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Abstract

Background: In recent years, biological interaction networks have become the basis of some essential study and
achieved success in many applications. Some typical networks such as protein-protein interaction networks have
already been investigated systematically. However, little work has been available for the construction of gene

functional similarity networks so far. In this research, we will try to build a high reliable gene functional similarity

network to promote its further application.

Results: Here, we propose a novel method to construct and refine the gene functional similarity network. It mainly
contains three steps. First, we establish an integrated gene functional similarity networks based on different functional
similarity calculation methods. Then, we construct a referenced gene-gene association network based on the protein-
protein interaction networks. At last, we refine the spurious edges in the integrated gene functional similarity network
with the help of the referenced gene-gene association network. Experiment results indicate that the refined
gene functional similarity network (RGFSN) exhibits a scale-free, small world and modular architecture, with its
degrees fit best to power law distribution. In addition, we conduct protein complex prediction experiment for

human based on RGFSN and achieve an outstanding result, which implies it has high reliability and wide application

significance.

Conclusions: Our efforts are insightful for constructing and refining gene functional similarity networks, which can be

applied to build other high quality biological networks.

Keywords: Gene ontology, Topological similarity, Gene functional similarity network, Referenced gene association

network

Background

Most cellular components exert their functions through
interactions with other cellular components [1]. The de-
velopment of high-throughput measurement techniques
such as tandem affinity purification, two-hybrid assays
and mass spectrometry, has produced a large number of
data, which is the foundation of biological networks [2].
Biological interaction networks, such protein-protein
interaction network, gene regulatory networks, meta-
bolic networks have been well studied and systematically
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investigated [3]. These networks play important roles in
assembling molecular machines through mediating
many essential cellular activities [4]. PPI networks oc-
cupy a central position in cellular systems biology and
provide more opportunities in the exploration of protein
functions in various organism [5, 6].

In recent years, some researchers begin to pay their at-
tention to the similarity networks, such as miRNA simi-
larity networks [7-10], gene functional similarity
networks [11, 12]. Unlike the traditional interaction net-
works, similarity networks usually are constructed by
measuring the similarity between the nodes in the net-
works. Since the similarity between each pair of nodes
can be measured, these primary similarity networks usu-
ally are fully connected. For example, the construction

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1969-1&domain=pdf
mailto:guomaozu@bucea.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Tian et al. BMC Bioinformatics 2017, 18(Suppl 16):550

of gene functional similarity networks is by measuring
the sequence or ontology similarities between genes.
The construction of miRNA functional similarity net-
work is based on the functional similarity of two miR-
NAs, which can be inferred indirectly by means of their
target genes.

However, these fully connected similarity networks
have one serious drawback. They do not meet the char-
acteristics of biological network since they are fully con-
nected [13]. Many previous studies have observed that
biological networks are generally scale-free and their de-
gree distributions follow the power law or the lognormal
distribution [14—16]. From this point of view, we need
to prune the unreasonable edges in the fully connected
network. In the remainder of this section, we will first
review some threshold selection methods, which have
applied on gene functional similarity networks and
phenotype similarity networks. Then we will put forward
the proposed method.

Gene functional similarity networks have been widely
used in some fundamental research, such as protein-
protein interaction prediction, disease gene identification
and cellular localization prediction [11, 17-19]. Rui [11]
constructed a gene functional similarity network to infer
candidate disease genes on the genomic scale. The gene
functional similarity network almost covers twice num-
ber of genes in the traditional PPI networks, which can
enlarge the search range of candidate genes. However,
the constructed gene functional network only keeps 100
nearest neighbors for each gene. As is pointed by Tian
[20], this strategy is a very arbitrary for the selection of
gene similarity values. Afterwards, Li [17] constructed a
corresponding 5-NN network by means of keeping first
five nearest neighbors of genes in the fully connected se-
mantic similarity network. This method also has the
common shortcomings with method Rui [11]. Besides,
Elo [21] put forward a clustering coefficient-based
threshold selection method to select a proper threshold
for gene expression network. The similarity value below
the selected threshold will be set to zero. However, small
similarity in biological networks may be meaningful,
while large similarity may also be noise. Perkins [22] ap-
plied the spectral graph theory on gene co-expression
similarity networks for threshold selection. Perkins elab-
orated that applying a high-pass filter may remove some
biologically significant relationships. These methods
above always ignore the smaller similarity values, al-
though they are meaningful sometimes.

At the same time, the threshold selection problem for
the fully connected networks appears in other type of
similarity networks [23-26]. For example, Van [23] made
use of text mining method to classify over 5000 human
phenotypes in the Online Mendelian Inheritance data-
base and then constructed a fully connected phenotype
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similarity network. Li [24] employed the phenotype simi-
larity network to infer phenotype-gene relationship. The
authors only keep the first five nearest neighbors for
each phenotype in the phenotype similarity network and
obtain a 5-NN phenotype network. Later, Zhu et al. [25]
come up with a new diffusion-based method to prioritize
candidate disease genes. They believe that similarity
values of phenotypes below the cutoff 0.3 are uninforma-
tive. Therefore, they did not considered similarity values
below this selected threshold and set them to zero. Zou
[27] and Vanunu [26] also keep the edge values higher
than 0.3 in the phenotype similarity networks in their
experiments. As for the phenotype similarity networks,
the threshold selection has the same drawbacks with
gene functional similarity network.

Based on the analysis for each method above, we can
find that the threshold selection problem for the fully
connected network is necessary, which has a significant
effect on its applications. To the best of our knowledge,
current threshold selection strategies for the fully con-
nected networks are arbitrary or unreasonable. There-
fore, it is still a challenge problem that how to construct
a reliable gene functional similarity network.

In this article, we proposed a novel method to estab-
lish a high quality gene functional similarity network.
The contribution of our study is listed as follow.

e We construct an integrated gene functional similarity
network based on six different functional similarity
calculation methods.

e We built a referenced gene-gene association network
based on the PPI networks.

e To the best of our knowledge, this is the first
method that tries to refine gene functional
similarity network based on a referenced gene-
gene association network.

Methods

In this section, we will first introduce the experimental data
briefly. Then we construct the integrated gene functional
similarity network based on six functional similarity
methods. After that, we will employ similarity indices
between genes in PPI networks to construct nine gene
similarity networks and get the referenced gene-gene asso-
ciation network. In the end, we obtain the refined gene
functional similarity with the help of the referenced gene
association network. Figure 1 depicts the flowchart of the
proposed method.

Data sources

e Gene Ontology and Gene Ontology Annotation data
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We downloaded the Gene Ontology (GO) data from
the Gene Ontology database (dated July 2017) which
contains 46,929 ontology terms totally subdivided into
4295 cellular components, 30,572 biological process and
12,062 molecular function terms. Gene Ontology Anno-
tations (GOA) data for H. sapiens was downloaded from
the Gene Ontology database (dated July 2017).

e DProtein-protein interaction data

Firstly, we obtain the protein-protein interaction data
from human protein reference database (HPRD). HPRD
is a high reliable PPI database, which is a resource for
experimentally derived information about the human
proteome. HPRD totally contains 39,240 interaction re-
lationships relating 9617 proteins. Here, we select the
maximum clique of HPRD, which contains 36,900 inter-
action relationships and 9219 proteins.

ConsensusPathDB are downloaded from the Website
(http://consensuspathdb.org/). We selected three typical
PPI networks based on ConsensusPathDB [28], which
are Reactome, DIP and Biogrid. Specially, Biogrid con-
tains 15,400 genes and 21,468 interactions, while Reac-
tome contains 3332 genes and 19,604 interactions. As
for DIP, it contains 3239 genes and 15,964 interactions.
In this study, we will construct an integrated referenced
gene-gene association network based on the four PPI
networks above.

Construction of integrated gene functional similarity
network based on GO and GOA

As we know, GO has three types of ontologies: cellular
component (CC), molecular function (MF) and biological
process (BP), respectively. Functional similarity between
genes can be inferred from the semantic relationships of

their annotated GOs [29]. Here we measure gene func-
tional similarity using three types of ontology annotations
that contain Inferred Electronic Annotations (IEA).

Since one method may have error prone in measuring
functional similarity, the similarity here is calculated by
six different kinds of methods. They are Resnik [30],
Wang [31], GIC [32], SORA [33], WIS [34] and TopolC-
Sim [35] respectively. Method Resnik, Wang, and
TopoICSim are pair-wise approaches, while method
GIC, SORA and WIS are group-wise approaches. Be-
sides, with the help of online tools [36, 37], we can
measure the gene functional similarity efficiently. In this
article, ‘functional similarity’ refers to the similarity be-
tween genes, and ‘semantic similarity’ refers to the simi-
larity between two GO terms.

Suppose there are genes A and B, the functional similar-
ity between genes A and B can be measured from CC, MF
and BP ontologies. Therefore, the functional similarity of
gene A and Bis the integration of the three types of func-
tional similarity, which can be measured by Eq. (1).

MergedSim(A,B) = 1-3 f[( (1)

1-FunSim;(A, B))

n=1

FunSim,(A, B) (n =1, 2, 3) denotes the functional simi-
larity measure derived from CC, MF and BP similarity,
respectively.

As for method Resnik, Wang, GIC, SORA, WIS and
TopoICSim, their functional similarity results need to be
integrated. The integrated functional similarity between
genes A and B is calculated as follow:

, 18
Sim(A,B) =1 (1-MergedSim, (A, B)) (2)
=1

n
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where MergedSim,(A,B)(n=1, 2, 3,4,5,6) denotes the
functional similarity method derived from method
Resnik, Wang and GIC, SORA, WIS, TopolCSim,
respectively.

Applying this operation to all gene pairs, thus we con-
struct the integrated gene functional similarity network.
It is noteworthy that the integrated gene functional simi-
larity network is a fully connected network, which we
need to purify the spurious edges in it. The number of
genes in the integrated gene functional similarity net-
work and PPI network is the same.

Construction of the referenced gene-gene association
network

Here, we will construct a referenced gene-gene associ-
ation network based on four PPI networks In order to
maintain the unity of the number of genes, the genes in
Reactome, DIP and Biogrid are the same with that in
HPRD. We construct an integrated PPI network based
on Reactome, DIP and Biogrid data in ConsensusPathDB
and HPRD data. The construction process mainly has
three steps.

e Step one: construction of the weighted gene-gene as-
sociation network

We assess the reliability of protein-protein interactions
in the integrated PPI network by edge clustering coeffi-
cient (ECC). Edge clustering coefficient is such a meas-
ure, which can both evaluate the reliability of
interactions in PPI network and describe the association
strength of two proteins [38]. For an edge E, , connect-
ing genes x and y, the ECC of edge E, , is defined as.

()

ECC(x,y) = ‘min(d,~1,d,~1)

where z,, , represents the number of triangles that actu-
ally include the edge in the network. d,and d,are the de-
grees of genes x and y, respectively. min(d, - 1,d,-1)
denotes the number of triangles that contains the edge
E,, , at most. Obviously, the value of ECC(x,y) ranges
from 0 to 1. Each pair of protein-coding genes in the
integrated PPI network can be measured using Eq. (3),
and we can obtain a weighted gene-gene association
network.

e Step two: construction of gene topological
association networks

For each pair of genes x and yin weighted gene-gene
association network, a similarity score s,, is assigned to
weigh their topological similarity. As we know, a higher
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similarity score corresponds to a higher probability of
forming an association between two genes. Here, we de-
fine six similarity indices between two genes in the
weighted gene-gene association network, which have
been proposed by Yang [39]. They are the Weighted
Common Neighbors (WCN), Weighted Resource Allo-
cation (WRA) and Weighted Adamic-Adar (WAA) indi-
ces, as well as reliable-route weighted similarity indices
[40, 41]. The six similarity indices between genes x and y
are formulated as follows:
(1) Weighted Common Neighbors.

WCN
E Wyz + Wy

Z€l Ox)/

(2) Weighted Resource Allocation

WRA _ } :sz 1 Wy
S — —_—

2€0xy z

(3) Weighted Adamic-Adar(WAA)

SWAA _ Wyz + Wy
xy log(1 +s,)

2€0xy

(4) Reliable-route Weighted Common Neighbors

E Wiz Wey

2€0xy

s WCN

(5) Reliable-route Weighted Resource Allocation

rWRA __ Waz Wzy
§ — Txz Mzy
zZ
ze[)xy

(6) Reliable-route Weighted Adamic-Ada

rWAA Wiz Wzy
Z log(1+s;)

2€0yy

where O,,denotes the common neighbor set of genes
x andy, w,, represents the weight of the edge linking
genes x and y, s, denotes the sum of weights for
edges linking toz.

Then, we will define another three similarity indices.
Quasi-local similarity indices [42] not only consider the
local similarity of two nodes, but also take local paths
between them into account. Therefore, we define
weighted reliable local path similarity indices as the
similarity metric between unconnected genes x and y.
The weighted reliable local path similarity indices are
formulated as follows:

(7) Weighted reliable local path common neighbor
index
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rWCNLP
§ Wiz Wy + § Wam - Wimn Wy

2€0xy meT (x),nel (y)

(8) Weighted reliable local path Resource Allocation
index

Wiy - W.

WRALP xz Wazy

s;y = E 4 E Wi Winn - Wiy
Sz

2e0xy meT (x),nel (y)

(9) Weighted reliable local path Adamic-Adar index

§ Wxm - Winn ‘Wny

meT (x),nel (y)

rWAALP Wxz - Wazy
Z log(1 + sz)

where T'(x) denotes the neighbor set of gene x, « is a par-
ameter to adjust the contribution of length-3 paths. In
this research, we set a as 0.5 to balance the length-3
path.

Applying those nine similarity indices to all gene pairs,
we construct nine gene topological association networks,
respectively. The edge values in the topological gene as-
sociation networks denote the topological similarity be-
tween gene pairs.

e Step three: construction of the referenced gene-gene
association network

By means of integrating the similarity scores in the
nine gene topological association networks, we can ob-
tain an integrated gene topological association network,
whose edge weight is defined as.

9
w = E a;w;

i=1

where w; denotes the similarity score of gene pair in the
ith gene topological association network. a; is the pa-
rameters to weight the nine gene topological association
networks. a; was set as 1/9 to equally weigh the import-
ance of the nine gene topological association networks..

In this article, we call this integrated gene topological
association network as the referenced gene-gene associ-
ation network. The edge values in the referenced gene-
gene network denotes the topological similarities be-
tween gene pairs. The construction for the referenced
gene-gene association network is completed.

Threshold selection for the integrated gene functional
similarity network

Next, we will refine the integrated gene functional simi-
larity network based on the referenced gene-gene associ-
ation network. For any two genes A and B, their
similarity values in integrated gene functional similar-
ity network (IGFSN) and the referenced gene-gene
association network (RGAN) are represented as sim(A4,
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B)grsn and sim(A, B)rgan» respectively. The similarity
value between gene A and B in the refined gene func-
tional similarity network (RGFSN) is denoted as
sim(A, B)rgrsn» which can be calculated by Eq. (4).

sim(A, B) rgpsn =
if |sim(A, B);gpsy —sim(A, B)RGAN |
< 0.1Asim(A, B)RGAN 20

sim(A, B)IGFSN

0 others

(4)

Applying this operation to all gene pairs in the inte-
grated gene functional similarity network, we can obtain
the refined gene functional similarity network (RGFSN).
From the Eq. (4), we can find that if the difference of
similarity value between genes A and B in IGFSN and
RGAN is large, the similarity value of A and B in RGFSN
will be set to 0. In other words, the similarity value in
IGFSN is noise according to RGAN. In this way, we can
remove all the spurious edges in IGFSN.

What’s more, taking the depth-first traversal experi-
ment on RGFSN, we find that the refined gene func-
tional similarity network have some isolated genes. The
experiments results show that 8501 genes are formed
one cluster, while the other genes (264) are isolated from
this biggest connected component. As for this type of
genes, we decide to add one of their neighbors in the in-
tegrated gene functional similarity network, to make
RGFSN become one connected graph. At last, we can
obtain a connected refined gene functional similarity
network called RGFSN.

It is noteworthy that the small similarity value in inte-
grated gene functional similarity network can be re-
served based on our proposed method. Comparing with
other threshold selection methods which filer out all
edges with low similarity values, our method may be
more reasonable.

Results

In this section, we will firstly compare the distributions
of functional similarity values of different methods. Then
we investigate the relationship between functional simi-
larity values and protein proximity scores. After that, we
focus on the global topological properties and the degree
distribution of RGFSN. In the end, we conduct protein
complex prediction experiment based on RGESN, for
verifying its reliability and application significance.

The distribution of functional similarity based on different
methods

It is well accepted that gene functional similarity calcula-
tion methods used in this research have drawbacks [43].
For example, method Resnik has the ‘shallow annotation’



Tian et al. BMC Bioinformatics 2017, 18(Suppl 16):550

problem, while method Wang fixes the edge value of se-
mantics contributions [31]. As for method GIC, it simply
sums up the IC of terms when it measure the IC of a
term set. Therefore, we propose a method to integrate
the similarity results of the six methods to avoid the
shortage of single method.

We investigate the distribution of six functional
similarity methods and the integrated method. We
randomly select ten hundred pairs of genes and then
measure their functional similarity using method
Resnik, TopoICSim Wang, GIC, SORA and WIS. The
integrated functional similarity are computed by Eq.
(2). The distribution of functional similarity for the
four methods are shown in Fig. 2.

From the results, we can clearly find that the high-
est functional similarity for method Resnik, GIC, WIS
and SORA are not lager than 0.65, while the smallest
similarity for method Wang is larger than 0.4. Obvi-
ously, this does not meet human perspective. By con-
trast, the integrated results are relatively reasonable.
The highest and smallest functional similarity for in-
tegrated results are about 1.0 and 0.04, respectively.
As a result, it is necessary for us to integrate the re-
sults of functional similarity methods.

Relationship of functional similarity and proximity scores
Next, we use the length of the shortest path between
two genes in the integrated PPI network as their
proximity measure. We choose 100 pairs of genes for
each distance (one to five) and measure the functional
similarity of gene pairs. To demonstrate the relation-
ship between gene functional similarity scores and
protein proximity scores, we draw the violin plot,
which are shown in Fig. 3.

From the results, we can clearly find that gene pairs
with closer distance (lower proximity scores) will have
higher functional similarity scores. For example, the me-
dian functional similarity scores for distance one to five
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are 0.578, 0.519, 0492, 0.475 and 0.458, respectively.
The results indicates that the functional similarity scores
are closely consistent with protein proximity scores.
Therefore, we can construct a referenced gene-gene as-
sociation network based on integrated PPI network to
refine the gene functional similarity network. From this
point of view, the proposed method is reasonable.

Global topological properties of RGFSN

The biological networks usually have their specific topo-
logical characteristics. We analysis the topology attri-
butes of four networks based on Cytoscape 3.4 [44]. The
corresponding results are presented in Table 1.

From the results, we can find that the topological
properties of RGFSN meet the characteristics of bio-
logical networks, which are consistent with three other
biological networks. For example, the diameter of a net-
work refers to the longest distance between any two
nodes [45]. The diameter of RGFSN is 8, while the diam-
eters for HPRD, BioGRID and DIP networks are 14, 8
and 10, respectively. Besides, the cluster coefficient is a
measure of the local interconnectedness of the network,
whereas the path length is an indicator of its overall
connectedness [46]. For biological networks, the cluster
coefficient values are usually in the range 0.1 to 0.5 [47].
The cluster coefficients for HPRD, BioGRID, DIP,
RGESN are 0.102, 0.106, 0.098, and 0.118, respectively.
Overall, RGFSN well meets the topological properties of
biological networks.

Degree distribution of RGFSN

As is mentioned in previous section, many studies have
observed that biological networks are generally scale-
free. Their nodal degree distributions usually follow the
power law or lognormal distribution [13, 16] [48]. Here
we employ four different models to fit the distributions
of these four biological networks. These models are
Gaussian distribution, power law distribution, log-
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£ i ] | i
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Fig. 2 Distribution of functional similarity based on seven different methods. We can find that result for single gene functional similarity method
is bias, while the similarity values for the integrated method are distributed from 0 to 1 evenly
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normal distribution and exponential distribution. All
the fitting experiments are conducted on Origin 9.
The results are shown in Table 2. Besides, the graphic
view of the degree distributions for networks is
shown in Fig. 4.

The detailed parameters (P) of four fitting models
are listed in Table 2. The performances are evaluated
by R-squares (R*), which provides a measure of how
well the data fits a certain model. The results show
that RGFSN fits power law distribution best which is
followed by exponential distribution. The R* scores
for these two models are 0.9946 and 0.9816, respect-
ively. As for BioGRID network, it fits the power law
distribution best, while DIP and HPRD networks fit
the exponential distribution best. From the results
about the degree distributions, we can find that
RGESN has the typical characteristics of biological
networks, e.g. scale-free, small world, rather than that
of random network.

Table 1 Summary properties of four biological networks

Protein complex detection experiment

Protein complexes are groups of associated polypep-
tide chains whose malfunctions play a vital role.
Traditional methods predict protein complexes from
protein-protein interaction networks, while some
others are based on weighted association networks
[43]. Here, we employ CPL [49] algorithm to predict
protein complex based on RGFSN.

We verify the effectiveness and rationality of RGESN
by means of assessing the quality of predicted complex.
To evaluate the clustering result, we used the jaccard
score, which defined as follows:

|C1(ﬂCR|
MatchScore(K,R) = ———
( ) |C[(UCR|
where K is a predicted cluster and R is a reference
complex. Beside, we estimate the cumulative quality
of the cluster result and set the MachScore as 0.25

Property HPRD BioGRID DIP RGFSN
Number of nodes 9616 20,024 5176 8765
Number of edges 39,239 325377 22977 41,646
Cluster coefficient 0.102 0.106 0.098 0.118
Diameter 14 8 10 8
Radius 1 1 1 5
Centralization 0.027 0.102 0.054 0.028
Shortest paths 84,981,088 398,421,606 26,066,196 768,063,238
Characteristic path length 4.209 3306 3.986 4.158
Average number of neighbors 7.704 23.862 8.742 9.764
Density 0.001 0.001 0.002 0.001
Heterogeneity 1.889 2.347 1.778 1.020
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Table 2 Four fitting models of degree distribution for each network

Page 190 of 259

Distribution model p RGFSN BioGRID DIP HPRD

Gaussian distribution y =y, + %\/n/—z exp(#) Yo 426+1.04 2.85+1.09 456+ 0.88 703£1.72
Xc 780£0.03 1.54 +0.06 —-883+10.13 -095+1.12
w 4.18+0.08 151+291 336+0.18 365+ 206
A 768 +£0.07 -543+3.12 6.57+1.12 1.02£1.77
R? 0.7652 0.2695 0.9837 0.9822

Power law distribution y=a - x° a 6.64+1.03 3.86+0.035 1.29+£0.032 2.38+0.06
b 0.850+0.19 -1.04+0.01 -1.01+£003 -1.10+£0.03
R 0.9946 0.9945 0.9628 0.9623

Log-normal distribution y =y, + wx% exp(%ﬂ) Yo 489+ 196 303+£094 045+4.21 084+791
Xc 7.36+0.98 1.18+0.26 1.09£0.72 1.09 £0.69
w 069+0.10 0.82+0.26 1.12£0.69 1.09 £ 0.67

8.17+3.15 550+044 1.86+0.17 345+£032

R 0.6469 0.7691 0.6214 0.6205

Exponential distribution y =y, + A; exp(x/t;) Yo 6.68+132 1.30£0.15 1.55+£025 242+5.19
A 935+0.9 647 +£0.39 1.58£0.03 2.77+0.06
t 6.68 £0.78 1.70£0.11 2.96 £0.08 6.35+0.32
R’ 0.9816 0.9368 0.9881 0.9853

[50]. Assume a set of reference complex R ={Ry,R,,
R3, -+, R,} and a set of predicted complex P ={P;, P,,
P, -+, P,}, the recall, the precision and F-measure at

complex level are defined as follow.

Rec — |{R:|RicRAIP,€P, PjmatchR; }|

| {P/’PIEP/\RiER, RimatchP,-} |

Prec =
|P|
P 2*Prec*Rec
-measure = ———
Prec + Rec

A good prediction result should have higher accuracy,
recall and F-measure values. The evaluation metrics

IR| about the quality of predicted complex have been
4000 : : !
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Fig. 4 The graphic view of the degree distributions for each network
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Table 3 Results of protein complex prediction based on
different networks

Network Precision Recall F-measure
STRING 0213 0.268 0236
HumanNet 0.151 0.142 0.146
5NN-IGFSN 0.275 0223 0.246
RGFSN 0324 0347 0314

discussed in detail [50, 51]. In addition, the reference
complexes was downloaded from CORUM database
[52]. The number of reference complexes for human in
this database is 1850 (see Additional file 1).

We construct the 5NN network by keeping five near-
est neighbors for each gene in IGFSN, which is proposed
by Rui [11]. Here we call this network as the 5NN-
IGFSN network. To increase contrast, we conduct the
protein complex detection based 5NN-IGFSN with CPL
algorithm. Besides, we also conduct protein complex
prediction experiment based on HumanNet [53] and
STRING [54] networks.

We evaluate the performance of CPL algorithm on
STRING, HumanNet, 5NN-IGFSN and RGFSN accord-
ing to the evaluation metrics. The results have been
shown in Table 3. The precision, recall and F-measure of
CPL algorithm based on RGESN are 0.324, 0.347 and
0.314, respectively, while the results of precision, recall
and F-measure for 5NN-IGFSN is 0.275, 0.223 and
0.246, respectively. From this point of view, the best per-
formance in protein complex prediction indicates the re-
liability of RGFSN. The metric values for STRING and
HumanNet are relatively low. The precision, recall and
F-measure for STRING is 0.213, 0.268 and 0.236, re-
spectively, while the results for HumanNet is 0.151,
0.142 and 0.146. Since many genes of HumanNet are
not in CORUM database, its performance is worst.In the
end, we take three examples to demonstrate the pre-
dicted results. Three referenced complexes are named as
CNTEF-CNTFR-gp130-LIFR, NCOR-HDAC3 complex
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and 20S proteasome, respectively. At the same time, we
obtain three predicted complexes based on RGFSN
using CPL algorithm. These three predicted complexes
are shown in Fig. 5. The high overlap scores between
prediction complexes and reference complexes demon-
strate that RGESN is a reliable biological network. The
prediction results of CPL on RGFSN are presented (see
Additional file 2).

Discussion and conclusions

In this study, we proposed a novel method to construct
and refine the gene functional similarity network. Ex-
perimental results show that RGESN is reasonable and
effective. Thus, this method can be used to refine gene
functional similarity networks effectively. However, two
issues need to further study.

The construction of referenced gene association network
To refine the gene functional similarity network, we
have to construct a reliable referenced gene-gene associ-
ation network. This is the key point for the proposed
method. In this study, we construct the PPI network that
integrated four PPI data, which are DIP, Biogrid, Reac-
tome and HPRD. The integrated PPI network is reliable
and effective.

However, the integrated PPI network has itself short-
comings. It contains about 10,000 genes, which covers less
than half of human genes. In addition, the integrated PPI
network may be associated with false positives, although it
has integrated many PPI networks. Therefore, we have to
devote ourselves to seek other proper referenced network
to achieve desired results in the next research.

The verification of the refined gene functional similarity
network

How to verify the correctness and rationalization of
RGEFSN is a very challenging task. This is because there
is no direct ways to evaluate the quality of the refined
gene functional similarity network. In this research, we

PPP2R3A

|

LIFR

TBL1X

N

LIF

e

‘ TRAFS

Gt TBLIXR1

CNTFR / /
ZNF764

CNTF-CNTFR-gp130-LIFR complex

Fig. 5 The graph view of three selected predicted protein complex

GPS2

/ NFRKB

TH

LRP2BP

NCOR-HDAC3 complex

RPL29

PSMA7
TRIM23

|

PSMB7

7

PSMB2

N

PSMB1 PSMB3

WDR24

N

ZNF341

PSMA4

20S proteasome




Tian et al. BMC Bioinformatics 2017, 18(Suppl 16):550

verify the rationality and correctness of RGFSN by
means of investigating its topological properties and de-
gree distribution. In addition, we predict protein com-
plexes based on RGEFSN. The overall experimental
results indicate that RGFSN has the typical characteris-
tics of biological networks. We still need to seek other
effective methods to validate the rationality of RGFSN in

the next study.

Additional files

Additional file 1: CoreComplexes.xls is the referenced complex
downloaded from the CORUM database. (XLS 1637 kb)

Additional file 2: PredictedComplexxls is the prediction results of CPL
algorithm based on RGFSN. (XLS 622 kb)
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