
automated analysis of three previously published TC data sets accurately recapitulates key findings reported in
these studies. Using each of these data sets, we highlight how biologically relevant findings can be readily obtained
by exploiting TDCA to yield intuitive parameters that describe behavior at either a single locus or sets of loci. TDCA
enables customizable analysis of user input aligned DNA sequencing data, coupled with graphical outputs in the
form of publication-ready figures that describe behavior at either individual loci or sets of loci sharing common
traits defined by the user. TDCA accepts sequencing data as standard binary alignment map (BAM) files and loci of

interest in browser extensible data (BED) file format.

Conclusions: TDCA accurately models the number of sequencing reads, or coverage, at loci from TC ChIP-seq
studies or conceptually related TC sequencing experiments. TC experiments are reduced to intuitive parametric
values that facilitate biologically relevant data analysis, and the uncovering of variations in the time-dependent
behavior of chromatin. TDCA automates the analysis of TC ChIP-seq experiments, permitting researchers to easily
obtain raw and modeled data for specific loci or groups of loci with similar behavior while also enhancing
consistency of data analysis of TC data within the genomics field.

Keywords: ChIP-seq, Time course experiment, Bioinformatics, Protein-DNA binding kinetics, Data modeling,
Curve fitting, Statistical analysis, Genomic feature correlations

Background

In recent years ChIP-seq has become a hallmark strategy
to define genomic loci that are bound by particular pro-
teins [1-4]. Genome organization and regulation of gene
expression are dynamic processes and enable adaptation
to changes in cellular signaling, physiology, and environ-
mental cues, therefore, there has been increasing interest
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in understanding the time-dependent changes in binding
of proteins to the genome. Such studies depend on
quantifying the number of sequencing reads at a given
locus as a function of time in a series of parallel experi-
ments. Using such data, changes in the number of
sequencing reads at specific loci can be compared to
changes at other loci, allowing one to evaluate changes
in the abundance of proteins associated with specific
genomic loci. Accordingly, such analyses are of increas-
ing interest because uncovering genomic loci that are
particularly responsive or impervious to a diverse range
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of stimuli will enable improved understanding of mech-
anistic basis behind the dynamic changes within the gen-
ome that enable adaptive responses.

Several reports have described TC ChIP-seq and
ChIP-seq-like studies performed using a variety of tech-
niques. The current scope of TC experiments has involved
metabolic feeding of unnatural amino acids [5], induction
of engineered genes bearing epitope tags [6—13], stimulus
with known effectors of protein-DNA binding [14, 15], in-
duction of DNA cleavage by activation of proteins fused
to nucleases [16, 17], investigating nucleosome position
changes using the assay for transposase-accessible
chromatin followed by sequencing (ATAC-seq) procedure
[18, 19], and examining the repair of DNA damage [20].
The development of novel tools to enable TC ChIP-seq
analysis of new targets is an area of growing interest and
such methods will facilitate a host of studies that should
uncover new mechanisms contributing to the activation
and repression of genes.

Although new TC ChIP-seq experimental strategies
continue to be developed [21], the strategies for analysis
of TC data vary widely. Indeed, there is no standard
method for analysis within the field and this stems in
part from the lack of software dedicated to such ana-
lyses. To our knowledge, there are three publications
that offer analysis scripts for TC ChIP-seq data process-
ing, mostly with limited functionality, documentation,
applicability and none of these offer modeling options
[9, 14, 16]. Manual analysis strategies are more common.
Researchers have estimated rates of turnover at genomic
loci by manually fitting sequencing coverage data at each
locus over time to an inverse of a negative exponential
formula [5]. Strategies to calculate sequencing coverage
at loci in TC ChIP-seq experiments over time using a
multi-linear regression has also been explored [10, 13].
Other TC ChIP-seq analysis strategies instead focused
simply on trends in the coverage of sequencing reads
over time at loci of interest [16, 20]. Strategies involving
data fitting are appealing because they enable re-
searchers to reduce large amounts of complex data to a
limited set of theoretically important values. Further-
more, using data fitting methods ensures that data at all
loci are fit in a consistent manner, increasing the
consistency of analyses and avoiding experimenter bias.
However, complicating issues can arise when data can-
not be fit by the proposed functions or if the model is
overly simple. These problems can lead to loss of im-
portant information and missing insights that could
otherwise be gleaned. Given the decreasing costs of se-
quencing, coupled with the high value of TC data for
understanding  physiological responses manifesting
within the genome, TC studies are an area of growing
interest. Accordingly, simple automated methods that fa-
cilitate analysis of such data will facilitate the adoption
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of TC methods by researchers new to the TC field as
well as by non-specialists considering implementing
ChIP-seq studies in their own research programs.

Here we describe the development and validation of
software that greatly facilitates analysis of a wide range of
TC data in a robust automated manner. We call this
software the Time-Dependent ChIP-Sequencing Analyser
(TDCA). TDCA analyzes the sequencing read coverage
at a series of time points and uses this data to calcu-
late protein binding half-lives at genomic loci by
modeling TC sequencing coverage to sigmoidal
curves. We provide a comprehensive manual contain-
ing full algorithm details as well as installation proce-
dures with our software, which is publicly available
at: www.github.com/TimeDependentChipSeqAnalyser/
TDCA. The following manuscript focuses on describing
the accuracy, versatility, and utility of TDCA. We demon-
strate the accuracy and versatility of TDCA by testing sim-
ulated data sets, as well as by replicating key findings and
providing new insights from previously published data sets
that were obtained using diverse methods. These data sets
include: 1) TC ChIP-seq of doxycycline inducible HA-
tagged histone 3.3 (H3.3) variant in MEF cells [10], 2)
Chromatin endogenous cleavage followed by sequencing
(ChEC-seq) of Abfl in yeast [16], and 3) eXcision repair se-
quencing (XR-seq) on (6—4)pyrimidine-pyrimidone photo-
products ([6—4]PP) in a normal fibroblast cell line (NHF1)
and a DNA damage prone cell line (CS-B) in humans [20].
Data analysis by TDCA yields intuitive parameters that de-
scribe behavior at genomic loci and offers customizable
analysis with publication-ready graphical outputs, thus
making TDCA of particular value for researchers.

Implementation

Strategy

Given that the amount of any specific protein bound to
any given genomic locus must have an upper limit to its
occupancy, we felt that using an inverse of a negative ex-
ponential function for data modeling should accurately
reflect the eventual saturation or steady-state occupancy
that should occur at loci over time. We also reasoned
that protein binding to genomic regions should reach a
lower limit defined by either complete vacancy or, in
some cases, a low basal level. Finally, we reasoned that
many methods applied to TC ChIP-seq, including for ex-
ample the induction of tagged proteins, will involve a
delay in responses that are not accounted for by a simple
inverse negative exponential function. To account for
this induction period, while incorporating the upper and
lower limits of protein binding to the genome, we opted
to fit data to sigmoidal curves. Fitting to a sigmoidal
curve readily enables the definition of parameters that
also define the speed at which occupancy of a given pro-
tein changes at any genomic locus. Finally, we also
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considered that such sigmoidal curves may be asymmet-
ric since, for example, in systems where induction of ex-
pression of a protein of interest is used to control the
extent of protein binding, then the extent of recruitment
to a locus may be initially limited by protein abundance
but then rapidly accelerate as protein production is in-
duced. This type of system would result in loss of rota-
tional symmetry between the curve before and after the
inflection point. From a biological perspective, this
asymmetry reflects that the rate at which protein bind-
ing occurs at the locus and varies as being unequal on
either side of the inflection point. This inequality could
arise from a positive/negative feedback response to the
protein expression/binding process or may be caused by
changes in the experimental conditions - for instance if
researchers wished to see the effect of protein binding
rates in response to some given stimulus partway
through a TC experiment. To account for such scenar-
ios, we introduced the option of introducing an asym-
metry parameter to describe such behavior. We also
expect that as sequencing becomes less expensive TC
studies will become commonplace and more time points
will be acquired to allow more precise modeling. We
therefore considered that such sigmoidal fits should
yield basic parameters that define the properties of bind-
ing of a given protein of interest at any genomic locus.
These biologically relevant parametric outputs are re-
ported to users as raw data. This approach accordingly
enables users to reduce complex sequencing experi-
ments to a few key features, clarifying research questions
and enabling focused data analysis.

Core algorithm

TDCA models [22] normalized sequencing coverage [23]
to four parameter (4P) or five parameter (5P) sigmoidal
curves, at user specified loci, across multiple ChIP-seq TC
experiments. TDCA accepts TC sequencing data in BAM
file format and loci coordinates in standard BED file for-
mat. Raw sequencing data can be aligned to a reference
genome using a variety of published software [24, 25] and
converted to BAM files using SAMtools [23]. Loci at
which precipitated proteins bind DNA at significant levels,
or ChIP-seq “peaks”, can be defined using published soft-
ware [26, 27] or through custom analysis strategies. The
equation and description of parameters for 4P and 5P sig-
moids are shown in (Eq. 1).

a—d
=d+ — 1
YT L oy =

Where,

a = Lower asymptote (baseline protein binding).

b = Incorporation rate index (IRI, a measure of the
slope at the inflection point).
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¢ = Inflection point when f=1 (also the time at which
the curve reaches the TTI when f=1).

d = Upper asymptote (maximal protein binding).

f=Asymmetry factor (A measure of the rotational
symmetry about the inflection point. For 0<f<1: the
y-value for the inflection point occurs closer to the lower
asymptote. For f= 1: the rate of increase is the same as the
rate of decrease such that the inflection point occurs
exactly in between the lower and upper asymptote (the
curve is symmetric). For f> 1: y-value for inflection point
occurs closer to the upper asymptote).

The inflection point of Eq. 1 is the point on the sig-
moidal curve at which a change in the direction of
curvature occurs. Mathematically, this is given by the
root of the second derivative of Eq. 1, given by Eq. 2:

e - (W) 2)

Equation 2 defines the value of x at which the root of the
second derivative (and consequently the inflection point)
occurs. When f=1 the root occurs at x = c. Inputting this
equivalency into Eq. 1 yields a y-value of (a+d)/2, the
mean value between upper and lower asymptote, which we
use to define the turnover time index (TTI). However, for
any other value of fthe inflection point is shifted away from
c and is dependent on both the values of b and f. For cases
in which f does not equal 1, the TTI value in such asym-
metric cases is obtained directly by solving for the value of
x for which y = (a + d)/2. Note that the recommended and
default setting for fis fixed to 1 and changing this setting
should only be done by users with a clear biological ration-
ale since a variable f may not be relevant. For a graphical
representation of the effect of the f value on curve behavior,
as well as interpretation of these effects, refer to “Core Al-
gorithm Description” section of the manual.

During fitting, each locus in a TC ChIP-seq experi-
ment is defined as one of six characteristic TDCA
categories of change in sequencing coverage as a func-
tion of time. These six categories of behavior are defined
as follows:

1) Rises: Sequencing coverage increases over time and
data are modeled to a single 4P sigmoid having a
negative incorporation rate index.

2) Falls: Sequencing coverage decreases over time and
data are modeled to a single 4P sigmoid with a
positive incorporation rate index.

3) Hills: Sequencing coverage increases and then
decreases over time and data are modeled to two 4P
sigmoids - a rise then a fall.

4) Valleys: Sequencing coverage decreases and then
increases over time and data are modeled to two 4P
sigmoids - a fall then a rise.
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5) Undefined: Loci that do not display the behavior of
the previous categories but are nevertheless modeled
as either a single rise or fall.

6) Eliminated: Loci that are predicted to behave as a
certain category but do not.

We have enabled TDCA to normalize sequencing
coverage data before modeling. This normalization can
be done in two ways. Firstly, the coverage values at each
locus are normalized by the maximum sequencing
coverage at non-peak loci for all time points collected in
a TC series. Using non-peak loci enables capturing levels
of true background sequencing. Additionally, TDCA can
accommodate use of an input standard for normalization
of data sets obtained at each time point. ‘Input’ refers to
sequencing data for a control experiment wherein the
protein-DNA complexes are not immunoprecipitated by
a specific antibody and the sequencing results therefore
provide a baseline sequencing coverage distribution. If
input control data is provided, the input is normalized in
the same manner except the sequencing coverage across
the entire genome is used since there are no expected
peaks. Sequencing coverage at each time within the in-
put data is then subtracted from experiment data to a
lower limit of zero. However, applying this subtraction
strategy can lead to zero inflation depending on the
quality of the input files that are used. To combat this
potential problem, we have enabled TDCA to analyze
pre-normalized read counts, which allows users to apply
the most appropriate normalization strategy to their par-
ticular experiment [28-30]. In the TDCA manual, we
provide an example of how users can achieve normalized
read counts using DiffBind [31], which incorporates the
popular programs DESeq2 [32] and edgeR [33], which
account for overdispersion. To assist users who wish to
limit the weight put on observations with large counts,
which can lead to greater variances, we have also incor-
porated an option to model user TC sequencing data
using a Poisson model instead of by least-squares fitting.
TDCA has the capacity to handle any number of replicate
data sets as well as any amount of input data. Notably, in
order to accommodate novel spike-in normalization strat-
egies that are emerging [34, 35], we also provide users with
the option to normalize data to a defined set of values (see
manual for details). Overall, the normalization strategies
implemented here were designed to keep TDCA compat-
ible for analysis of a broad variety of TC sequencing data,
even as novel normalization strategies are developed.

To model data, we have designed TDCA to use a pre-
diction algorithm that is based on the times at which the
normalized absolute minimum and maximum sequencing
coverage values are observed at each locus. TDCA checks
if there are either trailing data points (occurring later in
time) and leading data points (occurring earlier in time)
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for the time points containing the absolute minimum and
maximum sequencing coverage to identify lower and
upper asymptote boundaries and to determine if the be-
havior at a locus is a candidate for modeling using a
double sigmoid as seen in “hills” or “valleys” or whether
the behavior at the locus is described by a “rise” or “fall”
and modeled by a single sigmoid, Fig. 1 (a). We enabled
TDCA to use a user-defined “plateau range threshold”
and “leading/trailing points threshold”, which control the
tolerated variation in sequencing coverage that can be
used to define a lower or upper asymptote boundary.
Briefly, the plateau range threshold allows users to define
the tolerated differences in sequencing coverage that is
used to determine if the leading and trailing data points
are within range to be considered asymptotes (i.e. if the
differences are simply fluctuations of data points which
have reached a plateau), or if the points are in fact chan-
ging meaningfully over time. If the latter is the case, then
these data points are defined as genuine leading or trailing
time point that permits defining an upper or lower asymp-
tote boundary (for each side of the valley or hill) and cor-
responding assignment of behavior at a locus to either a
hill or valley. The user defined leading/trailing points
threshold allows users to define how many genuine lead-
ing or trailing data points (as determined by the plateau
range threshold) are necessary to shift the modeling of a
loci from a single to a double sigmoid, Fig. 1 (b). The abil-
ity of TDCA to model a single locus to a range of specific
categories based on a user-adjustable prediction algorithm
allows one to gain important insights from available data.
Furthermore, the categories we have defined are biologic-
ally relevant, as shown through description provided below
for the TDCA automated analyses of several published data
sets. For additional clarification, the TDCA manual con-
tains a more detailed description of the leading/trailing
points threshold and the plateau range threshold.

After the categorization of each locus is completed,
TDCA models the data at each locus and the time
points used are separated according to the category of
behavior predicted. If the modeling result does not
match the prediction, the locus is eliminated. For ex-
ample, if a locus is predicted to model as a rise but is in
fact modeled as a fall, the locus is eliminated from
downstream analysis. This procedure provides a two-
fold verification of locus behavior that effectively elimi-
nates loci that are false positives. A visual representation
of our algorithm is shown in Fig. 1 (a) and the depend-
encies for operation of TDCA as well as a visual of the
TDCA modeling process in Fig. 1 (b). We have also
optimized TDCA to operate using parallel processor
libraries (Additional file 1: Figure S1).

TDCA can also model time course sequencing data
using linear regression. This may be useful in situations
where constant rates of binding of a protein or other
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Fig. 1 TDCA analysis work flow, requirements, and performance. a Simplified work flow. Required input data are genomic coordinates in BED
format and folders containing BAM TC sequence files. TDCA normalizes data based on total sequencing coverage of each time point and also
handles input files and replicates using additional normalization procedures. Loci can be modeled as the following categories of signal change:
rise, fall, hill, or valley. An identity matrix that predicts loci category is based on the time at which absolute minimum sequencing coverage
(black arrows) and absolute maximum sequencing coverage (red arrows) occurs as set by user defined thresholds. Each sigmoid color indicates
a rise or fall with different combinations of absolute maximum and absolute minimum coverage positions in time with genuine leading and
trailing points. Alternatively, users can model all their data to a single sigmoidal curve. The resulting parameters from data fitting are then
reported to the user along with raw sequencing coverage calculations. Graphical output is provided to the user which can be enriched by
specifying genome and genes. R scripts are provided in case users would like to change the look of default figures. b Plots show sequencing
coverage (y-axis) over time (x-axis) at loci for coordinates of chromosome 1:5,012,338-5,013,264 obtained from a H3.3 ChIP-seq experiment [10]

Inverse of a
negative exponential Multi-linear
1500 1500
[ rl . (2] .
[P —
T8 (] ) .
+ f/‘—‘ Fe
>0 > o
o= o=
o o
0 a4 0
0 1500 3000 0 1500 3000
Time (minutes) Time (minutes)
TDCA (C++)
Samtools Drc Bedtools
e
1500
A .......................... A
0 : v
E L ]
g
@
j=2]
o
[
> '
o '
o H
o [l e e e i e
0 1000 2000 3000

Output

using previously applied modeling strategies of inverse negative exponential (upper left) and multi-linear (upper right), and the sigmoidal fitting
used by TDCA (lower). TDCA requires on terminal access to SAMtools [23] for sequencing coverage calculation of BAM files, BEDTools [37] for BED
file manipulations, and R with the drc [22] package for curve fitting. In the example shown here, parameters that govern data modeling by TDCA can
be fine-tuned to result in either a single or double sigmoid. The lower and upper horizontal dashed lines represent absolute minimum coverage and
absolute maximum coverage values, respectively. The overall sequencing coverage range at a locus is shown as a vertical dashed line with red arrows.
In this case, the three data points marked with white arrows exceed the plateau range threshold (gray boxes) and are defined as genuine absolute
maximum trailing data points. This results in double sigmoid modeling as shown here. Parameters for both sigmoids are reported to users. The plateau

range threshold and leading/trailing threshold could be adjusted such that the locus is modeled to a single sigmoid

measurable factor is observed over time at a given locus.
Constant coverage over time would result in the locus
being modeled to a line with a relatively flat slope and
low overall residuals. This output can be directly com-
pared with the residuals from the sigmoidal fits to enable
users to evaluate suitability of the modeling. Graphical
outputs of these measurements are all provided by
TDCA to facilitate analysis of TC sequencing data.
TDCA provides the results of the modeling as an out-
put file. Standard errors of each parameter of the mod-
eled curves are also provided. These standard errors
provide measures of the accuracy with regard to the
parameters that are estimated. Accordingly, these errors
can be used to gauge the reliability of the modeled
parameters. In particular, confidence intervals can be

calculated using the standard errors, which can give
users a deeper understanding of the accuracy of the esti-
mated values offered for the various parameters. These
errors should also be used to guide iterative experiments
that lead to their reduction and also replicate findings in
entirely independent sets of experiments. Standard
errors obtained using different modeling functions can
also be compared to assess the most appropriate model
for the experimental design. We have created TDCA to
offer various graphical outputs [36], predominantly using
the turnover time index (TTI), which is the inflection
point obtained from the modeled data adjusted by the
asymmetry factor, or simply the inflection point in the
case of the default 4P curve fitting. The TTTI is indicative
of the binding half-life of a protein at a particular locus
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and, for this reason, we find it to be a biologically inter-
esting variable on which to focus attention.

Results and discussion
Analysis of simulated ChIP-seq time course data
To test the accuracy of TDCA, we generated simulated
TC ChIP-seq data describing both rises and falls (see
Methods for details). Briefly, we varied different parame-
ters for 1000 loci located on three chromosomes of the
Drosophila genome. On chromosome 2 L we assigned
loci to vary in the time of the inflection point, defined as
the turnover time index (TTI) and the magnitude of the
slope at the TTI, defined as the incorporation rate index
(IRI). On chromosome 2R we varied the length of the
peaks. On chromosome 3R, we varied the position of
the upper asymptote, which defines the coverage of se-
quencing at loci. Calculated values for each of the 3000
loci were converted into sequencing coverage values for
11 different time points [37], and different random noise
was added to each time point using standard methods
[38]. We provide tracks of the simulated data [39]
(Additional file 1: Figure S2 (a-c)), which are summa-
rized in Additional file 1: Figure S3 (a-d). Our simulated
data generation method allowed us to generate a con-
stant level of noise which we believed would reflect the
random background noise observed within real experi-
ments (Additional file 1: Figure S4 and S5). It is import-
ant to note that the application of this random noise,
however, does not account for the extent of biological
variation at loci which is generally greater than random
noise and depends very much on the experimental sys-
tem. Although this simulated noise may not reflect the
noise distribution in specific biological experiments, we
envisioned that these simulated data sets would be use-
ful in allowing assessment of the accuracy in modeling
parameters in the absence of biological variability at loci
and help stimulate users to think about the design of ex-
periments in terms of parameters such as, most import-
antly, the frequency of data collection. We analyzed the
simulated data using TDCA and focused on how well it
could model the position of the TTI, since this is a bio-
logically interesting parameter equivalent to the time at
which half of protein binding change at a particular
locus occurs. To perform this study, we evaluated the
percent difference of the true inflection point based on
the simulated calculations with the TTI calculated by
TDCA using the TC data augmented with noise.
Analysis of the 3000 loci with simulated rise and fall
data revealed that the TTI modeled by TDCA accurately
predicts the true inflection point of the large majority of
data (Additional file 1: Figure S6). TDCA shows in-
creased percent deviation from the true inflection point
when data behaves more linearly, with a low absolute in-
corporation rate index (Additional file 1: Figure S6 (a)
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and (b)), or when inflection points occur very near the
first or last time points for which data is obtained
(Additional file 1: Figure S6 (c) and (d)). This behavior is
summarized for simulated data describing rises on the
first part of chromosome 2 L (2 L.1), where the incorp-
oration rate index systematically changes across loci
(Fig. 2 (a)) and on the second part of chromosome 2 L
(2 L.2), where inflection points systematically change
across loci (Fig. 2 (b)). Interestingly, we also observed
more accurate TTI predictions of chromosome 2R loci
with higher relative saturation (Additional file 1: Figure S6
(e) and (f)). We reasoned that this behavior arises from
the added noise contributing less significantly to data with
overall greater sequencing coverage, since greater sequen-
cing coverage would improve the signal to noise ratio.
Therefore, both noise and sequencing coverage are im-
portant factors to consider in TDCA modeling accuracy.
Finally, we found that peak length had no noticeable effect
on accuracy of modeling (Additional file 1: Figure S6 (g)
and (h)). Based on these analyses, we note that there are
important factors to consider in TDCA modeling ac-
curacy, and indeed analysis of TC ChIP-seq data in gen-
eral, including the extent of noise, sequencing coverage,
and the time points collected in the context of expected
changes in protein binding to the genome. Regardless,
deviation of fitted models to the simulated data sets
revealed small (+x10%) differences and we therefore
consider the overall modeling accuracy of TDCA to be
satisfactory.

Given the value of having adequate time points to
flank the TTI as noted above, we next evaluated how ac-
curately TDCA would model our simulated data sets
when only select time points were used. This analysis
should provide useful guidance as to how many and at
which times one should collect experimental data to
realize reliable modeling of data by TDCA. We tested
evenly staggered time points (0, 2, 4, 6, 8, and 10), the
first six time points (0, 1, 2, 3, 4, and 5), and the first
single and last five time points (0, 6, 7, 8, 9, and 10).
These tests stem from practical situations that may arise
at specific loci, where a researcher may have collected
fewer time points (staggered), may have unknowingly
ended collection prematurely (first six), or may have
missed a block of time points or preferred to collected
later data sets (first and last five).

Using these sparser simulated data sets, we analyzed
the percent deviation of the true simulated inflection
point to the TTI modeled by TDCA at each locus
(Additional file 1: Figure S7, S8 and S9). We found that
the percent deviation was most significant at loci that
contained true inflection points that were beyond the
last available time point or within gaps of available time
points. For example, using staggered time points we
noticed that loci on chromosome 2 L.2 with inflection
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points at time point 1 increased in percent deviation
(Additional file 1: Figure S7 (c) and (d)). When we mod-
eled data using the first six time points, there was an ex-
pected and clear loss in accuracy for loci at chromosome
2 L.2 having a TTI at a time greater than time point 5,
which was the last time point included in this truncated
analysis (Additional file 1: Figure S8 (c) and (d)). Simi-
larly, we noticed during analyses of the data sets con-
taining data for the first time point along with the data
for the last five time points, a notable loss in accurate
modeling of the TTI at loci having inflection points that
occurred within the gap of time points (1-5) (Additional
file 1: Figure S9 (c) and (d)). Interestingly, when analyz-
ing the truncated data set containing only the first six
time points, there was a larger deviation in accurate
modeling of TTI for loci in chromosomes 2R and 3R,
with inflection points of 4.5 and 5.5, respectively, in
simulated rise data compared to simulated fall data
(Additional file 1: Figure S8 (e-h)). We reasoned that this
effect stemmed from difficulty TDCA had in pinpointing
the upper asymptote of rises, whereas those of falls
could more easily be determined due to the constraint
of requiring placement of the lower asymptote at a non-
negative value.

Given that current recommendations regarding TC se-
quencing experiments calls for late time points to satisfy
saturation of captured loci [40], modeling late TTI
values should not be a major problem for researchers so
long as this recommendation is followed. In order to cir-
cumvent issues in modeling early TTI values, we recom-
mend limited preliminary studies that enable selection
of suitable time points chosen to flank the TTI and then
perform deeper sequencing studies for TC ChIP-seq ex-
periments and modeling.

In our simulated TC experiments, we also describe the
accuracy of predictions returned by TDCA with regard
to locus categorization for each simulated data set
(Additional file 1: Figure S10). Fundamentally, these re-
sults reflect the accuracy of the prediction of inflection
points. As shown (Fig. 2 (c)), the locus category predic-
tion for simulated rises is most sporadic at chromosome
2 L.2 when using only the first six time points. TDCA
has difficulty predicting loci category when using only
the first single time point along with the last five time
points. This situation leads to a large occurrence of loci
assigned as being undefined, however, the correct cat-
egory of signal change is predicted (rises and falls are
categorized as undefined rises and falls, respectively).
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Overall, loci that are correctly predicted by TDCA as be-
ing in their true category are more likely to be accurately
modeled, indicating an important aspect of category pre-
dictions that should help guide favorable experimental
TC ChIP-seq study design.

Analysis of inducible HA-tagged histone H3.3 variant in
MEF cells

To showcase key features of our program we analyzed a
robust TC ChIP-seq experiment performed using an
engineered MEF cell line that produces HA-tagged H3.3
variant in the presence of doxycycline in a time
dependent manner [10]. This data set contains two inde-
pendent replicates at each of 11 time points, as well as
an input control. We analyzed the replicates separately
and found that the log2 TTI ratio of replicates across
loci predominantly centered around zero (Fig. 3 (a)) with
73.4% of loci within +20% and 94.4% of loci within +50%
of the reported TTI value (Additional file 1: Figure S11).
This analysis supports good reproducibility of the repli-
cate experiments.

We next proceeded to analyze H3.3 loci using both
replicates, along with the input control. Included in the
default graphical output of TDCA is a genome wide heat
map of normalized sequencing coverage across time
points (Fig. 3 (b)). This is a useful chart to visualize the
overall quality of data. We observed a general trend of
increasing sequencing coverage over time (Fig. 3 (b)),
which is expected as doxycycline treatment leads to a
gradual increase of the tagged H3.3 and its recruitment
to the genome. Other default graphs generated by
TDCA includes a pie chart showing the percentage of
loci that are assigned into one of the six TDCA categor-
ies of behavior and a bar chart showing the percent inci-
dence of absolute minimum and absolute maximum
sequencing coverage values over all collected time points
(Additional file 1: Figure S12). We found that the H3.3
TC data contained 49.7% rises and 41.2% hills, account-
ing for 90.9% of loci. Importantly, the occurrence of
decreasing signal after a maximum (defined as a being a
hill) was also observed in the original analysis of the data
[10], supporting the accuracy of the automated analysis
and locus categorization performed by TDCA. We also
observed an increased occurrence of absolute minimum
coverage near the early time points and an increased oc-
currence of absolute maximum coverage at late time
points. Overall, the quality charts support the expect-
ation of increased signal over time.

TDCA offers many default graphs to facilitate data
analysis and interpretation. Of particular use is a count
of loci that fall within binned TTI regions, which can be
separated by the category assigned for a given locus
(Fig. 3 (c)). During analysis of this H3.3 data set, we ob-
served a right tailed skewed distribution of TTI values
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centered around 300 min. From this observation, we no-
ticed that the distribution of the TTI of the incline of the
hills were faster than those of rises. This is an interesting
and previously unobserved property of these data that
may have functional significance that merits closer study.
TDCA also automatically displays average profiles for
each category of locus and we illustrate this output show-
ing the relevant categories, hills and rises, for this H3.3
data set (Additional file 1: Figure S13).

We expanded the customizable built in mouse gene
feature library within TDCA to include analysis of loci
comprising genes that encode tRNA and rRNA [41], as
well as loci encompassing enhancers [42] (see manual).
These gene features were previously analyzed and found
to exhibit unusually fast turnover of H3.3. Here, using
TDCA, we rapidly replicated these results in a single au-
tomated step and include the distribution of TTI at
other default gene features included in TDCA at loci
that show an increase in signal change (Fig. 3 (d)).

TDCA also provides the useful option of graphing, in
a compressed 3D format, the normalized read coverage
at specific loci. Figure 3 (e) shows the 3D profile of the
gene Gml1266 (chr4:82,153,892-82,193,196), which
contains two loci bound by H3.3, which according to the
raw data output, have TTI values of 3389 and
322.3 min. As shown, saturation is observed at the last two
compressed sequencing coverage values. Conversely, the
3D profile of the gene Sgkl (Additional file 1: Figure S14),
which also contains two loci bound by H3.3, does not ap-
pear to become saturated with tagged H3.3. Consultation
with the raw data supports this conclusion, revealing TTI
values of 1868.4 and 1732.5 min for Sgk1. Overall, these 3D
profiles are visually informative and provide users with a
quick and intuitive way to examine the behavior of genes of
particular interest.

Lastly, TDCA provides the distribution of loci to
which H3.3 is bound along chromosomes, along with
their TTI as an additional dimension shown in color as
illustrated here for chromosome 6 (Fig. 3 (f)) and
genome wide (Additional file 1: Figure S15 (a)). This
ideogram heat map allows users to quickly scan the
genome-wide distribution of their loci while simultan-
eously considering TTI values to decide if clustering
analyses, such as the discovery of hotspots describing
clusters of fast (low TTI) or slow (high TTI) loci exist
within the data set. We binned the mouse genome into
200,000 bp bins and overlapped H3.3 loci at each bin.
We found 30 bins that contained 30 or more H3.3 loci,
which we defined as being clusters. We then plotted the
average TTI and corresponding standard deviation within
each of these clusters (Additional file 1: Figure S15 (b)).
Not surprisingly, since H3.3 shows a relatively bland TTI
distribution, we find no drastic differences in TTI averages
at clusters after considering the standard deviation.
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However, some clusters contain much smaller standard
deviations than others, which suggests that some clus-
ters are more tightly co-regulated in terms of H3.3
binding or turnover.

Analysis of Abf1 time course ChEC-seq in yeast

Recently, an interesting ChIP-seq-like technique called
ChEC-seq, escaping the general requirement of using
antibodies for IP and for DNA fragmentation, has been
described. This strategy relies on genetically engineered
proteins of choice fused to calcium dependent endonu-
cleases. Researchers can study the kinetics of binding of
these fusion proteins along the genome by treating cells
with calcium at various time points and for varying times.

Although not a ChIP-seq experiment per se, the resulting
data is completely amenable for analysis by TDCA.

We decided to test the performance of TDCA on a
published ChEC-seq experiment in which an Abfl fusion
protein was used in yeast [16]. This data set contains
progressively longer treatments with calcium. This
experiment should theoretically result in gradually in-
creasing levels of DNA fragments that in time reach
some upper limit, which would result in the TCDA loci
categorization of rises to predominate. However, the
authors did note that for some loci, there was an
increase in signal over time and then a disappearance,
theoretically resulting in the TCDA loci category of hills.
Because TDCA can model loci in the same data set as
different categories a clear advantage can be gained
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using this software for automated analysis. We analyzed
the Abfl ChEC-seq data set and found that 11,715/
12351 loci (94.9%) identified as rises or hills which con-
tained positive TTI values on the signal increase mod-
eled sigmoid. This encouraged us to proceed to
reproduce key findings in the published data set to prove
the accuracy of TDCA, as well as to highlight novel in-
sights gained only through TDCA usage.

Previously, the Abfl data set was categorized into two
major clusters by k-means clustering and these categories
were defined as being fast and slow. This categorization
was based on whether the time point at which the abso-
lute maximum coverage after normalization occurred
either early (fast category) or late (slow category). Focus
was then directed on analyzing DNA sequence motifs and
their abundance at both fast and slow loci. The authors
found that fast and slow loci showed a tendency to con-
tain high and low scoring motifs, respectively. Notably,
TDCA uncovered a more complex distribution of the kin-
etic binding patterns of Abfl, as shown in the distribution
of TTI values (Additional file 1: Figure S16 (a)). When we
used k-means clustering [43] to bin the TTI values ob-
tained using TDCA into fast and slow categories we repli-
cated the key observation that there is an increase in the
motif scores of fast loci compared to slow. This effect,
however, was more modest and not as great as previously
reported based on the time of absolute maximum sequen-
cing coverage (Additional file 1: Figure S16 (b)). Notably,
we also found that the previously clustered fast and slow
loci do show an overall lower and higher TTI distribution,
respectively (Additional file 1: Figure S16 (c)). TDCA is
therefore in general agreement with this previous analysis
strategy and the reported Abfl data set.

We next took the clustering based on the time point
at which the absolute maximum coverage after nor-
malization occurred to its greatest limit by creating the
smallest possible clusters. These smallest clusters are
simply each time point used. We observed a general
trend of increasing motif averages as the bins neared
zero (Additional file 1: Figure S16 (d)). Binning loci
based on the TDCA obtained TTI value corresponding
to the time points of calcium treatment did not show as
great a trend for average motif scores as previously de-
scribed (Additional file 1: Figure S16 (e)). We reasoned
that this apparent difference was due to a large propor-
tion of loci containing TTI values occurring within
1 min (Additional file 1: Figure S16 (a)). We therefore
ordered loci based on fastest to slowest TTI values and
created bins containing 1000 loci. The average motif
scores at these ordered bins re-captured similar average
motif scores of clustered data based on the time point at
which the absolute maximum coverage occurred
(Additional file 1: Figure S16 (f)). Strikingly, when we
decreased the bin size to 500 loci (Fig. 4 (a)), we
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observed an even greater average motif score at the
fastest TTI bin, with local minima and maxima bin clus-
ters. This resolution could not be obtained using the
previously published strategy. We show that there are
progressively dramatic leaps in the average motif scores
as we observe the top 200, 100, 50, and 25 TTI loci. This
marked increase in the motif score that stems from nar-
rowing the bin size of the loci having the greatest TTI
values highlights the importance of increasing resolution
and speaks to the utility and accuracy of the TTI value
in analyzing data sets.

Lastly, we ordered all loci based on their TTI from
fastest to slowest and created bins of 1000 loci for which
we then produced motifs (Additional file 1: Figure S17).
We were able to reproduce specific motifs [44] at loci
having early TTI (Fig. 4 (c)), which eventually reduced
to poly-A repeats, as noted in the initial report [16].
Because of our increased resolution, we also captured
additional motifs that were not previously observed
(Fig. 4 (d-e)). Interested researchers would easily be able
to pursue this type of discovery using the high level of
automation and customizability offered by TDCA.

Analysis of time course XR-seq on [6-4]PP in NHF1 and
CS-B human cells

In humans, UV damaged DNA is removed through the
action of the nucleotide excision repair pathway [45]. By
monitoring DNA repair following UV treatment in a TC
XR-seq experiment it has been shown that the time at
which excision occurs after UV exposure varies depend-
ing on the locus and that excised fragments, which can
be identified and quantified by sequencing, degrade over
time [20]. This observation suggests that resulting TC
sequencing data analyzed by TDCA should categorize
predominantly as either rises and hills, depending on the
rate of degradation of excised DNA fragments. We used
macs [26] to determine loci containing excised [6—4]PP,
using the longest time point (240 min) and the shortest
time point (5 min) as the signal and baseline, respect-
ively. We viewed this process as leading to the identifica-
tion of loci that release excision products at a relatively
late time. Accordingly, we found that 96.2% (7565/7860)
of NHF1 and 97.2% (5121/5268) CS-B loci are identified
as rises.

To showcase the plateau range threshold option of
TDCA we described previously, we performed an ana-
lysis of [6—4]PP loci using a range of plateau range
thresholds. As expected, we found there to be a modest
but consistent increase in the number of loci that were
categorized as rises as the plateau range threshold be-
came looser (Additional file 1: Figure S18 (a)), for both
NHF1 and CS-B cell lines. We also used TDCA for ana-
lysis with input files containing sets of loci that had been
called by macs using different p-value thresholds [26].
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While holding the plateau range threshold at a constant
value and specifying more stringent macs p-values, there
was a general increase in the percent of loci that identi-
fied as rises (Additional file 1: Figure S18 (b)). This is
meaningful since the loci called at lower p-values should
be more accurate.

In order to show that peaks called using the longest
time point (240 min) and the shortest time point
(5 min) as the signal and baseline, respectively, specific-
ally result in rises, we analyzed three different randomly
permuted [37] coordinates of [6—4]PP loci in NHF1 and
CS-B cells while keeping the coverage normalization
constant (see methods). We found that the identity of
these random loci were not specifically enriched in rises
(Additional file 1: Figure S18 (c)). This type of analysis is
important to help demonstrate the specificity of behav-
ior at loci having user defined coordinates.

To demonstrate the behavior of all [6—4]PP loci we
analyzed the top 1% 500 bp bins in NHF1 and CS-B that
showed the greatest change in sequencing coverage over
time for chromosomes 21 and 22, as done previously
[20]. We found that 48.8% NHF1 and 50.6% CS-B loci
identified as rises, suggesting that excision products
from DNA resulting from excision at some loci may per-
sist for longer than others, which are presumably de-
graded more quickly by nucleases. Notably, we also
found that 24.7% NHF1 and 28.0% CS-B loci identified
as falls, although this is likely an artifact since the first
time point at which sequencing was performed was only

5 min after UV exposure. Alternatively, however, falls
may represent exceptionally quickly excised loci and
may be of functional significance.

To showcase TDCA, we decided to focus our analysis on
the hills present in the NHF1 cell line. 13.6% (271/1990) of
loci from this data set were categorized by TDCA as hills,
which is a much greater fraction than that found in CS-B
cells (41/1990 = 2.5%). Plotting the difference in the TTI
values for the declines and inclines of each hill in NHF1
cells revealed an average difference and standard deviation
of 83.2 £ 19.9 min (Fig. 5 (a)). We find this is a reasonably
tight time range and we hypothesize that the clearance of
excision products at loci that identified as hills occurred
within a certain limited time frame.

Next, we wanted to determine if the TTI values of the
hill inclines and hill declines were correlated in some
manner. At each locus, the inclines and declines seemed
to cluster by visual inspection, which was corroborated
by k means clustering [43] (Fig. 5 (b)). We plotted a hill
that had a relatively fast incline (TTI,.) and decline
(TTIgy) as defined by the TTI values for each fitted sig-
moid (Fig. 5 (c)). We also plotted a hill with a relatively
slow incline (TTL.) and decline (TTIg,),) as defined by
the TTI values for each fitted sigmoid (Fig. 5 (d)). These
loci share similar clearance rates of excised product, as
defined by the difference of fall and rise TTI of hills
(TTIey-TTLise) yet excision appears to start at different
times. This observation could potentially direct re-
searchers to identify the molecular basis for why loci
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within this data set cluster in this way and why some
loci seem to show delayed excision. Notably, TDCA
greatly enabled these analyses in an automated and in-
tuitive manner and we anticipate TDCA can similarly be
applied to facilitate analysis of a wide variety of experi-
mental TC sequencing data studies.

Discussion

We describe a novel algorithm that we have developed
called TDCA, which models changes in sequencing
coverage of individual loci within time course (TC)
ChIP-seq, or conceptually related experiments, as a
function of time. The behaviors of these changes are cat-
egorized as rises, falls, hills, and valleys. Such sigmoidal
modeling of TC ChIP-seq data has, to our knowledge,
not been performed. We believe such modeling of TC
ChIP-seq data has a reasonable basis in underlying bio-
logical principles and that the outputs obtained from
TDCA provide intuitively relevant parameters. Our ana-
lysis of three published and publicly available data sets
support this view, illustrating that rises and hills are bio-
logically meaningful ways to describe behavior of TC
ChIP-seq data. Although the data sets explored here dif-
fer widely in terms of the experimental means used to
obtain them, the outputs provided by TDCA proved in
all cases to be readily applicable. Indeed, our automated
analyses of these data sets reveal the speed by which

TDCA can be applied to obtain insights that are of poten-
tial biological importance. Using TDCA, we rapidly reca-
pitulated key findings from these data sets as well as being
able to detect previously unobserved behaviors of poten-
tial biological significance. Notably, other published data
sets also support falls as a biologically meaningful behav-
ior [13] and we anticipate that valleys may be observed in
the future as the scope of such TC sequencing studies
grow and new experimental designs are applied.

TDCA offers many customizable options, such as the
ability to tune modeling parameters, include genome
specific analyses, and specify normalization constants.
These properties confer on TDCA considerable ver-
satility and should permit its use in analysis of nearly
any type of TC ChIP-seq study or conceptually related
TC sequencing experiments. TDCA is also amenable for
analysis of developmental ChIP-seq studies. Considering
the available well-documented protocols [46] and the
global changes found in developmental ChIP-seq studies
[47], this should be a straightforward application for
TDCA, and provide useful insights into such experiments.
Furthermore, we recognize that investigators could readily
use TDCA to model dose-response ChIP-seq experiments.
Treating cells with inhibitors of chromatin associated pro-
teins for different time periods or in a dose-dependent
manner followed by ChIP-seq of the inhibited proteins or
their chromatin marks could, for example, distinguish
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between inhibitor sensitive and insensitive loci. Further-
more, novel advances in mapping genome associated
small molecules [48] applied in dose-response ChIP-seq
experiments could also complement or provide new
insights into dose-responsive behavior of genomic loci.
TDCA could be applied to both time- and dose-
responsive ChIP-seq strategies with only minor adjust-
ments to the labeling of the x-axis.

TDCA does have some limitations with regard to the
type of behavior expected in a time-course experiment.
Any kind of behavior that does not fall into a typical fall,
rise, hill or valley model category may not be accurately
fitted. For instance, in a TC experiment where multiple
hills or valleys occur within TC data for one locus, TDCA
would not be able to properly model such oscillating data.
Another scenario that would present problems would be a
rise that reaches a plateau that is followed by another rise;
this step-like behavior would be modeled as a single rise.
The analogous step fall-plateau-fall behavior would also
be poorly modeled. Though these scenarios are currently
unknown and seem improbably, users will ultimately need
to consider if their experimental design is suitable to ana-
lysis by TDCA.

To guide users in experimental design and to highlight
the strength and limitations of TDCA, we have also ana-
lyzed simulated data. These analyses provide guidance for
the number of time resolved data sets needed for success-
ful analysis. They also help define which distributions of
time resolved data points are beneficial for proper and re-
liable modeling. Accordingly, the results of these efforts,
along with previously recommended protocols [40] should
be considered when designing TC ChIP-seq experiments
or other conceptually related TC studies.

The default analysis produced by TDCA and custom
analysis using the TTI output described here are
intended to stimulate activity in the field of TC ChIP-
seq by providing computation support for analysis of
resulting TC data. This work is also intended to provide
conceptual impetus to more deeply consider analysis
strategies and enable rapid exploration of various ana-
lysis parameters so as to enable the community to glean
as many insights as are available within the growing
stream of data being generated within this important
and rapidly developing field.

Conclusions

To stimulate further research in the area of time course
(TC) ChIP-seq experiments, we have developed the first
robust automated tool for analysis of such data. TDCA
accepts sequence alignment data in BAM file format and
loci in BED format. The graphical and raw data output
provided by TDCA provides users with biologically rele-
vant data and will facilitate research as well as inspire fu-
ture effort in this growing area of study. While we have
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described the use of TDCA in the context of ChIP-seq
experiments to monitor protein binding to the genome,
the term protein is used throughout for simplicity and
analysis by TDCA is applicable to analysis of any
molecular feature associated with the genome that can
be detected in a selective manner. Moreover, we show
that TDCA works to quickly capture the key findings of
published datasets and has the potential to be applied to
many TC sequencing experiments. Accordingly, as
strategies applicable to TC sequencing studies develop,
existing strategies improve, and costs of sequencing
continue to decline, we expect TDCA will prove broadly
useful for a wide range of new experiments as well as pro-
viding a benchmark system to help guide optimization of
data collection.

Methods

TDCA design and dependencies

SAMtools [23] is required for coverage calculation of
BAM files. The samtools depth -r command is used for
this and is called to the terminal within TDCA. The
bedtools intersect [37] command is used for the genome
specific analysis. User defined peak coordinates are inter-
sected with genome feature BED files and the TTI values
are reported as a boxplot. TDCA uses the R package
dose-response curve (drc) [22] for data modeling to a
sigmoidal curve. The generation of graphs requires the
following R packages: ggplot2 [36], scales, and grid. In
addition, plot3D and rgl are required for the construc-
tion of the 3D scatterplot of user specified genes when
the -3d flag is called. Much of TDCA is parallelized in-
cluding commands called by TDCA such as BEDTools,
SAMtools and drc. We used openmp for this which re-
quires an appropriate compiler (see www.openmp.org).

Simulated data generation

We assigned 1000 loci to three chromosomes in the
Drosophila genome, 2 L, 2R, and 3R. The inflection
points of loci on the first half of chromosome 2 L (2 L.1)
were fixed at 5 with variable incorporation rate indices
(IRIs) of: -0.5, -0.75, -1.0, —-1.5, =2.0, and -3.0 for rises
and the corresponding absolute values for falls. The in-
flection points of loci on the second half of chromosome
2 L (2 L.2) were set to: 1, 2, 3, 4, 5, 6, 7, 8, and 9, with
incorporation rate indices set to -3 for rises and the cor-
responding absolute value for falls. The inflection point
of loci on chromosome 2R and 3R were held constant at
4.5 and 5.5, respectively, with incorporation rate indices
set to —1.5 for rises and the corresponding absolute
value for falls.

With these calculated values in mind we created BAM
files that satisfied the required coverage for 11 time
points (0-10, relative units). To do this, we iteratively
concatenated coordinates of loci to each other, for each
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time point, and converted to a BAM file (bedtools bed-
ToBam, [37]). Each concatenation increased coverage by
the length of the bed file coordinate, therefore, the con-
catenation never truly reached the exact value of re-
quired coverage. This was intentional and permitted an
intrinsic aspect of noise. However, the intrinsic noise
was found to be negligible, so different simulated back-
ground noise was merged with each time point using
simulated 1X coverage of the entire Drosophila genome
using ART [38].

We ran TDCA on simulated rise and fall data using all
time points (0—10), staggered time points (0, 2, 4, 6, 8, and
10), the first six time points (0-5), and the first and last
five time points (0 and 6-10). This was done using the
command: tdca -bed 3000-loci.bed -bam < folder_name>.
We converted BAM files to bedGraph (BDG) files (bed-
tools genomecov, [37]), added header files, and used
UCSC to visualize tracks.

Analysis of external data

The general procedure followed to obtain processable ex-
ternal data was to convert SRA files into fastq format using
the fastqg-dump command from the SRA toolkit [49]. The
files were then aligned to the appropriate reference genome
using the bwa mem command from the Burrows-Wheeler
aligner [24]. The resulting sequence alignment map files
were then converted to binary, sorted, cleared of duplicate
reads, and indexed using the samtools view -bS, sort,
rmdup, and index commands, respectively [23]. Sources of
data retrieval and additional specific processing instruc-
tions are listed below. Default TDCA parameters were
used (tdca -bed locibed -bam < folder_name > -L5) unless
otherwise specified.

Inducible HA tagged H3.3

H3.3 replicate 1 TC data was obtained from GEO accession
numbers GSM1246648-GSM1246659. H3.3 replicate 2 TC
data was obtained from GEO accession numbers
GSM1246660-GSM1246670. Input TC data was obtained
from GEO accession numbers GSM1246671-GSM1246682.
Data was aligned to the mm9 genome. Time points at 72 h
for repl and input were used for peak calling only, not in
tdca analysis. Peaks were called using macs2 callpeak
q-value of le-7 [26]. For the expansion of the TDCA gen-
ome feature library, tRNA and rRNA gene coordinates
were curated from UCSC [41] and enhancer loci from
VISTA Enhancer [42].

Abf1 ChEC-seq

Free MNase ChEC-seq (input) data was obtained from
GEO accession numbers GSM1647289-GSM1647299.
Abfl ChEC-seq data was obtained from GEO accession
numbers GSM1647300-GSM1647312. Data was aligned
to the sacCer3 genome. Peaks were not called for the
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ChEC-seq data. Instead, loci were obtained from supple-
mentary data set 1 from the original manuscript [16].
TDCA was run using -t 0 because hills emerged as early
as the second time point (resulting in one genuine
absolute maximum trailing data point in some cases).
K-means clustering was performed using mlpack_kmeans
[43]. We used motif scores from the original manuscript
so that our results would be highly comparable. For motif
discovery, we used MEME-ChIP [44].

[6-4]PP XR-seq
Replicates 1 and 2 in NHF1 cells (6—4)PP XR-seq were
obtained from GSM1985857-GSM1985866. Replicates 1
and 2 in CS-B cells (6—4)PP XR-seq were obtained from
GSM1985867-GSM1985874. Data was aligned to the
hg19 genome.

Slow loci were called with macs2 using cells that had
240 min to heal after UV treatment as the experiment file
and cells that had 5 min to heal after UV treatment as the
control file. Peaks were called for replicates separately,
then concatenated and merged to remove redundancy.
For the plateau range threshold analysis and the shuffled
loci analysis, peaks called with a p-value threshold of 1le-3
were used. For the p-value analysis, peaks were called
using p-values of, 1le-3, le-4, le-4, and le-5. TDCA ana-
lysis with shuffled loci was performed using the -dm flag
and a file containing the same normalization coverage
values as non-shuffled loci so that the shuffled and non-
shuffled loci could be directly compared.

For loci that displayed variable signal across time, we
binned the hgl9 genome into 500 bp bins and analyzed
the top 1% loci at chromosomes 21 and 22 that had the
largest range in sequencing coverage at each bin after
normalizing for variability in total sequencing depth.

Availability and requirements

Time Dependent ChIP-Sequencing Analysis (TDCA) is
freely available at: www.github.com/TimeDependentChipSe
qAnalyser/TDCA under the GNU General Public License
v3.0. TDCA is written in c++ and R and was extensively
tested on Linux operating systems. TDCA requires terminal
access to UNIX commands and installed dependencies such
as samtools, bedtools, and various R packages including drc.

Additional file

Additional file 1: S for Software for Rapid Time Dependent ChiP-Sequencing
Analysis (TDCA). (PDF 6149 kb)
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