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Abstract

Background: Common spatial pattern (CSP) has been an effective technique for feature extraction in
electroencephalography (EEG) based brain computer interfaces (BCls). However, motor imagery EEG signal
feature extraction using CSP generally depends on the selection of the frequency bands to a great extent.

Methods: In this study, we propose a mutual information based frequency band selection approach. The
idea of the proposed method is to utilize the information from all the available channels for effectively
selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An
additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of
features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then
computed from the extracted features of each of these bands and the top filter banks are selected for further processing.
Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused
together, and classification is done using support vector machine.

Results: The proposed method is evaluated using BCl Competition lIl dataset [Va, BCI Competition IV dataset | and BCl
Competition IV dataset Ilb, and it outperformed all other competing methods achieving the lowest misclassification rate
and the highest kappa coefficient on all three datasets.

Conclusions: Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands,
the proposed method shows improvement in motor imagery EEG signal classification.
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Background

Communication is the transfer of information through
various ways such as speaking, writing, using sign
language or other mediums, and is essential in our daily
lives. Human brain is one of the key parts of the human
body controlling all the body activities including motor
and muscle movement. Every time a communication is
initiated, the message is first constructed in the brain.
Over 100 billion neurons are contained by the human
brain [1]. These neurons communicate with each other
producing different patterns of electrical signals (gener-
ated due to electromagnetic activities inside the brain)
for different thoughts [2]. These electrical signals are
known as the electroencephalography (EEG) signals. The
purpose of a brain computer interface (BCI) system is to
capture the EEG signal and decode them for different
brain activities. This provides the brain a direct channel
of communication with the external devices without the
need for any muscular movement [3].

Over the past two decades, advances in signal processing,
pattern recognition and machine learning techniques have
resulted in a great progress for BCI research [4]. A huge
amount of focus is dedicated to the field of biomedical
engineering [5—16], with focus on BCI research. The
severely disabled people can benefit from the BCI system
to reinstate their ability of environmental control [17].
BCI has several applications such as communication con-
trol [18, 19], environment control [20], movement control
[21, 22] and neuro-rehabilitation [23—25]. The use of non-
invasive EEG sensors to capture the EEG signal has gained
widespread attention out of the many other available
methods. This is because non-invasive EEG devices such
as Emotiv EPOC/EPOC+ headset [26] is portable, can be
easily integrated for real time analysis and has compara-
tively low cost. Thus, it is the most suitable method to
capture EEG signals for BCI systems [27, 28]. The EEG
signal captures all the activities that are taking place in the
brain and thus it is referred to as a complex signal. The
raw EEG signal is a weak signal with very low amplitudes
and is generally contaminated by artifacts and noise such
as Electrocardiogram (ECG), Electrooculogram (EOG)
and Electromyogram (EMG). Therefore, preprocessing
of the raw EEG signals is mostly carried out to remove
artifacts and noise.

EEG signals can be grouped into different frequency
bands as different type of information is contained in
different bands. Various methods of feature extraction
and classification [13-15, 29-31] have been proposed.
CSP has been most superior and widely used feature
extraction method. CSP transforms the data to a new
time series where the variance of one class of signal is
maximized and that of another class is minimized.
However, feature extraction of motor imagery EEG
signal using CSP hugely depends on the selection of the
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frequency bands. Since the frequency bands are subject-
specific, it is difficult to determine the optimal filter
bands. Poorly selected bands will mostly not be able to
capture the band-power changes that the motor imagery
event causes resulting in CSP being less effective [32].
Generally, a wide band (eg., 4—40 Hz) is selected for CSP
in motor imagery EEG signal classification. This wide
band covered most of the motor imagery related features,
however, it also contained other redundant information.
Over the past few years, studies [13, 32-37] have sug-
gested that optimizing the filter band could improve the
motor imagery EEG signal classification. Common spatio-
spectral pattern (CSSP) [38] has been proposed to further
enhance the performance of CSP. In CSSP, a finite impulse
response (FIR) filter is optimized within CSP. This is
realized by inserting a temporal delay 7 allowing fre-
quency filters to be tuned individually and CSSP achieved
improved performance. Common sparse spectral spatial
pattern (CSSSP) [39] was proposed to further improve the
CSSP approach, which finds spectral patterns that is
common to all the channels instead of finding different
spectral patterns for each channel as in CSSP.

As an alternative method, sub-band common spatial
pattern (SBCSP) [40] has been proposed, where the motor
imagery EEG signals are filtered at multiple sub-bands
and CSP features are extracted from each of the sub-
bands. To reduce the dimensionality of the sub-bands
linear discriminant analysis (LDA) has been applied separ-
ately to the features of each of the sub-bands and the
scores fused together for classification. SBCSP achieved
superior classification accuracy than those of CSP, CSSP
and CSSSP. However, the possible association of the CSP
features obtained from different sub-bands has been
ignored by SBCSP and therefore filter bank CSP (FBCSP)
[32] was proposed to address this problem. FBCSP
estimates the mutual information of the CSP features
from multiple sub-bands in order to select the most
discriminative features. The selected features are used for
classification using support vector machine (SVM) classi-
fier. FBCSP outperformed SBCSP, however, it still utilized
several sub-bands that accounts for an increased compu-
tational cost. Discriminant filter bank CSP (DFBCSP)
[35, 36] has been proposed to address this problem.
DFBCSP utilizes the fisher ratio (FR) of single channels
(C3, C4 or Cz) band power for selecting the most
discriminant sub-bands from multiple overlapping
sub-bands. The CSP features are then extracted for
each sub-band, and used for classification using SVM
classifier. DFBCSP achieved improved classification
accuracy and a reduced computational cost compared
to SBCSP and FBCSP. The DFBCSP framework is
shown in Fig. 1.

In CSP, empirical averaging of training samples covari-
ance matrices is done. This includes the low quality signals,
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which degrades the performance of the system. Therefore,
the authors in [41] proposed a sparsity-aware method
where weighted averaging has been introduced. Using [,
minimization problem, weight coefficients are assigned to
each of the trials. The low quality trials get assigned to
almost zero weight values. This weighting method was
applied for determining the average covariance matrix in
the CSP algorithm and it achieved improved performance.
In [30], the authors proposed to use decimation filter that
was manually tuned to obtain optimal results. Fishers’
discriminant analysis (FDA) was used to reduce the
dimensionality of the features and SVM classifier was
employed. The method (named CD-CSP-FDA) achieved
improved performance compared to the state-of-the-art
methods.

Recently, a sparse filter bank CSP (SFBCSP) [42] method
that also uses multiple filter bands is proposed, which opti-
mizes the sparse patterns. Supervised technique is used to
select significant CSP features from multiple overlapping
frequency bands. SVM classifier is then used for motor
imagery classification using the selected features. Sparse
Bayesian learning has also gained increased attention
recently and has been used for feature selection in various
applications. In [13], the EEG signal was decomposed into
multiple sub-bands and CSP features were extracted.
Sparse features are obtained using the Bayesian learning
approach, which are used for classification using the SVM
classifier. The authors named their method as SBLFB and
it outperformed all the state-of-the-art methods. In [43] a

hybrid genetic algorithm-particle swarm optimization
based means clustering has been proposed for 2 class
motor imagery tasks. However, clustering methods
[44, 45] and hidden markov model [46] have not been
fully explored for motor imagery EEG signal classification.
In this paper, we propose an improved DFBCSP
method. The contribution and novelty of the proposed
approach, which makes our proposed approach different
from DFBCSP method are as follows. Firstly, instead of
using FR of single channels band power as in DFBCSP-ER,
we use mutual information calculated from features gener-
ated using all channel data for selecting the bands that give
optimal results. Using only a single channels band power
with FR as the criterion for selecting the sub-bands
(DFBCSP-FR) will not be effective. This is due to the fact
that EEG signals are mostly contaminated by noise. There-
fore, if the single channel used for calculating FR is
corrupted by noise, then this band selection method will
fail. This results in sub-bands being selected that will not
always give optimal results as sub-bands with redundant
information might be selected. Thus, we propose to utilize
all available channels data for selecting the most discrimin-
ant sub-bands by making use of the mutual information in
order to obtain optimal results. Using all channels data for
band selection reduces the chance of a sub-band with
redundant information being selected compared to that of
using single channel information for band selection.
Secondly, instead of using only CSP features from over-
lapping sub-bands as in DFBCSP-FR, we have introduced



Kumar et al. BMC Bioinformatics 2017, 18(Suppl 16):545

an additional wide band of 7-30 Hz with CSP and CSSP
features. In our previous work [30], we have shown that
promising results can be obtained by using a single wide
band in the frequency range of 7-30 Hz. It is also shown
that using wide band CSP and CSSP methods produce
promising results for some subjects (refer to Table 1,
Table 2 and Table 3) that other competing methods could
not achieve. Therefore, to take advantage of the wide band
CSP and CSSP, we have introduced a single wide band of
7-30 Hz together with the twelve overlapping sub-bands
in the range of 4-30 Hz having a bandwidth of 4 Hz and
overlap of 2 Hz. Both CSP and CSSP features are
extracted from the wide band. Use of the CSP and CSSP
features of the wide band boosts the performance of the
system in majority cases by providing features that are
more significant (making it to the top 4 sub-bands having
most discriminant features). Thus, the sub-bands with
more significant information are selected, and optimal
results are achieved. This is shown by the reduction in the
misclassification rate that is achieved, which is due to the
fact that the wide band contains more significant informa-
tion in majority cases (refer to Table 4, Table 5 and Table 6,
which shows that the wide band is selected majority of the
times).

The public BCI Competition III dataset IVa, BCI
Competition IV dataset I and BCI Competition IV dataset
IIb are used to validate the effectiveness of the proposed
method in comparison with CSP, CSSP, FBCSP, DFBCSP,
SFBCSP and SBLFB methods. Experimental results ob-
tained are promising and can be instrumental in developing
improved motor imagery based BCI systems.

Methods

Feature extraction using CSP

EEG based BCI has recently gained widespread attention
in becoming a medium of communication between the
human brain and the external world. CSP has been
commonly used for feature extraction in EEG based
BCI research and applications. In CSP, the spatial filter
Wesp is formed by selecting the first and last m columns
of the CSP matrix, W. Thus, the bandpass filtered EEG
signal X, eR*T is transformed using (1), where n
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denotes the n-th trial, c is the number of channels and
T is the number of sample points.

Zn =W isp X (1)

The CSP features of n-th sample is then extracted using
(2), where frf is the i-th feature of the n-th trial, and
var(Z,) denotes the variance of j-th row of Z,,. The fea-
ture matrix is thus formed as F=[fj;...; fy], where N is
the total number of trials. A comprehensive explanation
of CSP process can be obtained from [47].

,- var (2} )
" g(z% var(Z]) ?

]

Feature extraction using CSSP

The CSSP method was proposed in order to improve
the performance of CSP by inserting a temporal delay to
the raw signal. The time delay 7 value of 1 to 15 sample
points have been evaluated and the best value is selected
using 10 fold cross validation. The signal is filtered using
the bandpass filter followed by spatial filtering using (1)
and feature extraction using (2).

The improved DFBCSP approach

In this study, we propose an improved method that utilizes
the mutual information for selecting the most discriminant
filter banks (sub-bands) for motor imagery EEG signal
classification. An illustration of the calibration phase of the
proposed approach is given in Fig. 2. The dataset is divided
into train and test data. Only train data is used in the
calibration phase for selecting the filter banks. The train
data is filtered using 13 filter banks. 12 filter banks are in
the range of 4-30 Hz having a bandwidth of 4 Hz with
2 Hz overlap, and the final filter bank of 7-30 Hz.

Figure 3 shows the general framework of the proposed
approach, giving detailed information for each of the steps.
The raw EEG signals are decomposed into sub-bands, and
CSP and CSSP features are extracted, respectively as
shown in Fig. 3. Mutual information is then calculated
from the feature matrix (refer to next sub-section) in order
to determine the 4 most discriminating filter banks (filtered

Table 1 Misclassification rate (%) of different methods using dataset 1

Subject csp CSSP FBCSP DFBCSP (FR) DFBCSP (M) SFBCSP SBLFB Proposed
aa 21.00 +5.31 17.00+7.34 17.14+£8.19 964 +5.01 11.50 £ 642 1843 £745 1871 £745 8.79+5.16
al 3.86+3.63 307303 129+1.18 1.00 £ 191 121+£1.16 1.64+1.36 136123 1.14+£1.03
av 28.29+7.46 2886+7.10 3036+823 31.21+£892 2528+877 2993 +644 29.64 £9.98 24.05+8.29
aw 1036 +5.10 843 +5.09 6.50 =4.55 464 +475 393 +403 9.29+585 6.57 =447 3.21+£313
ay 3.86+4.11 429+375 507 £4.68 8.21+5.06 6.93 +4.47 12.79£5.96 12.36+7.22 443 +£350
Average 1347£5.18 12.33£530 1207 £551 1094513 9.77 £5.11 1414557 13.73+£6.23 8.32+448

The lowest misclassification rate for each subject is indicated in bold
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Table 2 Misclassification rate (%) of different methods using dataset 2

Subject csp CSSP FBCSP DFBCSP (FR) DFBCSP (M) SFBCSP SBLFB Proposed

a 13.20 + 807 1365+ 8.19 19.10+£9.35 1680 +7.81 1440 +5.68 1740+593 19.10+9.73 1430+ 9.26
b 4280+12.25 4270£11.38 44701127 4290+9.75 43.00+9.69 4530+6.59 41.50+11.12 43.00£10.74
c 43.70£11.24 3995+ 10.21 3570+958 3520851 33.70+£9.99 4300£11.62 3320+1253 31.00 +9.85
d 2240+ 882 14.60 + 8.75 22.20+899 23.50+841 2190+859 29.50+10.13 11.50+791 6.60 £ 557

e 18.00+9.74 18.05+£9.18 14.00£9.15 1830+ 8.84 1730+ 8.88 2470+ 10.34 11.60 + 6.88 8.10+£692

f 2250+10.84 18.55+839 19.60 =856 1430857 13.00 £ 8.08 2090+ 645 2120+11.98 1340+ 848
g 710£5.06 6.35+4.92 6.90 +6.62 9.00+5.05 760+565 9.70+4.97 5.90 +541 720£526
Average 24.24+943 21.98 £ 872 23.17 £9.07 2286+8.13 21.56+8.12 27.21 £ 800 20.57 £9.36 17.66 + 801

The lowest misclassification rate for each subject is indicated in bold

EEG signals of the filter banks that have more discriminat-
ing features, that is features with larger mutual information
values). The maximum mutual information values for each
of the sub-bands are used to form vector V,; (having
vector length of 14 since we have 14 sub-bands in total).
The mutual information values in V,; are arranged in
descending order and the 4 bands to which the first 4
mutual information values in vector V,; belong to are
thus selected as the top 4 bands. The dimensionality of
the features of each of the selected filter banks is
reduced using linear discriminant analysis (LDA). The
LDA scores are then fused together and fed to the SVM
classifier. All parameters such as the filter banks, spatial
filters, LDA matrix and the classifier are learned from the
training data only and later used during the test phase.

Mutual information

The quantity of information a feature contains about the
class membership under the assumption of independence
is given by the mutual information (MI). It is one of
the measures of association or correlation between the
row and column variables. The correlation coefficient
only measures the linear dependence whereas mutual

information gives information about both linear and
non-linear dependence. For two discrete arbitrary variables
X and Y, the mutual information can be computed using
(3), where p(x,y) is the joint probability distribution func-
tion of X and Y, and p(x) and p(y) are the marginal
probability distribution functions of X and Y, respectively.
A larger mutual information value implies the corre-
sponding feature has a greater predictive ability of the
class membership (i.e. discriminating features).

Alternatively, the mutual information can also be
computed using (4), where H(Y) is the marginal entropy,
H(X|Y) and H(Y| X) are the conditional entropies and
H(X,Y) is the joint entropy of X and Y.

) Py

1(X7 Y) - ZererXp(x’ y) Iog(ﬂ(x)p(y)> (3)

I(X,Y) = H(Y)-H(Y|X)
=H(X,Y)-H(X|Y)-H(Y|X) )

The features obtained from all the bands are concatenated
to form the feature vector Fj, = | Fhfhs ey ﬁ;n], where F}

is the feature vector of the i-th trial, jjé/ is the features

Table 3 Misclassification rate (%) of different methods using dataset 3

Subject csp CSSP FBCSP DFBCSP (FR) DFBCSP (M) SFBCSP SBLFB Proposed
BO103T 23.69+1037 2531999 19.00 =847 2325+11.23 2038+9.18 2650+924 21.75£996 19.25+£1048
B0203T 41.00+£11.21 42941174 45631193 40.76 £1245 4438+ 1124 4275+12.84 40.75+11.99 4163+10.23
B0303T 49.63 £10.80 4844 +£10.82 49131354 50.50+12.87 4638 £9.95 4497 £11.65 5068 +13.34 44.00 + 13.06
B0403T 0.63+060 0.63+0.60 1.75£161 0.75+0.69 0.63+0.60 0.38+£035 088+0.73 0.63+060
B0503T 16.56 +9.21 4225+1633 28.50+8.85 2500+10.71 21.13+936 2502 +7.38 7.96 + 652 942 +7.96
B0603T 21.19+9.89 2381 +£1094 2438 +9.80 2088 +10.38 19.75+£ 981 20.06 +10.70 20.51+823 18.00 + 991
B0703T 14.13 £ 846 13.81£811 1550£683 12.13£9.05 9.75+7.05 1225747 7.50 £ 644 11131761
B0803T 11.69+7.14 14.50 + 8.56 1888 +11.68 11.13+£6.95 12.88 +8.03 12.38+7.63 11.13+895 10.50 +5.85
B0903T 1725+ 815 17.25 + 8.66 20.88 +10.07 22.25+1080 1634+ 893 2500962 19.38 +10.58 16.25+9.36
Average 21.75+857 2544 £ 967 24.85+939 2296+ 961 2129+838 2326+ 867 2006£873 18.98 £ 848

The lowest misclassification rate for each subject is indicated in bold
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Table 4 Top 4 bands mostly selected by the proposed method
using dataset 1

Subject aa al av aw ay
Selected bands 4,5, 4,5, 3,4, 3,4, 3,4,
10, 11 133,13b 8, 13b 5 13a 133, 13b

obtained from the j-th band of the i-th trial, and n
is the total number of bands. The feature matrix
Fy = [F};F}; ... F)], is formed using the feature vectors
of all the trials from the train data. The feature matrix is
then utilized to determine the mutual information using
(3), which gives MI =[5, L, ..., I;], where I; is the mutual
information value of the /-th feature.

Experimental study

Description of dataset

The proposed method has been evaluated using three
publicly available datasets: BCI Competition III dataset
IVa [48], BCI Competition IV dataset I [49] and, BCI
Competition IV dataset IIb [49] referred to as dataset 1,
dataset 2 and dataset 3 from here onwards, respectively.

Dataset 1 contains 118 channels of EEG signals for right
hand and left foot MI tasks, which have been recorded
from five subjects labeled aa, al, av., aw, and ay. The
down sampled signal at 100 Hz has been used. It contains
140 trials of each task for each of the subjects. A detail
description of the dataset can be found online at http://
www.bbci.de/competition/iii/.

Dataset 2 contains two classes of motor imagery EEG
signals obtained from seven different subjects; 59 channels
of data are recorded at 1000 Hz using BrainAmp MR plus
amplifiers and Ag/AgCl electrode cap. The data were
filtered using 10th order Chebyshev Type II lowpass
filter with stopband ripple of 50 dB and stopband edge
frequency of 49 Hz. The data was down sampled to
100 Hz by computing the mean of blocks of 10 samples. A
total of 200 trials of motor imagery EEG measurements are
available for each subject with almost equal number of
trials for each class. A detailed description of the dataset
can be found online at http://www.bbci.de/competition/iv/.

Dataset 3 contains 3 channels (C3, Cz, and C4) data for
right hand and left hand motor imagery tasks recorded
from nine subjects. The data was recorded at a sampling
rate of 250 Hz. As in [42], only the third session data is
used for evaluation. For each subject, a total of 160 trials
of motor imagery EEG measurements are available

Table 5 Top 4 bands mostly selected by the proposed method
using dataset 2

Subject a b c d e f g
Selected 3, 4, 4,7, 4,5, 4,5, 4,5, 3,4, 2,3,
bands 133,13b 8,11 11,13b 10,13b 10,13b 133, 13b 8, 13b
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(having equal number of trials for each motor imagery
tasks). More details about the dataset can be found online
at http://www.bbci.de/competition/iv/.

Evaluation scheme
In this study, the motor imagery EEG data between 0.5 and
2.5 s (i.e. 200 sample points for dataset 1 and 2, and 500
sample points for dataset 3) after the visual cue have been
extracted and used for further processing. Common aver-
age referencing is applied to the extracted raw EEG data.
Butterworth bandpass filter and SVM classifier have been
used for all methods except for SBLFB where LDA is used
for classification. For comparison the following experimen-
tal settings have been used for each of the methods:

e (CSP: A bandpass filter with 7-30 Hz passband has
been applied. The number of spatial filters m = 3 has
been used.

o (CSSP: Sample point delay 7 in the range of 1 to 15 has
been evaluated and the best value selected using 10-fold
cross validation. Bandpass filter is the same as in CSP.
The number of spatial filters 7 = 3 has been used.

e FBCSP: The experimental settings were adopted
from Higashi and Tanaka [35] (as these settings gave
optimal results), having 6 bandpass filters with 4—40 Hz
frequency range and bandwidth of 6 Hz (no overlap).
Mutual information based feature selection has been
performed as it gave the best results in [32]. The
number of spatial filters 7 = 3 has been used.

e DFBCSP: As in [36], we have used 12 bandpass
filters with a bandwidth of 4 Hz in the range of 6 to
40 Hz. The number of spatial filter m = 1 has been
used. Fisher’s ratio is used in DFBCSP (FR) and
mutual information in DFBCSP (MI) for band
selection, where the top 4 bands are selected.

e SFBCSP: 17 bandpass filters with a bandwidth of
4 Hz overlapping each other at a rate of 2 Hz was
adopted from [36]. The regularization parameter A
was determined using 10-fold cross validation.

e SBLFB: 17 bandpass filters in the frequency range of
4-40 Hz having bandwidth of 4 Hz with an overlap
of 2 Hz has been used, as used in [13]. The number
of spatial filters m = 1 has been used.

e Proposed approach: 12 bandpass filters with 4—-30 Hz
range having bandwidth of 4 Hz with 2 Hz overlap
(i.e. 4—8 Hz, 6-10 Hz, 8-12 Hz, ..., 26—-30 Hz) have
been used. The number of spatial filters selected for
these bands is m = 1. A 7-30 Hz wide bandpass filter
is used with CSP and CSSP feature extraction. The
number of spatial filter 7 = 3 has been used for the
wide band. The 4 most discriminating bands are
selected as we conducted several experiments on
different number of bands to be selected and using 4
bands produced good results.
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Table 6 Top 4 bands mostly selected by the proposed method using dataset 3

Subject BO103T B0203T B0303T B0403T

B0503T B0603T B0703T B0803T B0903T

Selected bands  8,9,13a,13b  1,3,4,13a 1,3,4,13a 3,4, 133, 13b

4,10,11,13a 3,4,5,13b 4,5 133, 13b 3,4, 133, 13b 4,10, 133 13b

Performance measures

The following performance measures have been used to
evaluate the performance of the proposed method in
comparison with other methods:

(a) Misclassification rate — the number of trials that are
being incorrectly classified with respect to the entire
trials.

(b)Cohen’s kappa coefficient (k) — statistical method to
assess the reliability of agreement between two
raters. K = pf_;f:, where p, is the expected percentage
chance of agreement and p,, is the actual percentage

of agreement.

Results

10 x 10-fold cross-validation is used to evaluate the per-
formance of all experiments conducted using dataset 1,
dataset 2 and dataset 3. The figure with + represents the
standard deviation.

Table 1, Table 2 and Table 3 shows the comparison of
the misclassification rate of the proposed method with
other competing methods in the literature. As can be
seen from the results in Table 1, Table 2 and Table 3, the
use of mutual information for band selection (DFBCSP-MI)
shows an improved performance of 1.17%, 1.30% and 1.67%
(for dataset 1, dataset 2 and dataset 3, respectively) com-
pared to that of the original DFBCSP approach where FR is
used for band selection. Our proposed method achieved the
lowest average misclassification rate on all the evaluated
datasets, reducing the misclassification rate by 5.15%, 2.62%,
5.82% and 5.41% (for dataset 1), 6.58%, 5.20%, 9.55% and
2.91% (for dataset 2), and 2.77%, 3.98%, 4.28% and 1.08%
(for dataset 3) compared to that of CSP, DFBCSP (FR),
SFBCSP and SBLEFB, respectively. For 3 out of 5 subjects, 3
out of 7 subjects and 4 out of 9 subjects (for dataset 1,
dataset 2 and dataset 3, respectively), our proposed method
obtained the lowest misclassification rate.

Cohen’s kappa coefficient is used to further validate
the reliability of the obtained results. The values obtained
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are given in Table 7, Table 8 and Table 9 for dataset 1,
dataset 2 and dataset 3, respectively. A larger value of the
kappa coefficient indicates a greater strength of agreement
while a lower kappa coefficient indicates that the agree-
ment is weak. As a rule of thumb, in [50] it is suggested
that kappa coefficients in the range of <0.20, 0.21-0.40,
0.41-0.60, 0.61-0.80 and 0.81-1.0 indicate poor, fair,
moderate, good and very good strengths, respectively.
Highest average kappa coefficient of 0.832 for dataset 1,
0.647 for dataset 2 and 0.620 for dataset 3 are obtained by
our proposed method indicating a very good strength of the
prediction of classes for dataset 1 and good prediction of
classes for dataset 2 and dataset 3. Subject av. of dataset 1,
subjects b and c¢ of dataset 2 and subjects B0203T and
B0303T of dataset 3 obtained the highest misclassification
rate and the lowest kappa coefficient. This may be due to
the signals being contaminated by noise or due to poor

recording of the signal that resulted in reducing the overall
average kappa coefficient. Subjects aa, al, aw and ay of
dataset 1, subjects d and e of dataset 2, and subjects
B0403T and BO503T of dataset 3 obtained high kappa coef-
ficients indicating very good strength of class prediction.

Discussion

In the results section, we have shown that the use of
mutual information for band selection gives improved
results over that of using FR of single channel band power.
We have also introduced a single wide band (7-30 Hz)
with CSP and CSSP feature extraction in our approach.
Table 4, Table 5 and Table 6 shows the top 4 bands that are
mostly selected (during 10 x 10-fold cross validation) for
each subject using the proposed method. The bands are
not listed in any particular order of the amount of discrim-
inant information it contains. Bands 1-12 corresponds to

Table 7 Cohen'’s kappa coefficient for different methods using dataset 1. The largest value for each subject is highlighted in bold

Subject CSP CSSP FBCSP DFBCSP (FR) DFBCSP (M) SFBCSP SBLFB Proposed
aa 0613 0.659 0.601 0.816 0.746 0.394 0.664 0810
al 0.927 0.940 0.970 0976 0.964 0917 0973 0.977
av 0426 0423 0.384 0.329 0450 0.389 0439 0.540
aw 0.800 0.837 0.837 0.906 0.934 0.743 0.889 0.936
ay 0.903 0.926 0.881 0.847 0.853 0.763 0.780 0.897
Average 0.734 0.757 0.735 0.775 0.789 0.641 0.749 0.832
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Table 8 Cohen'’s kappa coefficient for different methods using dataset 2. The largest value for each subject is highlighted in bold

Subject csp CSSP FBCSP DFBCSP (FR) DFBCSP (M) SFBCSP SBLFB Proposed
a 0.736 0.727 0618 0.664 0.712 0.652 0618 0.714
b 0.144 0.146 0.106 0.142 0.140 0.094 0.170 0.140
c 0.126 0.201 0.286 0.290 0.326 0.140 0.336 0.380
d 0.552 0.708 0.556 0.530 0.562 0410 0.770 0.868
e 0.640 0.639 0.720 0634 0.654 0.506 0.768 0.838
f 0.550 0.629 0.608 0.714 0.740 0.582 0.576 0.732
g 0.858 0.873 0.862 0.820 0.848 0.806 0.882 0.856
Average 0.515 0.560 0.537 0.542 0.569 0456 0.589 0.647

the 12 overlapping bands in the range of 4-30 Hz, while
bands 13a and 13b corresponds to the 7-30 Hz wide band
with CSP and CSSP feature extraction, respectively.

The introduced wide band is mostly selected in 4 out
of 5 subjects for dataset 1, 6 out of 7 subjects for dataset
2 and 9 out of 9 subjects for dataset 3. Therefore, it is
evident that introducing the wide band with CSP and
CSSP feature extraction methods did play an instrumen-
tal role in improving the performance of motor imagery
EEG signal classification. The selection of the wide band
means the wide band have more significant features
(features with larger mutual information values) that
help in distinguishing between the two classes of signals.
For subject b of dataset 2 where the wide band was not
selected, it can be noted that there is no change in the
misclassification rate and kappa coefficient comparing the
proposed method with that of DFBCSP (MI). This is
because the same bands were selected as in DFBCSP (MI),
which is due to the wide band having less significant
features compared to the 4 bands that were selected. On
the other hand, in comparison with DEBCSP (MI), subject
d of dataset 2 showed the largest reduction in the mis-
classification rate (15.30%) using the proposed method.
This is mainly due to the selection of the wide band with
CSSP features (13b) that contain more significant features
thus contributing to the improved performance. It should

be noted that Table 4, Table 5 and Table 6 only report the
bands that are selected most of the time during 10 x 10
fold cross validation, and does not mean that these bands
are selected all the time. This is the reason why some sub-
jects showed improved performance using the proposed
method compared to that of DFBCSP (MI) although the
wide band was not selected. For example, for subject aa of
dataset 1, improvement in the performance is noted using
the proposed method compared to that of DFBCSP (MI).
This is due to the facts that in some of the runs during the
10 x 10-fold cross validation, the wide bands were selected
and had accounted for the improvement. However, since
majority of the times the 4 bands selected for subject aa
of dataset 1 did not include the wide band it is not shown
in Table 1.

Our proposed method also outperformed the sparsity-
aware and CD-CSP-FDA methods that were evaluated
using dataset 1. Average misclassification rate of 12.36%
and 8.92% were reported (for sparsity-aware and CD-CSP-
FDA methods, respectively) while our proposed method
achieved an average misclassification rate of 8.32% (an
improvement of 4.04% and 0.60%, respectively) on the
same dataset. The improved performance of CD-CSP-
FDA was mainly due to the use of decimation filter that
was manually tuned for optimal performance for each
subject. The sparsity-aware method can be used for

Table 9 Cohen'’s kappa coefficient for different methods using dataset 3. The largest value for each subject is highlighted in bold

Subject csp CSSP FBCSP DFBCSP (FR) DFBCSP (MI) SFBCSP SBLFB Proposed
BO103T 0.526 0494 0.620 0.535 0.593 0470 0.565 0615
B0203T 0.180 0.141 0.088 0.185 0.113 0.145 0.185 0.168
B0303T 0.008 0.031 0018 0.010 0.073 0.100 0014 0.120
B0403T 0.988 0.988 0.965 0.985 0.988 0.993 0.983 0.988
B0503T 0.669 0.115 0430 0.500 0.578 0499 0.840 0810
B0603T 0.576 0.524 0513 0.583 0.605 0.598 0.590 0.640
B0703T 0.718 0.724 0.690 0.758 0.805 0.755 0.850 0.778
B0803T 0.766 0.710 0623 0.778 0.743 0.753 0.778 0.790
B0903T 0.655 0.655 0.583 0.555 0.675 0.500 0613 0.675
Average 0.565 0487 0.503 0.543 0.574 0.535 0.602 0.620
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learning the spatial filters, and the decimation filter can
be used for filtering the raw data in the proposed method,
which may further enhance the performance of the sys-
tem. Manual tuning of the filter bank is a time consuming
exercise and therefore optimization algorithms should be
employed to automatically tune the temporal filters.

Furthermore, band selection is carried out for selecting
the most discriminating filter banks that will result in
more separable features for improved classification per-
formance. The results in Fig. 4 show that our proposed
method can effectively find the most separable features
resulting in an improved performance in comparison
with other competing methods such as CSP, DFBCSP
(FR), and SBLFB. This confirms the usefulness of the pro-
posed method. SBLFB and the proposed method attained
further separable feature distributions than those of CSP
and DFBCSP.

As in [36], amongst the 14 bands (the 12 overlapping
bands and the wide band with CSP and CSSP features
considered separately) we have selected top-r bands in
the following manner. First we measured the mutual in-
formation for each of the 14 bands. Then we ranked the
14 bands according to its mutual information values.
Thereafter, we selected top-r bands for which the aver-
age error rate was minimum. We found that when r=4
the error rate was lowest and hence we selected 4 bands.
Figure 5 shows the error rate (for dataset 2) for each of
the subjects. In addition, the average error rate over all
the subjects is also depicted in Fig. 5. We achieved near
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optimal results using r = 4 bands for dataset 1 and data-
set 3 as well. Most of the subjects in dataset 2 (as shown
in Fig. 5) obtained low error rate using the top 4 bands
(except for subjects b and c). This suggests that selecting
number of bands influences the error rate. In addition,
band selection procedure also influences the computa-
tional complexity of the system.

To further analyse the correlation from the sub-bands,
we have carried out redundancy analysis of the top 4
bands that are selected. One band is removed from the
selected 4 bands and the performance in terms of the
misclassification rate using the remaining 3 bands is
evaluated. This procedure (of removing a band and com-
puting misclassification error of the 3 bands) is done for
all the 4 selected bands. Figure 6 shows the misclassifica-
tion rates of 3 out of 4 bands for one of the trial runs of
subject f (dataset 2). It can be observed that by removing
any band (out of the 4 selected bands) increases the
misclassification error rate. Particularly, the error rate
increased by 20%, 5%, 10% and 5% when removing
bands 13b, 13a, 4 and 3, respectively. This shows that
each of the 4 bands possesses significant information
and contributes towards the classification performance
of the system. Removing any single band deteriorates
the classification performance. Therefore, the bands do
not have overlapping information or in other words are
not redundant. Hence, we can say the correlations among
bands are not significant by showing this redundancy
analysis.
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(for dataset 2). Average misclassification rate using 4 bands is 17.66%
and using all the bands is 18.53%

CSP has become an effective method for extracting
features from motor imagery EEG signals for the purpose
of classification. As a number of studies have suggested
[13, 30, 32-34, 36, 40, 42, 51], sub-band optimization
leads to an improved performance of motor imagery EEG
based BCI systems. Accordingly, this study proposed an
improved method of band selection to find most separable
features utilizing the mutual information. In our work, we
have introduced a wide band (7-30 Hz) to the existing
overlapping sub-bands. This wide band is not the optimal
wide band, however, it gives overall good results and can
be adopted. For SBCSP, FBCSP, DFBCSP, SFBCSP, SBLFB,
and proposed method, the bands are pre-specified i.e. de-
termined empirically. To further improve the performance
of these methods, we need to adopt the method of
learning the filter band parameters (passband frequen-
cies and cutoff frequencies) automatically. This will
require the development of more sophisticated strategies
to further enhance the performance of BCI systems.
Furthermore, dimensionality reduction methods [52], and
other feature selection methods [53] can also be studied

35
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3,4,13a, 13b

3,4,13a 3,4,13b 3,13a,13b

Band combinations

4,13a,13b

Fig. 6 Misclassification rate (for different combinations of selected
sub-bands) for one of the trial runs for subject f of dataset 2
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to optimize the performance of the system using multiple-
filter bands.

Conclusions

This study introduced an improved DFBCSP method for
selecting the most discriminating filter bands that would
give most significant features for classification. Use of
mutual information of all available channel data proved
to be more effective in selecting the most significant
bands compared to using FR of single channels band power
as used by original DFBCSP approach. An additional wide
band of 7-30 Hz has been introduced to boost the per-
formance of the system and it is shown that the wide band
effectively plays a vital part in reducing the misclassification
rate. The proposed method outclassed all other state-of-
the-art methods achieving the lowest misclassification rate
with good overall prediction strength. Further improve-
ments may be achieved if sophisticated algorithms are
developed for automatically learning the filter band
parameters.
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