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Abstract

Background: The identification of target molecules is important for understanding the mechanism of “target
deconvolution” in phenotypic screening and “polypharmacology” of drugs. Because conventional methods of
identifying targets require time and cost, in-silico target identification has been considered an alternative solution. One
of the well-known in-silico methods of identifying targets involves structure activity relationships (SARs). SARs
have advantages such as low computational cost and high feasibility; however, the data dependency in the

SAR approach causes imbalance of active data and ambiguity of inactive data throughout targets.

Results: We developed a ligand-based virtual screening model comprising 1121 target SAR models built using a random
forest algorithm. The performance of each target model was tested by employing the ROC curve and the
mean score using an internal five-fold cross validation. Moreover, recall rates for top-k targets were calculated to assess
the performance of target ranking. A benchmark model using an optimized sampling method and parameters was
examined via external validation set. The result shows recall rates of 67.6% and 73.9% for top-11 (1% of the
total targets) and top-33, respectively. We provide a website for users to search the top-k targets for query
ligands available publicly at http://rfgsar.kaistackr.

Conclusions: The target models that we built can be used for both predicting the activity of ligands toward
each target and ranking candidate targets for a query ligand using a unified scoring scheme. The scores are

additionally fitted to the probability so that users can estimate how likely a ligand-target interaction is active.
The user interface of our web site is user friendly and intuitive, offering useful information and cross references.
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Target fishing server
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Background

Toxicity, low efficacy, and uncertain clinical safety of
novel drugs are the main causes of clinical failure, thus
increasing the cost and time to develop novel approved
drugs [1]. Many researchers anticipate that a network-
based approach might improve the efficiency of drug
discovery [2-4]. Recent advancements in the field of
phenotypic screening are providing new insights for the
chemical response of biological networks or systems [5].
However, a “target deconvolution,” wherein the actual
targets of the molecules are disclosed, is crucial in un-
derstanding the mechanism of action, which remains
challenging [6]. On the other hand, even if the target of
a drug is already known, it is still necessary to predict
the association with other targets. The term “polyphar-
macology” is broadly defined as the trait of pharmaceut-
ical agents to interact with multiple targets or pathways.
It is generally perceived that most drugs act on more
than one target [7]. Discovering polypharmacology of
drugs can be useful not only for drug repositioning to
determine novel ways to facilitate drugs but also for pre-
dicting side effects to avoid harmful responses before-
hand [8-10].

Conventional methods of identifying molecular targets
include affinity chromatography, 2D gel electrophoresis,
and other methods based on the mRNA expression [11,
12]. Although these methods can be used to identify mo-
lecular targets with good accuracy, the time and cost of
such in-vitro assays make it difficult to test large ligand—
target interactions [13]. Because of these limitations, in-
silico target prediction is considered a promising alterna-
tive for target identification. The in-silico target predic-
tion can be classified into two categories based on the
type of data to be used: 1) ligand-based method, and 2)
structure-based method [14]. In particular, the ligand-
based methods are advantageous in large-scale virtual
screening because of the low computational cost and
high feasibility [15]. One of the most popular methods
of ligand-based target identification involves classifying
the ligands using structure-activity relationships (SARs).
Various machine-learning techniques have been ap-
plied in this field including support-vector machine
(SVM), naive Bayesian classifier (NB), artificial neural
network (ANN), and kernel discrimination [16].
Among those methods, NB is known to be effective
for target classification of ligands, but weak for the
cases when molecular features have conditional de-
pendencies [15]. Other machine-learning methods
have not successfully applied for finding true targets
of drug-like molecules from large scale (~1000) pro-
tein database as the extent as we know. We chose
random forest (RF) algorithm [17] which is an ensem-
ble of decision trees because it is believed to avoid
overfitting and deal with imbalanced classes properly.
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The principle behind the SAR approach is that structur-
ally similar ligands might have similar properties [18]. The
objective is searching a chemical space comprising ligand
structures with known activities to predict the activity of a
query ligand. In the in-silico target prediction, structures
of ligands can be represented as molecular descriptors
such as fingerprints, and the activity can be defined as the
binding with specific targets. The algorithms developed
for this purpose are generally used to build a target-
classification model [19-21] using binding-activity data
obtained from diverse chemogenomics libraries such as
PubChem [22], ChREMBL [23], WOMBAT [24], and ZINC
[25]. The model derived from this process represents key
structural properties of molecules that aid in binding with
the targets. Thereafter, the ranks of the targets for a
query ligand are estimated based on the scores of the
model. A few web servers [20, 26, 27] were recently
developed to provide top-rank targets of the query
ligand that users submit in SMILES format or draw
using MarvinSketch [28].

Some issues regarding the use of SARs for target pre-
diction include imbalance in the amount of active data
and ambiguity of inactive ligands throughout targets.
These problems are based on the dependency of ligand-
based approaches on the available data [16]. Major pro-
teins, which are actively experimented for decades, have
more active data than other targets. Furthermore, in
many related studies, ligands that are not known to be
active for a target are considered inactive ligands for the
target [13, 20, 26]. However, some of the actual ligand—
target interactions might not have been experimented.
Such a bias observed in the database can lead to a failure
in predicting the true interactions, particularly for tar-
gets with less active data. In this study, the objective is
to overcome such bias by building multiple target
models using random forest algorithm with a standard-
ized sampling method. In particular, based on the cross-
validation results, the standard to define inactive ligands
and the ratio between the active and inactive ligands
were optimized. Hence, we built a comprehensive model
comprising multiple target models. The model is applic-
able for two types of usage: 1) predicting the activity of
ligands toward each target 2) target prediction of a query
ligand by comparing the results from the individual
models. The completed model is provided through a free
accessible target-fishing server at http://rfqsar.kaist.ac.kr.
Figure 1 depicts the overall process of the server.

Methods

Data collection from the chemogenomics database

In this study, ChEMBL (Version 20) database [23] was
used to build the active and inactive training datasets for
modeling the SARs. The active ligands for specific tar-
gets were defined as molecules with activities lower than
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Fig. 1 Overall process of RF-QSAR. First of all, 1121 target models are built by bioactivity data from ChEMBL database. As a user input a query ligand to
the server, scores for target models are calculated to build a score vector. Then, the score vector is transformed into the probabilities to be active. Finally,
top-k targets are proposed ranked by their probabilities to the query ligand. Targets to search can be filtered by their classes according to user's preference

10 uM tested using IC50, EC50, Ki, and Kd [13, 20, 27,
29]. Among the human proteins deposited in the
ChEMBL, proteins with at least 10 known binding
ligands were selected for developing the models to avoid
unreliable models with insufficiently low amount of
activity data. The selected training set corresponds to
1121 targets and 235,713 unique ligands with the num-
ber ranging from 10 to 4305 of known active ligands for
each target. Moreover, target information including
class, sequence, and domains are retrieved from the
ChEMBL database for further utilization in the server.
The 1121 targets were classified under various target
classes including enzymes, membrane receptor, ion
channel, etc. As most of the targets (685) were enzymes,
they were further classified by enzyme subclass such as
kinase, protease, and phosphatase. Figure 2 shows the
class distribution of the target models. The detailed
MySQL commands used to extract bioactivities from the
ChEMBL can be obtained from Additional file 1.

Model building using random Forest algorithm

The ligand data obtained from ChEMBL were standard-
ized using ChemAxon standardizer [30] with options
“Remove Fragment,” “Neutralize,” “Remove Explicit Hy-
drogens,” “Clean 2D,” “Mesomerize,” and “Tautomerize.”
The resulting SMILES were used to generate ECFP_4
fingerprints (extended-connectivity fingerprints with
diameter of 4) with 2048-bit length string using RDKit
python module [31]. Subsequently, for each target, the
ligands with known active data were used as positive

» o«

ligands whereas the ligands without active data were
assumed as negative (inactive) ligands. After the sam-
pling and filtering processes described below, the target
models were trained based on the fingerprint data of
active and inactive ligands using a random forest algo-
rithm implemented in the sklearn python module [32].
We constructed an individual model for each target to
be used for both activity prediction and target fishing.
The random-forest algorithm is known to reduce the
bias due to overfitting and class imbalance. Because the
bioactivity data obtained from ChEMBL have several
class imbalances between the active and the inactive data
and even between the targets, random-forest classifica-
tion method may be able to handle such a bias effect-
ively. Random forest algorithm applies bagging and
subset selection techniques to overcome the instability
of decision tree model caused by its hierarchical nature.
Multiple training sets are randomly sampled to build
multiple trees and the features are refined based on out-
of-bag cases [15]. The number of trees for each target
model is set to 100 in this study. The score, ranging
from O to 1, is defined as the proportion of trees which
decide a query ligand is active.

Data preprocess before training

Before training the models, several data preprocessing
steps were conducted to deal with class imbalance and
ambiguity in the inactive data. For a few targets, the
ratio of the active ligands to the inactive ligands is as
large as 1:23,570, indicating that the number of active
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Fig. 2 The class distribution of the target models. Since the majority of targets are enzymes, enzymes are further classified by the enzyme
subclass such as kinase, protease, and phosphatase. The total sum of the number of targets for each class is 1143 instead of 1121 (the total
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ligands is considerably smaller than that of the inactive
ligands. Because such an imbalance can lead to a signifi-
cant reduction in the accuracy, two different sampling
methods were employed to handle the class imbalance.
A negative-undersampling method was used to ran-
domly select only a subset of the inactive ligands until
the ratio reaches to a particular value. A positive-
oversampling method was used to repeatedly select the
active ligands [33]. Because of practicality, the positive-
oversampling method was performed by imposing larger
weights on the active ligands when trained. In this study,
we employed a common ratio across the targets to avoid
overfitting the targets with a large number of active
ligands. Defining the inactive ligands is often controver-
sial as the inactive ligands are relatively ambiguous com-
pared to the active ligands. Some ligands without the
activity data might be actually active, which should be
excluded from the set of inactive ligands. By calculating
the Tanimoto coefficient (Tc) similarity between the
fingerprints, ligands having similar active data with a
particular threshold were excluded from the inactive
ligands [29].

Internal cross validation

To validate the performance of the random forest
models, prediction performances of the models were
evaluated for the training data using a five-fold cross-
validation method. 235,713 active ligands across all the
targets were divided into five subsets and one subset was
set aside as a test set. The rest of the ligands were used
as the training data to develop the models followed by

the data preprocess. The scores between the test ligands
and the target models were calculated. The ligands with
scores higher than the score threshold were then pre-
dicted as positive labels and the others were predicted
negative. First, the performance of each trained model
for the test set was assessed using a receiver-operating
characteristic (ROC) curve by varying the score thresh-
old from 0 to 1. In addition, the mean score of the active
ligands and that of inactive ligands were compared to
check whether the two mean values differ significantly.
The ratio between mean score of active ligands and
mean score of inactive ligands was computed for each
target and averaged by five-fold. Finally, the targets were
ranked by ordering the 1121 targets based on their score
for each ligand. The Recall was calculated, assuming that
the top-k values (k=4, 7, 11, 33, 66, 88, and 110) from the
ranked list of targets were predicted as positives [13, 29].
The assessments were then averaged over five different
test sets. We built and evaluated various target prediction
models by changing the sampling methods, ratio between
the numbers of inactive and active ligands, and Tc similar-
ity cutoff for the inactive ligands to determine the optimal
parameters. Pearson’s chi-squared test was used to evalu-
ate the statistical significance of the difference among
parameters when discriminating between true positives
and false negatives for the top-11 threshold.

External validation

Accordingly, a benchmark model using optimized prepro-
cessing method was constructed with the entire training
set from ChEMBL version 20. However, an independent
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validation set was required to evaluate the benchmark
model. Hence, we retrieved additional bioactivity data
from ChEMBL version 21 and employed them as an exter-
nal validation set. The external set contains only novel
ligands having at least one active target from the target
models. The ligands having the same ECFP fingerprints as
those in the training set were also removed from the valid-
ation set. With the resulting 13,589 external ligands, a
score matrix between the validation set and the 1121 tar-
get models was obtained. Thereafter, the ROC curve and
its area under curve (AUC) value, and the recall for the
top-k targets (k=11 and 33, which corresponds to 1% and
3% of total targets, respectively) were evaluated and com-
pared with the results obtained in other studies.

Probability estimation from the model score

Although scores of the virtual assay are useful for distin-
guishing the active ligands from the inactive ligands,
users might want to know whether the interactions with
the certain scores are in fact active. In case of ranking
the targets, some ligands could have low probability of
interaction even with high rank targets. To overcome
such ambiguity, we propose a probability estimation
function to transform the model score into probability
of interaction. From the virtual assay of the external set,
ligand—target pairs were divided by several score cutoffs
ranging from O to 1. For each score cutoff, the pairs of
the interaction having scores higher than the cutoff were
retained. The probability of interaction was estimated
based on the number of active pairs divided by the num-
ber of total pairs for each cutoff. A graph of log-scaled
score versus estimated probability was drawn, and the
curve was fitted to the sigmoid function (Add-
itional file 2). Figure 3 shows the graph.
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Web implementation

We implemented our target fishing model to the web
based server (http://rfqsar.kaist.ac.kr) so that users can
freely search for the predicted targets of the query
ligand. Currently, bioactivity data from ChEMBL version
20 was used to build the random forest model with opti-
mized parameters. PHP and jQeury were used for web
programming. ChemAxon standardizer [30] is imple-
mented to standardize SMILES format just as used for
training. Also, Open Babel software [34] is included to
transform ligand structures into 2D figures.

Results and discussion

Performance of interval validation

The internal validation of the proposed SAR models was
performed using a five-fold cross validation procedure.
The performance of the internal validation was mea-
sured using the optimized sampling method and param-
eters. The virtual screening results of the five-fold cross
validation were first used to measure the performance
for each target model. Hence, the ROC curve for each
model was computed by taking the average of the ROC
curves from the five folds. The area under the ROC
curve (AUC) was evaluated to estimate the performance
of each target model. Figure 4 shows the ROC curves for
the 1121 target models and boxplot of the AUC values.
The overall ROC curve is the curve obtained using the
screening data throughout the targets. The AUC value
for the overall ROC is 0.97, implying that these models
can be used to distinguish the active ligands from the in-
active ligands with good sensitivity. The boxplot shows
that the AUC values of most of the models (~75%) is
above 0.9. Although the AUC values of few models
(~7%) are under 0.7, the AUC values of the models are
above 0.5 with a median AUC value of 0.97. The models
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with low AUC value generally have a small number of
active ligands (class size) and low Tc similarity among
the active ligands (intra-class Tc) as shown in Fig. 5a.
This is probably because some of the active ligands to be
cross-validated do not have any other active ligands
nearby for small and sparse target classes.

Because the scores of the target models are to be used
to determine the true interaction among many others,
the scores of the active ligands should be significantly
higher than the scores of the inactive ligands. To verify
such trend, the mean scores of the positive and negative
sets were calculated for each target using the five-fold
cross validation. We observe that the mean score of the
negative set is approximately zero for the target models
(max = 0.02), whereas the mean score of the positive set
is broadly distributed with a median of 0.64 (Fig. 6a).
The targets with low mean scores in the positive set

generally have small class sizes and low intra-class Tc
values, which are similar to the trend observed in the
AUC distribution (Fig. 5b). Nevertheless, the mean
scores of the positive set of most of the target models
(99%) are considerably higher than those of the negative
set by at least 10 fold (Fig. 6b).

The virtual screening result for each query ligand is a
score vector constructed using the 1121 target models.
The main application of our model is ranking the targets
for a query ligand so that users are able to obtain a rea-
sonable number of targets to be tested. Hence, the
model performance of the target ranking needs to be
verified via cross validation. One of the general methods
of verifying the performance involves employing the
recall rate for the top-rank targets. In this method, the
targets ranked in the top-k (k is the feasible target num-
ber) are recognized as active targets for a query ligand,
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whereas the other targets are assumed inactive. The
recall rate is defined as TP / (TP + FN), which is the
ratio of the number of detected active targets to the real
active targets. The recall rate is averaged over the five
different test sets during five-fold cross validation pro-
cedure. The higher recall rate means that the sensitivity
of the model is better with fewer missing active targets.
Figure 7 shows the change in the recall rates for differ-
ent top-k thresholds. The recall rate increases with an
increase in the top-k threshold. However, if the top-k
threshold is high, many targets recognized as active
might be actually inactive. Moreover, as the number of
targets to be checked via experiment increases, the effi-
ciency of the model application decreases. In fact, the
recall rate changes only slightly after the top-4 threshold.
For practicality, in general, approximately 10 targets out
of the total targets are proposed as candidate targets [13,
29, 35]. In our model, the recall rates for the top-4 and
top-11 (1% of total targets) targets were 0.823 and 0.871,
respectively.

Parameter optimization

Defining the active and inactive ligands for each target is
very important to successfully model the SARs [29, 36].
Two different methods were proposed to build the active
and inactive sets for each target model depending on the
sampling methods: negative-undersampling and positive-
oversampling. The ligands of the targets were sampled
until the number of inactive ligands reached a fixed ratio

of the number of active ligands (it was set arbitrarily to
20). First, the performances of the different sampling
methods were compared by calculating the recall rates for
the top 1, 4, 8, and 11 targets and overall AUC value
(Table 1). Although the negative-undersampling method
slightly outperformed the positives oversampling method

i Recall rate for different top k
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Fig. 7 The recall rates for various top k values (k=1, 4, 8, 11, 33, 66,
88, 110) measured by internal cross validation. Recall rate is defined
as TP / (TP + FN) where TP is True Positive and FN is False Negative.
If an active target of a query ligand has rank higher than k value, the
interaction is counted as TP. Otherwise, it is counted as FN
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in terms of the overall AUC, the recall rate was relatively
lower than that obtained using the positive oversampling
method. In addition, because the AUC value was suffi-
ciently high in the positive-oversampling method and
recall rates are more important for the application of tar-
get fishing, we selected the positive-oversampling method
as the general sampling method. Positive-oversampling
method recognized more active ligands as positives com-
pared to negative-undersampling method with p-value =
6.39E-10 for Pearson’s chi-squared test.

In fact, we built multiple positive-oversampling
models with different ratios of the number of in-
active ligands to the number of active ligands ran-
ging from 1 to 40. Table 2 presents the performance
comparison between the models. The result shows that
a balanced ratio between the active and inactive ligands
yields the best recall rate in any threshold. The values of
the overall AUC follow the same trend. Hence, the ratio of
the number of inactive ligands to the number of active
ligands was set to one. Pearson’s chi-squared test shows
that the model with the ratio of 1 recognized more
true positives than those with the ratio of 10, 20, 30,
and 40 with p-value of 7.09E-3, 7.60E-4, 6.40E-5, and
1.71E-5 respectively.

Many inactive ligands used for the target model
were not experimentally tested for the target. Some of
them would turn out to be active ligands. In particu-
lar, the ligands that are similar to known active li-
gands have higher probability of being active. In some
cases, such inactive ligands in the model may cause
active queries to be evaluated as inactive. One of the
methods of reducing the bias involves excluding the
inactive ligands that are similar to active ligands to
some extent. The well-known Tc similarity is
employed as a cutoff for this purpose. When the Tc
similarities between the nearest active ligands within
specific targets were examined, 95% of the pairs had
Tc similarities above 0.32, and 90% of the pairs had
Tc similarities above 0.5 (Fig. 8). For different Tc
similarity cutoffs (0.3, 0.5, and w/o cutoff), the recall
rates of the target ranking were examined to obtain
the best fit for identifying the targets (Table 3). The
results obtained by applying the Tc cutoff values
showed better performance compared those obtained

Table 1 Performance comparison between negative-
undersampling and positive-oversampling

Sampling method Negative-undersampling Positive-oversampling

Overall ROC AUC 0.975 0.956
Top 1 recall 0.534 0.549
Top 4 recall 0.81 0.822
Top 8 recall 0.849 0.855
Top 11 recall 0.86 0.865
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Table 2 Performance comparison between different ratios of
the number of ligands for positive-oversampling

Ratio (inactive/active) 1 10 20 30 40

Overall ROC AUC 0.961 0.956 0.956 0.955 0.955
Top 1 recall 0.549 0.549 0.549 0.549 0.549
Top 4 recall 0.823 0.822 0.822 0.822 0.822
Top 8 recall 0.857 0.856 0.855 0.855 0.855
Top 11 recall 0.868 0.866 0.865 0.865 0.865

without the cutoffs. However, the results obtained for
Tc cutoffs of 0.3 and 0.5 are somewhat ambiguous.
The AUC value increases from a Tc cutoff of 0.3
whereas the recall rates are better for a Tc cutoff of
0.5. We selected a Tc cutoff of 0.5 because, as pre-
viously mentioned, the recall rates should be more
distinguishable for practicality. The model applying Tc
cutoff of 0.5 recognized more true positives compared to
that without Tc cutoff with p-value of 1.89E-6 for chi-
squared test. Accordingly, the benchmark model was built
using the positive-oversampling method by employing op-
timized parameters, such as active/inactive ratio=1 and
Tc cutoff = 0.5.

Performance of external validation

To test the performance of the benchmark model on
the novel ligands, an external validation set was de-
veloped using the data from new version of ChEMBL.
The average Tc similarity value of the external set to
the nearest ligands implemented at the benchmark
model was 0.55. The virtual-screening result of the
external validation set was evaluated using the ROC

~ x10*
o

T

| ' ;90% of Tc> 0.5
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Fig. 8 The distribution of Tanimoto coefficients of nearest active ligands
for specific targets. The nearest pairs of active ligands in the same targets
are collected. The distribution of the Tc values for ligand pairs shows that
90% of Tc values are larger than 0.5 and 95% of Tc values are larger than
032 (~03)
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Table 3 Performance comparison between different Tc cutoffs
for excluding inactive ligands

Tc cutoff 03 0.5 w/o cutoff
Overall ROC AUC 0973 0.966 0961
Top 1 recall 0.527 0.538 0.548
Top 4 recall 0.815 0823 0.823
Top 8 recall 0.858 0.86 0.857
Top 11 recall 0.87 0.871 0.868

curve and recall rate. The ROC curve was drawn by
defining known active data as positive set, and the
area under the ROC curve was 0.89 (Fig. 9). The
value is lower compared to the AUC obtained
through the cross validation (0.97), largely because a
larger population of the active interactions are de-
graded to score 0. The ROC curve shows that the
scores of approximately 20% of the active ligands are
zero whereas the scores of 93% of the inactive ligands
are zero. Such active ligands with scores of 0 may
represent novel chemical structures not explained by
the model but included in the external set. Neverthe-
less, the result indicates that the performance of the
benchmark model is still high for external validation
with a value of approximately 0.9.

The recall rates for the top-k targets were also calcu-
lated to verify that the performance of external valid-
ation. For the top-11 (1%) targets, the recall rate of the
external set using the benchmark model was 67.6%. For
the top-33 (3%) targets, the recall rate was 73.9%. This
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Fig. 9 The ROC curve for screening results of the external validation
set. 20% of active data and 93% of inactive data from external set have
scores of 0, which makes a long straight line at the end of the curve.
Active ligand with score of zero might represent novel chemical
structures of bioactivity newly discovered by recent experiments
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result is slightly better than the performance measured
using the Parzen—Rosenblatt Window based Naive
Bayesian model by Alexios Koutsoukas et al., wherein
the results were 66.6% and 73.9% for the top 1% and 3%
of the targets, respectively [13]. The recall rate obtained
using the method proposed in this study is better than
that obtained using other naive Bayesian models such as
Laplacian-modified Naive Bayes (63.3% for top 1% and
72.1% for top 3%) [13] or Bernoulli Naive Bayes (62.5%
for top 1% and 72.5% for top 3%) [29]. While the WOM-
BAT external set used for these tests has an average Tc
value of 0.58 with the training set, the external set used
in our test has a value of 0.55, indicating that the diffi-
culty of the problem is increased. Thus, it is fair to say
that the performance of current method is better than
those of previous methods. Moreover, we expect that
the result may be improved by further modification
because the current benchmark model is a simple
collection of individual target models.

Target fishing server

We developed a target-fishing server named RF-QSAR
[37]. Using RF-QSAR, users can identify targets of mul-
tiple query ligands at a time. Each ligand is assessed by
1121 target models and score matrix between ligands
and targets are made. The score matrix is also converted
to the probability matrix, where each cell indicates the
probability of the ligand-target interaction being active.
The matrix can be downloaded by link so that users can
further utilize the score matrix for other researches. For
example, scores from target models can be used as a
profile of the ligand and the toxicity of the ligand can be
predicted by the profile [20]. Server offers top-k targets
ranked by the probability to interact with the ligand.
The k-value and target classes to search can be deter-
mined by users according to the purpose of target-
fishing. For top-ranked targets, information and cross
references including Uniprot ID, target class, se-
quence, domains, and similar ligands are provided.
The proportion of each target class of the ranked tar-
gets is also presented so that users can estimate the
general target classes for a query ligand. Figure 10
shows the demonstration of RF-QSAR. In addition,
we plan to add to the server several new functional-
ities such as searching preferred targets using protein
sequence and highlighting common targets that are
repeatedly found for different query ligands.

Conclusions

We developed a ligand-based SAR model comprising
1121 individual target models trained with human
bioactivity data retrieved from ChEMBL database
using a random forest algorithm. The sampling method
and parameters used for the data preprocess were
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RF QSAR

Random Forest QSAR

Your job id: bench_test

All targets(1121)

Your Query:

CC(C)S(=0)(=0)ciccccciNe2ne(Ne3nc(cs3)C(=0)N4C[C@H]SCN(C)C[C@H]S5C ~
0=C1Nc2cccecc2[C@]13C[C@H]3cdcccSc(\C=C\c6eec(cc6)N7CCNCC7)n[nH]cSc
CC(C)S(=0)(=0)ciccccciNe2ne(Ne3ccec(NC(=0)CN4CCS5CC4CCS0)c3)ncc2Cl
CC(C)S(=0)(=0)c1ccccciNe2nc(Ne3nc4CCN(C)CCeds3)ncc2Cl
CC(C)S(=0)(=0)ciccccciNe2ne(Ne3cccc(NC(=0)CN4CCN(CC4)C5COCS)c3)nc

| Adhesion (7)

G
Naw %

ou

The virtual screening result also can be downloaded

Target filter

# Membrane receptor (196)
) Ion channel (55)

| Epigenetic regulator (41)
) Transcription factor (38)

« Transporter (33)

| Other cytosolic protein (16)
| Secreted protein (11)

) Auxiliary transport protein (4)
| Surface antigen (4)

) Other nuclear protein (3)

| Other membrane protein (1)
) Structural protein (1)

L] ) Unclassified protein (48)

top-k=| 10 | Rerun |
Assay file: download
Top Name ChEMBL UniProt PDB Probability Class D Similar li d:
1 ALK tyrosine kinase receptor Q9 3 S5 0.72 Kinase 9(1 25
2 Insulin receptor 0.67 Kinase 6 2
3 Tyrosine-protein kinase ZAP-70 13 0.58 Kinase 3
4 Short transient receptor potential channel 6 0.51 Ion channel 931 6(1
S Tyrosine-protein kinase JAK2 62 0.4%9 Kinase 1 2 2
6 Short transient receptor potential channel 3 CH 0.49 Ion channel 836 4(1
7 Tyrosine-protein kinase LCK 52 0.45 Kinase 2 2
8 c-Jun N-terminal kinase 3 48 0.45 Kinase
9 Tyrosine-protein kinase SYK 0.45 Kinase 3(1 2
10 Hepatocyte growth factor receptor 74 0.45 Kinase 1 5

Fig. 10 The result page of RF-QSAR web server. Query ligands to look over can be selected from the box. List of top-k targets and their information
are provided in the table including name, ChEMBL ID, UniProt ID, PDB id, probability to be active, target class, sequence, domains, and ligands similar
with the query from the target. Details about PDB id, sequence, domains, and similar ligands are linked by the numbers to other pages because the
text is too long to write in the table. Users can re-rank the targets with different class filter and top-k threshold without repeating virtual screening.

Download Contact

Proportion
among top-k

Enzymes(685) Proportion

among top-k

¥ Kinase (48)

| Protease (48)

| Cytochrome P450 (48)
) Oxidoreductase (48)

«#) Phosphodiesterase (48)
«| Phosphatase (48)

¥ Lyase (48)

| Hydrolase (48)

) Transferase (48)

| Isomerase (48)

¥ Aminoacyltransferase (48)
#) Ligase (48)

#) Other enzyme (48)

8/10 (80%)
2/10 (20%)

carefully optimized by five-fold cross validation to
maximize the recall rates for the top-rank targets.
The active data of every target model were over-
sampled until the ratio of the number of inactive li-
gands to the number of active ligands was set to one.
In addition, the inactive ligands similar to the active
ligands with a Tc cutoff higher than 0.5 were ex-
cluded from the model-building process. Through this
process, our model could overcome the imbalance be-
tween the classes or targets, and avoid ambiguity of
inactive ligands. The resulting target models are avail-
able not only for predicting the activity of the ligands
but for target fishing of a query ligand offering
ranked target list. The performance of each target
model was assessed by employing individual ROC
curve and mean score, which showed its strength in
distinguishing between the active and inactive ligands.
The performance of the target ranking was validated
using the recall rates of the top-k targets. Through
the external validation, the recall rates were obtained

as 67.6% for the top 1% targets and 73.9% for the top
3% targets. These results demonstrate that the per-
formance obtained in this study is the highest, par-
ticularly for a relatively difficult test set having an
average Tc similarity of 0.55 with the training set.
The processes were validated using a unified scoring
scheme, which was further fitted to the probability
using an external dataset.

The web interface of RF-QSAR was designed to be
user-friendly, offering intuitive result pages. Users can
submit multiple query ligands and check the result at
a time. The result page shows a ranked target list
with estimated probability of interaction. Various in-
formation and cross references are provided for each
target. One of the distinctive features of our site is
filtering the targets in terms of their classes. Using
this function, users can specify target classes to
search or remove classes. Users can utilize our server
for various purpose including target-fishing, ligand
comparison, and profile building.
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Additional files

Additional file 1: MySQL codes for bioactivity extraction from ChEMBL
database. Variable “molregno” from table “compound_structures” is
identification code for ligands while variable “tid” from table
“target_dictionary” is identification code for targets. (TXT 1 kb)

Additional file 2: Fitting model scores to the estimated probabilities. It
contains mathematical expression used to fit a graph of log-scaled score
versus estimated probability to the sigmoid function. (PDF 235 kb)
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