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Abstract

Background: High-throughput sequencing offers higher throughput and lower cost for sequencing a genome.
However, sequencing errors, including mismatches and indels, may be produced during sequencing. Because, errors
may reduce the accuracy of subsequent de novo assembly, error correction is necessary prior to assembly. However,
existing correction methods still face trade-offs among correction power, accuracy, and speed.

Results: We develop a novel overlap-based error correction algorithm using FM-index (called FMOE). FMOE first
identifies overlapping reads by aligning a query read simultaneously against multiple reads compressed by FM-index.
Subsequently, sequencing errors are corrected by k-mer voting from overlapping reads only. The experimental results
indicate that FMOE has highest correction power with comparable accuracy and speed. Our algorithm performs
better in long-read than short-read datasets when compared with others. The assembly results indicated different
algorithms has its own strength and weakness, whereas FMOE is good for long or good-quality reads.

Conclusions: FMOE is freely available at https://github.com/ythuang0522/FMOC.
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Background
High-throughput sequencing technologies have been
widely used in the past decade for studying disease asso-
ciations or deciphering genomes. The reads generated
by next generation sequencing platforms (e.g., Illumina,
Roche 454) may contain several types of errors includ-
ing mismatches, insertions and deletions (collectively
termed indels) [1]. These errors bring great challenges of
subsequent genome assembly algorithms, because false
read overlaps may be produced, which further leads
to fragmented assembly or even misassembly. Further-
more, these errors will also increase the size of assembly
graph due to erroneous vertices and edges, which implies
requirement of larger memory usage and computational
time. Therefore, prior to assembly, these reads are usu-
ally corrected in the hope of producing better assembled
genome [2, 3].
In order to correct these errors, existing methods

mainly rely on sufficient sequencing coverage for replac-
ing less-frequent errors with more-frequent base. These
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algorithms can be roughly classified into the following
three categories: (1) the k-mer frequency spectrum meth-
ods slide a fixed-sized k-mer window along the entire read
and replace the low-frequent k-mers with high-frequent
ones (e.g., QuorUm, Lighter, BLESS, Blue, Musket, and
Quake) [4–9]; (2) Methods based on suffix tree (or array)
are simialr to k-mer spectrum methods but different sizes
of k-mers can be used adaptively in the suffix tree/array
(e.g., Fiona, SHREC, HSHREC, HiTEC) [10–13]; (3) The
overlap-based correction approaches first identify reads
overlapping with the query (i.e., read to be corrected) via
multiple-sequence alignment (MSA). Subsequently, errors
are corrected according to the major alleles in the MSA
matrix constructed by only overlapping reads (e.g., Karect,
Coral, and ECHO) [14–16].
Although the k-mer spectrum methods are the easiest

and fastest solutions, they are unable to reliably distin-
guish errors from polymorphisms within repeats. Because
if repeat size is larger than k-mer, the major k-mer in the
spectrummay actually come from other repeat copies and
lead to false correction [17, 18]. The suffix tree/array algo-
rithms can use different sizes of k adaptively for reduc-
ing repeat ambiguity but they are still limited by larger
repeats. Theoretically, overlap-based correction is least
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affected by repeats due to the usage of entire reads instead
of smaller k-mers, and thus errors can be more reliably
corrected by alleles from overlapping reads only. However,
the speed of MSA is much slower owing to the complexity
of computingMSA. Recently, Karect showed that that effi-
ciency of overlap correction based on MSA can be greatly
improved by representing multiple-aligned sequences as
a partial-order graph [14], whereas identical sequences
are collapsed into the same path and alignment can be
performed for only once.
Over the past decade, FM-index is the preferred data

structure underlying many state-of-the-art short-read
aligners (e,g, BWA, Bowtie) [19]. These aligners have been
widely used to align huge amount of short reads against
reference genome with good speed and accuracy. It is
mainly because FM-index compresses identical substrings
into suffix array (SA) intervals, which saves both time
and space for numerous repetitive sequences widespread
in the genome [20]. However, to our best knowledge,
FM-index was mainly used (or fine tuned) for aligning
individual reads against reference genome instead of opti-
mized for MSA, which is the most time-consuming step
in overlap-based error correction.
This paper presented a novel overlap-based error cor-

rection algorithm using FM-index (called FMOE). Given a
query read to be corrected, FMOE first identifies its over-
lapping reads by simultaneous alignment against multiple
reads compressed in FM-index. Subsequently, sequenc-
ing errors are corrected by k-mer voting from overlap-
ping reads only. The details of methods are described

in the following section and the readers would be bet-
ter familiar with either suffix tree/array, Burrows-Wheeler
Transform, or FM-index.

Methods
Our correction algorithm follows the overlap-based cor-
rection paradigm. Given a query read (to be corrected),
we first identify reads overlapping with the query by per-
forming alignment against reads compressed in FM-index,
construct a MSA matrix, and replace the less-frequent
alleles on the query (i.e., errors) with the most-frequent
one at the same locus. The identification of overlap-
ping reads is the most time-consuming step. This paper
addresses this key issue by using the compressed feature
of FM-index, which compresses identical substrings into
continuous SA intervals. Our method aims to perform
alignment over identical substrings only once by combin-
ing the seed-and-extend strategy with FM-index extension
[21], which is described below.
Nowadays, nearly all the alignment tools (e.g., BLAST,

BWA) utilize the seed-and-extend strategy for speedup,
which only align reads having common seed with the
query [22]. Our algorithm also used this strategy for
speedup, which is divided into three steps (see Fig. 1).
The first step identifies high-confident seed (i.e., k-mer
with sufficient frequency) in the query read. Subsequently,
the sequences flanking the seed (i.e., overlapping reads)
are forward/backward extracted using FM-index exten-
sion, and simultaneously, each of the extended sequence
is aligned against the query read. Finally, the extended

Fig. 1Workflow of overlap-based error correction using FM-index. Initially, a seed is identified from the high-quality regions with sufficient k-mer
frequency. Subsequently, the flanking sequences are extended from the seed base by base using FM-index and are aligned against the query read.
Note that GATA is a compression of all such strings in all reads. Finally, the most-frequent allele in each column of MSA will replace the error allele
with lower frequency
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sequences with sufficient identity and overlap thresholds
will form aMSAmatrix, and the most-frequent k-mer will
replace the error k-mer with lower frequency at each erro-
neous locus. The details of each step are presented in the
following sections.

Seed identification
The forward and reverse strand sequences of inputted
reads are first used to construct forward and reverse
FM-indices using Li’s ropebwt2 algorithm [22]. A k-mer
frequency spectrum (k = 31 by default) is constructed
by randomly sampling 10,000 k-mers from the FM-index,
which can provide various statistics required at differ-
ent steps (e.g., mean, median). A k-mer window is slided
across the entire query read for detection of potential
error bases, in which the k-mer frequencies at both
strands drop below a threshold t (default: median k-
mer frequency*0.5)(see Fig. 2). The region with sufficient
k-mer frequency flanking the error base is termed high-
quality region. Within this region, the k-mer most close
to the error base is identified as seed. The identified seed
will be used to extract overlapping reads for alignment
later. Most reads will contain only one high-quality region
at 5’ end and errors at 3’ end, owing to the limitation of
Illumina sequencing by synthesis at later cycles. However,
we observed few reads can be divided into multiple high-
quality regions by two or more sequencing errors. The
seed will be selected from the largest high-quality region
in such case.

Extraction of flanking sequences by FM-index extension
The second step of our algorithm aims to extract and to
align reads overlapping with the query using FM-index.
Traditional seed-and-extend alignment algorithms inde-
pendently align each read (containing the seed) against
the query in order to identify overlapping reads (Fig. 3a).

Instead of independent alignment, because FM-index
compressed all substrings of reads into SA intervals, it
allows simultaneous alignment of multiple (compressed)
substrings against the query (Fig. 3b). Below we first
describe the FM-index extension algorithm which aims to
(base-by-base) extract reads (containing the seed) while
compressing identical substrings as one representative
path sequence. In next section, we will present a faster
heuristic alignment of each path sequence against the
query in order to identify mismatches and indels.
Given a seed, the flanking sequence is extended (toward

both forward and backward directions) using a vari-
ant of the backward-search algorithm called FM-index
extension [20, 21]. The implementation details of FM-
index extension can be found in the Additional file 1,
and the high-level idea is briefly described below. In
the FM-index extension algorithm (Fig. 3b), a tree data
structure is used to store all the extended bases, where
each tree path represents a sequence compressed by mul-
tiple identical substrings in the reads. Each tree node
contains the extended base and two SA intervals (in for-
ward/reverse FM-indices). Initially, the forward/reverse
SA intervals of the seed (e.g., CGATC) are computed
using the backward-search algorithm [20]. Subsequently,
we recursively extend the seed sequences by querying
FM-index for all possible {A,T,C,G}-extensions. This is
achieved by updating the SA intervals of leaf nodes using
the original algorithm of backward search for {A,T,C,G}
(see Additional file 1). In addition, because forward and
reverse FM-indices are built in advance, forward and
backward extensions can be implemented in similar way
by using FM-index of forward and reverse FM-indices.
If two or more possible {A,T,C,G}-extensions exist, new

tree nodes will be created to keep all possible exten-
sion paths. Note that each path sequence represents
a compression of multiple identical overlapping reads.

Fig. 2 Illustration of seed identification. The high-quality region is defined as the region where k-mer frequencies at both forward and
reverse-complement strands are above a threshold. The seed is identified as the k-mer closest to the error base within the high-quality region. If
there are multiple high-quality regions, the largest one is selected for seed identificaiton
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Fig. 3 Comparison of traditional seed-and-extend alignment versus compressed alignment using FM-index extension. aWithout compression, all
reads containing the seed will be individually aligned against the query in order to compute overlap and similarity; bWith compression, all reads
containing the seed will be represented by different paths during FM-index extension. These reads will be gradually extended (extracted) from the
seed sequence at both directions via FM-index extension, while identical sequences are still compressed in a single path. Simultaneously, each
newly extended base will be aligned against the query read

We observed that the extension of sequences contain-
ing sequencing errors is often with lower frequency,
which can be obtained according to the size of SA inter-
vals. Thus, the extension path with insufficient frequency
is pruned for speedup and for reducing search space
(default: < 3) (see Additional file 1: Figure S1). The entire
extension process aborts if the extended length exceeds
the read length or the number of extension paths exceeds
the maximum number allowed (default: 64).

Faster heuristic alignment and similarity measurement
during FM-index extension
However, many reads may occasionally contain the seed
but do not actually overlap with the query (i.e., dissimi-
lar at flanking sequences). Moreover, the precise aligned
positions between query and each extended sequence are
required for building an alignment matrix in the last
correction stage. Consequently, we have to align each
representative sequence against the query during exten-
sion in order to identify mismatches/indels and measure
the similarity at the same time. Traditional dynamic-
programming alignment of query read against all tree
paths can give exact and accurate solution but is time-
consuming. Below, we present a heuristic alignment algo-
rithm based on commonly-shared SA intervals between
the query and extended sequences, which is performed
along with the extension and can tolerate both mis-
matches and indels.

In order to match each newly-extended interval/base
against the query, we pre-compute the SA intervals of
all k-mers in the query and store them in an array (A)
(Fig. 4a), where A[ i] stores the SA interval of i-th k-
mer on the query. For each newly-extended base, the
new SA interval is compared against those stored in the
array A. If the query read share a common k-mer with
the newly-extended sequence (i.e., match), the SA inter-
val of the newly-extended base will be equivalent to or
inclusive within that of A[ i] (e.g., the forward-extended
T has a common interval [10,22] with query). On the
other hand, if there are mismatches, the SA interval of
extended-mismatched bases will have no common SA
intervals with those in A. In other words, the identifica-
tion of common SA intervals is similar to finding common
k-mers between the query and representative sequence,
because all substrings are compressed into SA intervals in
FM-index.
Unfortunately, the presence of indel errors will shuffle

the loci of common SA intervals between the query and
extended sequence. As a result, the common SA inter-
vals are not necessary at the same locus in the query
and extended sequence. Figure 4b illustrates the problem
using uncompressed sequences with mismatches or indels
as examples. For mismatches, the common SA intervals
will be only temporarily missed and recovered at succeed-
ing locus. For insertion or deletion errors, the common SA
intervals will be found at preceding or succeeding loci in
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Fig. 4 Illustration of heuristic alignment using common SA intervals during FM-index extension. a The SA intervals of all k-mers (k = 3) in query are
pre-computed and stored in an array A[ i]. The forward-extended base (T) has an SA interval [ 10, 22] inclusive within the interval [ 10, 25] in A[ i],
which implies that the query and the compressed reads share common k-mer (GAT) at this locus; bMismatches and indels will temporarily lead to
no common k-mers (i.e., SA intervals in FM-index) found. In order to tolerate indels, the SA interval of any newly-extended base must be compared
with those in a range according to the maximum indels allowed

the query and extended sequence, respectively. Therefore,
in order to identify common SA intervals while tolerating
indels of maximum size d, we have to compare any new SA
interval with those stored from A[ i−d] to A[ i+d]. Once
any common SA interval is found, the aligned position
between the query and extended sequence (i.e., loci of the
common SA intervals) can be thus known and recorded,
which will be used for building an alignment matrix in the
last correction step.
Furthermore, because anymismatch or indel will reduce

this number of common SA intervals, the similarity
between the query and each extended sequence can now
be computed by the number of common SA intervals
divided by total number of SA intervals. The extended
sequence with low similarity with the query can be thus
immediately discarded without further extension. As Illu-
mina platform has typical error rate around 1%, we discard
extended sequences with error rate below 5% by default.
This pruning-by-similarity procedure during FM-index
extension also significantly improves the speed of our
algorithm.
The proposed alignment algorithm is heuristic speedup

in comparison with exact alignment algorithm using
dynamic programming. We compare the time complex-
ity of our alignment with that of exact algorithm in order
to identify the source of speedup. Note that each exten-
sion is an update of existing SA interval which takes

only O(1) time. Therefore, the FM-index extension takes
O(rw) time, where r is the read length and w is the max-
imum tree paths allowed. Because we need to tolerate
maximum d indels by sequential search a range of SA
intervals, the entire algorithm takes O(rwd) time. The-
oretically, the sequential search of SA intervals can be
replaced by binary search using interval tree, which leads
to better O(rw log d) time. But practically, we didn’t gain
better efficiency mainly because d (indel) is very small
in Illumina platforms. In comparison with independent
alignment approach, which takes O(rnd) time where n is
the total number of reads if using d-banded dynamic pro-
gramming speedup, our method is still much faster as w
is much smaller than n. When tested on real datasets, we
further observed that, during FM-index extension, only
one or two paths are extended for most reads instead of
worst-case O(w) paths. This is probably due to the high
sequencing accuracy of Illumina platforms. Therefore, the
algorithm can run in almost linear time in practice.

Correction via k-mer voting from overlapping reads
Existing overlap-correction methods often build a MSA
matrix after alignment of overlapping reads onto the
query (Fig. 5a). Based on theMSAmatrix, the minor allele
(i.e., error) on the query will be replaced with the most
frequent allele at the same locus in theMSAmatrix. How-
ever, we observed that, in high-GC regions where error
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Fig. 5 Comparison of single-base voting versus k-mer voting versus. a The alignment matrix of reads overlapping with query is constructed. In
single-base voting, the most-frequent allele at each column will replace the less-frequent one on query. However. the major allele is not necessary
the correct base in error-prone region; b In k=mer voting, the k-mer frequency over the error base is derived from previous FM-index extension. The
k-mer with highest frequency at the locus will be chosen to replace the original allele. This is particularly useful in high-GC regions where the most
frequent allele may not be accurate

rate is significantly elevated, the majority vote using sin-
gle base is less accurate, because the most frequent allele
at one locus can even come from errors. Nevertheless,
although the error rate in these error-prone regions is
high, there are still a few reads containing a short run of
correct bases. As a consequence, the frequency of correct
k-mers is larger than that of erroneous k-mers (default:
k ≈5). Therefore, the error correction is done by k-mer
voting instead of voting by a single base. Specifically, we
first count the k-mer frequency over the error based on
overlapping reads derived from previous stage. Because
identical reads are compressed into one extension path
represented by a SA interval, the frequency of each k-mer
in these overlapping reads can be known easily accord-
ing to the size of SA interval. The most frequent k-mer
in the MSA matrix will be used to replace the erroneous
k-mer on the query (Fig. 5b). Note that this correction
approach only compute the k-mer frequency from over-
lapping reads for voting. In comparison with k-mer cor-
rection methods voting by k-mer counts from all reads,
our method is more robust to repeats.

Results
FMOE is implemented in C++ and freely available
on Github (https://github.com/ythuang0522/FMOC). We
compare FMOE with two other leading overlap-based
methods, Karect and Coral, and four k-mer spectrum
methods (QuorUm, RACER, BLESS2, and SGA). Table 1
lists the sequencing statistics of four test datasets with
genome sizes ranging from 4.6 Mb to 100.2 Mb and var-
ious read lengths, where reads and reference genomes
are downloaded from the GAGE-b project and NCBI
[23]. We first compared these programs in terms of cor-
rection power and accuracy. The correction power and

accuracy are evaluated by BWA-aligning reads onto the
corresponding reference genomes in order to compute
the aligned length, identity, and indels. Subsequently, we
move to investigate the influence of different correction
algorithms on the genome assembly.

Correction power and accuracy
Tables 2, 3, 4 and 5 list the correction power (in terms
of total corrected bases and corrected read length) and
accuracy (in terms of identity and indel rate) of each tool
across four datasets (M.abscessus, R.sphaeroides, E.coli,
and C.elegans). In general, the results indicated the FMOE
obtains the best correction power in comparison with
all other overlap-based or k-mer based methods in long-
read datasets. Overlap-basedmethods tend to have higher
correction power mainly due to the ability of correct-
ing error-prone reads in high-GC regions using time-
consuming alignment. On the other hand, k-mer based
methods usually have high accuracy and runs much faster
owing to the skip of error-prone regions. QuorUm obtains
the best accuracy because it sacrifices the correction
power by trimming or throwing away uncorrected reads.
When restricted to overlap-based methods, the accuracy
of FMOE (in terms of identity and indel rate) is best

Table 1 Genome and sequencing statistic of four data sets used
in the experiments

Genome size Num. reads Read length Coverage

M. abscessus 5.09M 2.03M 251 bp 100x

R. sphaeroides 4.6M 1.75M 251 bp 95x

E. coli 4.6M 1.69M 150 bp 54x

C. elegans 100.2M 68.27M 110 bp 74x

https://github.com/ythuang0522/FMOC
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Table 2 Correction power/sensitivity (in terms of total corrected
bases and corrected read length) and accuracy (in terms of
identity and indel rate) of seven methods over M. abscessus
dataset (5 Mb genome, 251 bp read length)

Corrected
bases (bp)

Corrected
length (bp)

Identity (%) Indel rate
(10−5)

Raw data 353.43 Mbp 180.77 98.80% 4.37

Coral 358.65 Mbp 182.72 99.19% 4.59

Karect 387.17 Mbp 196.62 99.42% 2.91

FMOE 492.95 Mbp 249.31 99.85% 1.37

QuorUm 361.02 Mbp 182.55 99.96% 0.56

RACER 381.11 Mbp 192.49 99.89% 1.23

BLESS2 358.02 Mbp 182.35 99.87% 0.68

SGA 366.05 Mbp 182.16 99.46% 2.35

Coral, Karect, and our FMOE are overlap-based correction methods whereas
QuorUm, RACER, BLESS2, and SGA belong to k-mer spectrum approach

than the others in most datasets. The identify of Karect
is slightly better than FMOE in the E.coli and C.elegans
datasets, but its indel rate is worse than that of FMOE.
Theoretically, the overlap-based methods gain more

benefits when processing longer reads in comparison with
shorter reads. By comparing the long-read and short-read
datasets (i.e., 251 bp, 150 bp, and 110 bp in Tables 2, 3,
4 and 5), we observed that our method FMOE has larger
power than the others in the long-read datasets (e.g.,
251 bp datasets). For instance, FMOE outputted aver-
age 249 bp-corrected reads whereas the 2nd best Karect
only produced 196 bp-corrected reads in the M.abscessus
dataset with 251 bp reads. On the other hand, in the short-
read dataset (e.g., 150 bp and 110 bp in Tables 3 and 4), the
benefits of using overlap-based methods are diminishing
and thus the results are not much different from those of
k-mer based method.
In terms of speed, the k-mer basedmethods are all faster

than overlap-based methods due to the lack of alignment

Table 3 Correction power and accuracy of seven methods over
R. sphaeroides dataset (4.6Mb genome, 251bp read length)

Corrected
bases (bp)

Corrected
length (bp)

Identity (%) Indel rate
(10−5)

Raw data 286 Mbp 183.08 96.07% 11.16

Coral 309.76 Mbp 195.41 97.47% 7.02

Karect 359.93 Mbp 223.01 98.90% 1.80

FMOE 393.06 Mbp 243.11 99.41% 1.55

QuorUm 299.23 Mbp 185.81 99.96% 0.17

RACER 332.67 Mbp 204.78 99.74% 1.23

BLESS2 293.95 Mbp 185.55 99.53% 0.8

SGA 300.83 Mbp 187.98 98.20% 9.19

Table 4 Correction power and accuracy of seven methods over
E. coli dataset (4.6 Mb genome, 150 bp read length)

Corrected
bases (bp)

Corrected
length (bp)

Identity (%) Indel rate
(10−5)

Raw data 229.94 Mbp 144.13 99.22% 1.90

Coral 231.09 Mbp 144.07 99.75% 1.37

Karect 236.90 Mbp 146.86 99.92% 0.76

FMOE 239.99 Mbp 149.46 99.85% 0.45

QuorUm 231.20 Mbp 143.77 99.97% 0.12

RACER 234.89 Mbp 145.99 99.94% 0.73

BLESS2 234.42 Mbp 143.75 99.92% 0.28

SGA 232.26 Mbp 144.14 99.81% 1.98

and sacrificed power (Table 6). We observed the speed
of FMOE and Karect are almost the same and both
run much faster than Coral. Karect is based on partial-
order alignment (POA) graph, where the identical aligned
bases are collapsed into a single vertex in the graph. This
implies that the compressed extension using FM-index
within FMOE is similar to the POA graph, because iden-
tical sequences are also compressed into the same path
sequences during FM-index extension.

Comparison of assembly results
The reads corrected by different methods are further
tested for genome assembly in order to understand the
influence of correction to assembly. Existing genome
assemblers are further classified into de Bruijn graph
and overlap graph assemblers, which are suitable for
assembling short and long reads. In order to reduce
the influence from different assembly graph models,
these corrected reads are assembled using a hybrid-graph
assembler called StriDe which captures the features of
of both de Bruijn and overlap graphs [21]. Neverthe-
less, we would like to note that optimized selection of

Table 5 Correction power and accuracy of seven methods over
C.elegans dataset (100.2Mb genome, 110bp read length)

Corrected
bases (bp)

Corrected
length (bp)

Identity (%) Indel rate
(10−5)

Raw data 7376.84 Mbp 109.32 99.54% 14.91

Coral 7389.51 Mbp 109.34 90.70% 15.47

Karect 7041.49 Mbp 109.49 99.79% 13.93

FMOE 7411.06 Mbp 109.57 99.78% 12.45

QuorUm 7402.77 Mbp 109.24 99.8% 11.64

RACER 7429.30 Mbp 109.61 99.85% 10.69

BLESS2 7407.09 Mbp 109.44 99.86% 8.9

SGA 7420.71 Mbp 109.58 99.83% 11.71
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Table 6 Comparison of running time

M. abscessus R. sphaeroides E. coli C. elegans

Coral 03:48:32 02:03:19 00:52:45 43:33:50

Karect 00:14:41 00:30:46 00:03:07 01:41:15

FMOE 00:14:51 00:14:22 00:03:51 02:02:32

QuorUm 00:01:28 00:03:50 00:00:27 00:23:54

RACER 00:03:14 00:02:58 00:00:54 00:19.28

BLESS2 00:03:02 00:01:33 00:00:34 00:19:18

SGA 00:05:51 00:23:46 00:02:48 00:43:58

genome assemblers and parameter tuning for each cor-
rection algorithm may change the results provided below.
Consequently, the following results are generated by the
default parameters of StriDe assembler, which only serves
as one reference of possible influence of each correction
algorithm to assembly. The complete evaluation of assem-
bly is beyond the scope of this paper which focuses on
error correction.
Tables 7, 8, 9 and 10 list the number of contigs, N50,

NA50, misassemby, and sum of assembled bases of the
seven correction algorithms tested over the four datasets.
All the assembly metrics are computed by QUAST [24].
In the M.abscessus dataset (Table 7), FMOE obtains the
best assembly contiguity and accuracy as a whole (accord-
ing to NA50). Karect, FMOE, QuorUm, RACER, and
BLESS2 nearly assembled the expected 5 Mbp genome
size, whereas Coral and SGA are significantly worse
than the others in terms of contiguity (N50), accuracy
(NA50 and misassembly), and completeness (Sum). In the
R.shpaerioides dataset (Table 8), QuorUm outperforms
the others in general. Further investigation indicates that
this dataset is of very low sequencing quality compared
with the others. The trimming procedure in QuorUm
may be better and suitable for the low-quality datasets.
In terms of assembly completeness, Coral only assem-
bled a partial genome, whereas the genome size assem-
bled by FMOE is most close to the expected 4.6 Mbp.
This implies the optimization for correction power can

Table 7 Assembly results of M. abscessus

No. Ctg. N50 NA50 Misassemblies Sum

Coral 1,053 6,166 4,216 628 4,505,117

Karect 201 43,116 34,962 42 5,081,371

FMOE 75 144,110 120,739 7 5,138,819

QuorUm 66 138,549 116,520 5 5,139,557

RACER 294 27,986 26,936 16 5,105,201

BLESS2 139 70,560 64,289 34 5,073,140

SGA 41 885 437 55 36,626

Table 8 Assembly results of R. sphaeroides

No. Ctg. N50 NA50 Misassemblies Sum

Coral 1,196 4,010 3,911 34 3,497,317

Karect 464 15,750 15,723 17 4,394,367

FMOE 225 73,476 71,472 1 4,558,663

QuorUm 123 127,719 127,659 4 4,528,808

RACER 921 7,126 6,982 17 4,126,662

BLESS2 833 6,573 6,549 11 3,522,646

SGA 952 6,372 6,172 51 3,965,387

help assembly completeness in low-quality sequencing.
In the E.coli dataset, QuorUm and BLESS2 outperforms
the others in terms of NA50, and assembly complete-
ness of FMOE is slightly better. In large genome dataset
(C.elegans), QuorUm performs much worse than all the
overlap-based methods in most metrics. FMOE, RACER,
and BLESS2 perform similarly and better than the oth-
ers. When restricted to overlap-based correction meth-
ods, FMOE and Karect performs almost the same in
short-read datasets (e.g., C.elegans), and FMOE is much
more sensitive than the others in long-read datasets (e.g.,
M.abscessus and R.sphaeroides).

Discussion and conclusion
This paper presented a novel overlap-based correction
algorithm for NGS reads using FM-index. Our results
indicated our method has larger correction power (in
terms of corrected bases and read lengths) at compa-
rable accuracy in comparison with others. We observed
the compressed feature of FM-index runs almost at the
same speed as a POA approach called Karect, This implies
that both the partial-order graph used by Karect and FM-
index used by our algorithm compressed identical reads
in different manners in order to accelerate the multiple
sequence alignment. In addition, we observed that, in the
low-quality dataset, the k-mer based methods are supe-
rior in terms of assembly. This indicates that extremely
low-quality reads may be better trimmed or discarded

Table 9 Assembly results of E. coli

No. Ctg. N50 NA50 Misassemblies Sum

Coral 257 95,730 95,483 4 4,560,741

Karect 392 107,932 105,790 1 4,565,614

FMOE 375 112,502 112,502 1 4,628,706

QuorUm 211 132,749 132,749 4 4,564,093

RACER 84 107,449 95,962 10 4,545,995

BLESS2 94 133,195 133,195 1 4,617,496

SGA 402 90,858 90,858 1 4,628,475
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Table 10 Assembly results of C.elegans

No. Ctg. N50 NA50 Misassemblies Sum

Coral 12,846 16,343 15,265 868 90.27 Mbp

Karect 13,252 18,984 17,922 429 90.56 Mbp

FMOE 14,243 17,676 16,768 422 90.27 Mbp

QuorUm 18,486 11,491 11,461 36 89.89 Mbp

RACER 14,233 17,442 16,458 638 90.26 Mbp

BLESS2 14,246 17,047 16,533 591 90.66 Mbp

SGA 23 743 390 4 18,304 bp

instead of trying to correct them for maximizing the cor-
rection power. Consequently, better correction algorithms
for genome assembly may be achieved by striking a bal-
ance between correction power and accuracy for high-
and low-quality reads.
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