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Abstract

Background: In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the
assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment
usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting
normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A
distribution of true gene counts, each with a different probability, can result in the same observed gene count.
Importantly, sequencing coverage information is currently not explicitly incorporated into any of the statistical models
used for RNA-Seq analysis.
Results: We developed a fast Bayesian method which uses the sequencing coverage information determined from
the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has
better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and
experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a
procedure for differential gene expression analysis with RNA-Seq data.
Conclusions: Our results suggest that our method can be used to overcome analytical bottlenecks in experiments
with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS
(Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS.

Keywords: RNA-Seq, Unreplicated experiments, Bayesian statistics, Differential gene expression, Sequencing
coverage, Illumina

Background
Large-scale mining of gene signatures that are signif-
icantly associated with specific phenotype classes is a
commonly desired outcome from transcriptome analy-
ses. RNA-sequencing (RNA-Seq) has become the tool
of choice for gene expression profiling, complementing
the traditional microarray in several important aspects:
it samples the transcriptome more thoroughly, detects
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isoforms, and works without prior knowledge of the
target transcriptome [1, 2]. Since the publication of the
first RNA-Seq paper [3], extensive interest in RNA-Seq
has resulted in the rapid development and deployment of
sequencing platforms such as 454, Illumina and Solexa.
These platforms naturally spurred concurrent develop-
ment of data processing and analysis methods to extract
biological meaning from RNA-Seq data.

A typical RNA-Seq data analysis begins with choos-
ing reads that pass quality control criteria, mapping them
to a reference genome, and then quantifying the gene
counts. After normalization, the resulting data matrix is
ready for statistical analysis, for which a bewildering num-
ber alternative methods are available [4, 5]. Regardless of
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whether these are parametric (e.g. DESeq [6], EdgeR [7],
DEGSeq [8], BaySeq [9]) or nonparametric (e.g. NOISeq
[10], SAMSeq [11]), in all of them the underlying assump-
tion is that the observed gene counts are adequate repre-
sentations of the actual true gene counts.

In genome sequencing, the ratio of total read length to
genome size provides a coverage measure that is impor-
tant for evaluating the completeness of an assembled
genome. Extending the concept of coverage for tran-
scriptome size is, however, not straightforward. Firstly,
transcriptome sizes vary between different tissue types
in the same organism, and even between cells of the same
tissue type [12]. Next, the relative proportions of mRNA
species between cells can be highly variable [13]. For
example, in genetically identical yeast cells, variation of
more than 800 copies of an mRNA species per cell has
been observed [14].

For accurate quantification of 95% of transcripts in a
human cell line, up to 700 million (M) reads are needed
[15]. In contrast, RNA-Seq experiments often produce
reads much less than 700M [16], low enough for stochas-
tic effects to have a large impact on an interpretation of
statistical analysis results. Without substantial decrease
in sequencing cost, researchers are often forced to pri-
oritize the increase in number of replicates over total
number of reads, since this is the best strategy to increase
statistical power for differential gene expression analy-
sis [17]. Several challenges then arise. Assuming perfect
read-mapping and quantification, it is unclear whether
observed gene counts are representative of the true gene
counts, since a large range of true gene counts could have
produced a particular observed gene count due to a strong
stochastic effect. Compounding the problem are biases
inherent in technical RNA-Seq library preparation and
sequencing [18], problems that are only recently receiving
serious attention [19].

We have developed CORNAS (COverage-dependent
RNA-Seq), a Bayesian method to infer the posterior dis-
tribution of a true gene count. The novelty of this method
is that it incorporates a coverage parameter determined
from RNA sample concentration. Subsequently, the com-
parison of posterior distributions of true gene counts
provides a basis for calling differentially expressed genes
(DEG). We report the application of CORNAS in unrepli-
cated RNA-Seq experiments and discuss the prospect of
its use in overcoming the analytical limitations of such
experiments.

Results
Definition of true gene count and sample coverage
We first define the true gene count as the total num-
ber of mRNA copies of a gene, in a sample prepared
for a sequencing run. This definition holds for a sample
containing single or multiple cells. This value cannot

be known with certainty solely from the observed gene
count, since the latter can, in principle, be derived from
multiple different true gene counts. However, informa-
tion about sample coverage can improve the process of
estimating the true gene count.

The coverage of a sample (b) is defined as the number of
cDNA fragments sequenced (S) divided by the total cDNA
fragment population size (N). Single-end sequencing pro-
duces one read to represent one cDNA sequenced, while
paired-end sequencing produces two reads to represent
one cDNA sequenced.

The calculation of sample coverage in the context of
the Illumina sequencing protocol can be based on mRNA
sample concentration. We reason that the amount of
cDNA produced at the step prior to PCR provides the
key to a reasonable estimate of sample coverage because:
1) the fragmentation step during sample library prepa-
ration causes homogeneity of the cDNA molecule sizes
(500 bp); 2) the volume and concentration after PCR is
known (40 μL of 200nM cDNA) and; 3) the number of
PCR cycles is known (14 cycles). The cDNA fragments
undergo PCR to improve the chance of getting at least a
sequencing coverage of one. Assuming perfect amplifi-
cation efficiency, each cDNA fragment is amplified 214

times during PCR. Thus, the number of cDNA fragments
prior to PCR is estimated as 4.818 × 1012/ 214 ≈ 300 M
(details in Additional file 1). We use this quantity as the
estimated total fragment population size to determine
coverage, since it most closely resembles the mRNA
amount we started off with.

Chance mechanism generating a Generalized Poisson
distribution for observed gene counts
When cDNA fragments are loaded into a sequencing run,
short reads are assumed to be generated randomly from
the loaded cDNA fragments. Thus, a true gene count
induces a probability distribution of observed gene count.
To find a probabilistic model that best describes the latter,
we made a series of simulations to determine the mean-
variance relationship of the observed gene counts under
six coverage values: 0.5, 0.4, 0.25, 0.1, 0.01 and 0.001.
These coverages were computed assuming that 150M,
120M, 75M, 30M, 3M and 0.3M reads were respectively
sequenced from a total fragment population size of 300M.
For each coverage, we generated an empirical distribution
of the observed counts for true count values ranging from
1 to 100,000 (details in the “Methods” section).

The simulation results provided three important obser-
vations: the mean of observed counts is proportional to
the coverage, underdispersion occurs (i.e. variance less
than mean) with increasing coverage (Additional file 1:
Figure S1), and a linear model adequately describes the
relationship between the mean-variance ratio and cover-
age (Eq. 6). These results suggest that the Generalized
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Poisson (GP) distribution [20] is suitable for modelling the
distribution of observed gene counts (X) given a true gene
count (T). The probability mass function of the GP with
parameters λ1 and λ2 is given by

P(X = x|T = k) = λ1(λ1 + xλ2)x−1e−(λ1+xλ2)

x!
, (1)

where x = 0, 1, 2, . . ., λ1 > 0, and |λ2| < 1. Its mean and
its variance are given by

E(X|T) = λ1/(1 − λ2) ,
Var(X|T) = E(X|T)/(1 − λ2)

2 ,

implying that λ2 = 1−√
m, where m is the mean-variance

ratio (0 < m < 4). The mean of the observed gene count
given the true gene count is proportional to the product
of the coverage b and the true count k, giving λ1 = bk

√
m.

The Poisson distribution with mean λ1 is a special case of
the GP when m = 1.

A Bayesian model for estimating true gene counts given
observed gene counts and sequencing coverage
The importance of the GP model in Eq. 1 stems from
the fact that reverse conditioning enables us to consider
the probability distribution of the true gene count (T)
given an observed gene count and sequencing coverage
(i.e. the posterior distribution of the true gene count). Let
us assume a uniform prior distribution for T over values
of 1, 2, . . .. Application of Bayes Theorem yields:

P(T = k|X = x) = P(X = x|T = k)
∞∑

j=x
P(X = x|T = j)

= k(bk
√

m + x(1 − √
m))x−1e−bk

√
m

∞∑
j=x

j(bj
√

m + x(1 − √
m))x−1e−bj

√
m

,

(2)

where k ≥ x. Note that although we used an improper
prior, the resulting posterior distribution is proper. Inter-
estingly, the gamma distribution provides a good approx-
imation to Eq. 2 (see [21] for mathematical proof). Here,
we found that the approximation is excellent if the mean
μ and the variance σ 2 of the gamma distribution relates
to the coverage b and the observed gene count x as
(Additional file 1: Figure S2):

μ ≈ x + 1
b

−
(

1 + 1
2b

)−1
; (3)

σ 2 ≈ x + 1
[b(b + 1)]2 . (4)

Thus the probability density of the approximating
gamma distribution is given by

f (k|x) = 1
�(α)βα

kα−1e−k/β , (5)

where k ≥ 0, α = μ2/σ 2 and β = σ 2/μ. The approxima-
tion provides a computationally efficient means to calcu-
late the cumulative distribution function of the posterior
distribution of the true gene count.

A statistical test for calling differentially expressed genes
in the case of unreplicated RNA-Seq experiments can be
based on the posterior distribution of the true gene count
(Eq. 2) as follows. For a single control and a single treat-
ment sample, if we have information about sequencing
coverage for the control sample (b0) and the treatment
sample (b1), then, given the observed gene count for the
control (x0) and the treatment (x1) group, the posterior
distribution of their true gene count is approximately
gamma (Eq. 5). We declare a gene to be differentially up-
regulated in the treatment group if the latter has a larger
posterior mean, and its 0.5th percentile is at least 1.5 fold
(default) larger than the 99.5th percentile of the control
group. Conversely, a gene is differentially down-regulated
in the treatment group if the latter has a smaller posterior
mean, and its 99.5th percentile is at least 1.5 fold (default)
smaller than the 0.5th percentile of the control group
(Fig. 1). This procedure is fast because the percentiles
of the gamma distribution are easily computed. Further-
more, declaring genes to be differentially expressed using
this procedure implies there is a 0.9952 ≈ 0.99 probabil-
ity that the true gene count in the two samples differ by at
least 1.5 fold.

Performance evaluation of CORNAS
We conducted a series of tests comparing the perfor-
mance of CORNAS against NOISeq [10] and GFOLD
[22] using both simulated and real data sets. We chose
GFOLD and NOISeq, because both have been reported
to return relatively small number of false positives among
the genes flagged as differentially expressed when applied
to unreplicated RNA-Seq data sets compared to other
popular methods such as DESeq2 and edgeR [5].

Test 1: detection of differentially expressed genes in
simulated true gene count data
We tested CORNAS using four coverages: 0.5, 0.25, 0.1
and 0.01, on simulated true gene counts ranging from
1 to 10,000. The relative frequency of calling differentially
expressed genes (DEG) was recorded in 100 indepen-
dent trials for the scenario of no-fold change (no effect),
1.5-fold change (weak effect) and 2-fold change (strong
effect) between control and treatment. The false positive
rate (FPR) was estimated as the DEG call rate in the
scenario of no-fold change. The true positive rate (TPR),
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a b c

Fig. 1 Illustration of how DEG calls are made in CORNAS. By default, the fold-change (φ) is 1.5. a A DEG, b Not a DEG, c Not a DEG

Fig. 2 DEG detection using simulated true count data. The Y-axis is the proportion of DEG called in 100 replicates. The X-axis is the true count of
Sample 1. Comparison is made against Sample 2, which either has the same (False positives), 1.5 times more (Weak signals), or 2 times more (Strong
signals) true counts. The numbers at the top left of each plot denotes the Y-axis maximum. The maximum true counts for false positive, weak signal
and strong signal conditions are 10,000, 6,666 and 5,000 respectively. CORNAS set1 refers to CORNAS with φ = 1, while CORNAS refers to the default
φ = 1.5
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or sensitivity, is the DEG call rate in the weak and strong
effect scenarios.

In general, we observed decreased false positives and
increased DEG call rates with increasing coverage and
increasing number of true gene counts (Fig. 2). Compared
to GFOLD and CORNAS default, NOISeq produced the
largest FPR when true gene counts are low. NOISeq’s sen-
sitivity is generally good except at low coverage of 0.01;
its DEG call rate begins to fall when true counts are
over 1,000. GFOLD showed very low sensitivity, which
is consistent with its conservative behaviour reported in
[5]. CORNAS showed excellent control of FPR and a
dependence on the fold change threshold for detecting
DEG under weak and strong signal scenarios. For exam-
ple, CORNAS default (φ = 1.5) performed very poorly
under the weak signal scenario, so that if the detection
of such genes is of interest then φ should be adjusted
to a lower value such as 1 (CORNAS set1). In general,
the sensitivity of CORNAS increases with larger true
count, and converges to 1 quickly for coverage values of
0.1 or more.

Test 2: compcodeR simulation
The distribution of observed gene counts is popularly
modelled using the negative binomial distribution, and
the compcodeR R package [23] provides a simulator for
simulating RNA-Seq count data based on this distribu-
tion. Gene lengths were assumed to be equal and set at
1000 bases. We used the example provided in [23] to
create a control-treatment comparison (five replicates in
each group) with 624 up-regulated genes and 625 down-
regulated genes in the control group for a simulated
transcriptome of 12,498 genes. From this data matrix, a
total of 25 unreplicated data sets were constructed. For
CORNAS, we evaluated the outcome of two different cov-
erages on the sample comparisons; one estimated at 10
times less than compcodeR coverage (CORNAS_10xless),
and another at 100 times less (CORNAS_100xless) (Sup-
porting Data). We made two separate NOISeq runs, one
without length normalization (NOISeq_nln), and another
using the trimmed mean of M-values normalization
(NOISeq_tmmnl).

Positive predictive value (PPV) and sensitivity were
low for all methods; nonetheless, CORNAS showed rela-
tively greater sensitivity than the other methods, whereas
GFOLD had relatively better PPV (Fig. 3a). The F-scores
for all methods were very similar (Table 1). CORNAS
called a larger DEG set size compared to other meth-
ods. Unlike NOISeq_nln, the larger DEG set size called
by CORNAS did not substantially reduce its PPV. Both
CORNAS_100xless and CORNAS_10xless showed simi-
lar performance.

Average runtimes for the comparisons were about
three minutes for NOISeq_nln and NOISeq_tmmnl,

a

b

c

Fig. 3 Scatterplots of PPV against sensitivity. The size of each dot is
proportional to the DEG set size. a compcodeR simulation, b Human
sex-specific gene expression, c Human tissue-specific gene expression
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Table 1 The mean F-score calculated for each method for Test 2,
Test 3 and Test 4 cases

Method F-score

Test 2

GFOLD 0.31

NOISeq_tmmnl 0.30

CORNAS_100xless 0.30

CORNAS_10xless 0.30

NOISeq_nln 0.28

Test 3

GFOLD 0.51

CORNAS 0.45

NOISeq 0.22

Test 4

CORNAS 0.36

GFOLD 0.31

NOISeq 0.19

one minute for GFOLD, and three seconds for COR-
NAS_10xless and CORNAS_100xless.

Test 3: human sex-specific gene expression
The evaluation of the applicability of CORNAS on real
data is based on the human lymphoblastoid cell RNA-Seq
data set from Pickrell’s study [24]. In this data set, male
and female gender constitute the two phenotype classes,
so the true DEG can be determined purely using biological
reasoning. The differentially expressed genes were iden-
tified as 19 genes with Y chromosome-related expression
[5]. Genes that are not differentially expressed on biolog-
ical grounds include 61 X-inactivated (XiE) genes [25, 26]
and 11 housekeeping genes [27].

We randomly chose 100 single female-single male pairs
from a total of 725 possible pairs (29 females, 25 males)
(Supporting Data), and compared the performance of
GFOLD, NOISeq and CORNAS. Our results indicated
that NOISeq performed poorly compared to CORNAS
and GFOLD, while GFOLD performed slightly better than
CORNAS (Fig. 3b, Table 1). However, similar to the comp-
codeR simulation result, CORNAS called larger DEG sets.

Average runtimes were about two minutes for NOISeq,
thirty seconds for GFOLD and ten seconds for CORNAS.

Test 4: coverage effects in tissue-specific gene expression data
The Marioni data set [28] consists of RNA-Seq data
from human liver and kidney sequenced at two different
loading concentrations, 3 pM (high) and 1.5 pM (low).
We investigated whether CORNAS would be misled
into making DEG calls simply on the basis of differing

concentration, when both samples are taken from the
same tissue. False positive rates were low in CORNAS,
with no DEG calls made for comparisons within the same
tissue samples with equal concentrations (Additional
file 1: Table S1). However, for samples with different
concentrations, GFOLD showed fewer false positives
than CORNAS. In all instances, NOISeq returned the
highest FPR.

A set of 4863 genes was identified to be uniquely
expressed in either human liver or kidney tissues cata-
loged in the tissue expression database, TISSUES [29].
Again, NOISeq performed poorly compared to CORNAS
and GFOLD, while CORNAS performed the best (Fig. 3c,
Table 1). For all 12 comparisons between different tissue
types, the largest DEG sets were called by CORNAS, and
the smallest ones by NOISeq.

Generally for different tissue types, the DEG sets called
by NOISeq and GFOLD showed poor overlap, compared
to overlaps between GFOLD and CORNAS, and between
NOISeq and CORNAS (Additional file 1: Figure S3).
CORNAS indicated more unique DEG calls for differ-
ent tissue types. At the same time, a large percentage of
DEG calls from GFOLD or NOISeq were also called by
CORNAS.

Average runtimes were about five minutes for NOISeq,
thirty seconds for GFOLD, and five seconds for CORNAS.

Effect of PCR amplification efficiency on sensitivity
While we assumed perfect PCR amplification efficiency
in building our model, we still evaluated the possible
effects of 95%, 90%, 85% and 80% PCR efficiencies on
the sensitivity and FPR of CORNAS (details in “Methods”
section). CORNAS appears to be robust to small viola-
tion of perfect PCR amplification efficiency, as we did not
find substantial changes to sensitivity and FPR even at
80% PCR efficiency. The area under the curve (AUC) of
the Receiver Operating Characteristic (ROC) graphs of all
four tested expected coverages had less than 5% difference
(Fig. 4 and Additional file 1: Figure S4).

Discussion
CORNAS as a framework for estimating the true gene count
The GP model is being increasingly studied as an alter-
native to the negative binomial distribution in RNA-Seq
count data modelling [30–33]. Here, we demonstrated a
chance mechanism that naturally gives rise to the GP as
a model for observed gene count data. By relating the
parameters of GP to the true gene count and sequencing
coverage using RNA sample concentration, we were thus
able to determine the posterior distribution of the true
gene count. This distribution forms the basis for making
DEG calls in unreplicated RNA-Seq experiments.

Currently, the mapped read depth over a gene model
of an organism is used to estimate coverage in RNA-Seq
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Fig. 4 The area under the curve (AUC) of Receiver Operating Characteristic (ROC) analysis for CORNAS runs on data simulated to have 100% 95%,
90%, 85% and 80% PCR amplification efficiencies. The Expected Coverages are the original coverage estimate at 100% PCR amplification efficiency
(0.5, 0.25, 0.1 and 0.01)

experiments. We know that the total amount of mRNA
in a sample is not captured in Illumina sequencers, which
have a fixed finite saturation amount that can over- or
under-represent sample concentrations. The coverage is
generally accepted as an under-representation, a limi-
tation that is usually thought to be rectifiable by deep
sequencing, which is used to detect genes that have very
low mRNA expression [15, 17, 34]. The range of our
coverage parameter (between 0 and 1) should cover most
practical cases where deep sequencing is not done. We
do not recommend the use of CORNAS if the estimated
coverage is more than one.

Our study made several assumptions to simplify the
model, and one of it is 100% efficient PCR amplification.
The effect of PCR amplification efficiency we simulated
does indicate that the sensitivity and FPR increases when
we over-estimate the coverages, but the change is not
detrimentally significant.

The assumption of ideal random cDNA fragment sam-
pling in the current work was made in order to keep the
observed count model (hence the posterior distribution)
sufficiently simple for us to study the effect of introducing
the coverage parameter into the DEG call procedure. Since
real RNA-Seq experiments contain library preparation
biases, the effect of such biases may be better explored by
full sequencing process simulators such as rlsim [35].

A potential source of variation in the observed gene
count that was not explicitly handled in our simulation
concerns the way different algorithms map the short reads
to a reference genome (e.g. using BWA [36], OSA [37],
TopHat [38] and Bowtie [39]), and how such mapped
reads are quantified (e.g. using HTSeq [40], and Cuf-
flinks [38]). We suggest that variation in the observed
gene count due to this source of variation is relatively
unimportant, and hence does not severely affect the pos-
terior distribution of the true gene count. Firstly, algo-
rithms that improve the quality of read alignment [41],
and thus minimize counting errors, are available. Fur-
thermore, combinations of read-mapper and gene count
quantification have been empirically studied, and optimal

recommendations are available to obtain the most reli-
able observed gene count (e.g. OSA + HTSeq as suggested
by [42]).

Robustness of CORNAS
CORNAS showed comparable performance as GFOLD
and NOISeq in the compcodeR simulation, despite being
based on a different data model for the observed gene
counts (i.e. Generalized Poisson vs. Negative Binomial).
This finding provides confidence in integrating the COR-
NAS framework into current RNA-Seq data analysis pro-
tocols. Furthermore, despite the fact that the coverages
were estimated, and thus subject to errors, both CORNAS
settings (10xless and 100xless) showed similar perfor-
mance on average. CORNAS struck a good compromise
between sensitivity, PPV and DEG set size compared to
GFOLD and NOISeq. In real world experiments, COR-
NAS can outperform competing methods when coverage
is more reliably ascertained, such as from the Marioni
dataset in Test 4.

Without incorporating information from the cover-
age parameter, traditional methods such as GFOLD and
NOISeq for analysing unreplicated RNA-Seq count data
are either too conservative, making very few calls but
most of which are true positives (GFOLD), or making rel-
atively more false positive calls (NOISeq) under very low
coverage scenario (e.g. b = 0.01) (Fig. 2). On the other
hand, we showed that CORNAS controlled the FPR well
and had high TPR when coverages are not too small (e.g.
b ≥ 0.1). Furthermore, if detection of weak fold change
difference is of interest, then the fold-change parameter
(φ) can be reduced from 1.5 to, say, 1.0 (details in the
“Methods” section). The TPR profiles of CORNAS at
fold-change parameter of 1.0 becomes similar to that of
NOISeq for weak and strong signals, except when cover-
age is very low. With increasing true gene count, CORNAS
continued to show a general increase in TPR, whereas
NOISeq showed decline.

At present, most RNA-Seq experiments do not report
an estimate of the actual amount of RNA in the starting
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material prior to sequencing. As a result, we could only
study the effect of correcting the observed gene count
using the posterior mean by simulations. Given the
encouraging results, researchers may wish to collect
information about the coverage parameter in the future
to take advantage of CORNAS in the analysis of real
RNA-Seq data sets.

A major problem in analysing unreplicated RNA-Seq
count data is the lack of effective normalization meth-
ods in the absence of biological replicates. Here, we have
shown that the Bayesian framework on which CORNAS
is based on, avoids the normalization problem by work-
ing with the posterior distribution of the gene’s true
count. As a result, transcript length information is not
required. This makes CORNAS suitable for organisms
with incomplete or evolving transcriptome reference data,
as new transcript information will not change how true
counts are estimated over time. Our results suggest that
CORNAS can be used as a means to overcome analyt-
ical bottlenecks in experiments with limited replicates
and low sequencing coverage leading to DEGs with bet-
ter prospects of downstream validation using platforms
such as quantitative PCR and NanoString nCounter [43].
The result of extending CORNAS to the case of multiple
replicates will be published elsewhere.

Conclusion
We have developed CORNAS (COverage-dependent
RNA-Seq), a fast Bayesian method that incorporates a
novel coverage parameter to estimate the posterior dis-
tribution of the true gene count. Under the CORNAS
framework, orthogonal information from sequence cover-
age that is determined from the concentration of an RNA
sample can be used to improve the accuracy of calling
DEG. Through simulations and analyses of real data sets,
we showed that the performance of CORNAS was com-
parable or superior to GFOLD and NOIseq in the case of
unreplicated RNA-Seq experiments.

Methods
CORNAS is implemented as an R program and is available
for download (https://github.com/joel-lzb/CORNAS).
Perl and R scripts for simulation and data analysis work
are available at https://github.com/joel-lzb/CORNAS_
Supporting_Data. We performed the in silico experiments
in IBM System x3650 M3 (2x6 core Xeon 5600) machines
with 96 GB RAM running on RedHat 6 operating system.
Graphs were drawn using ggplot in R [44].

Simulation of the fragment sampling process and the
relationship between coverage and mean/variance of
observed counts
Consider a population of N cDNA fragments of the same
length. In this study, we set N = 300 × 106 (300M).

We used the following numbers of sequenced reads (S):
150 M, 120 M, 75 M, 30 M, 3 M and 0.3 M for simulat-
ing coverages (S/N) of 0.5, 0.4, 0.25, 0.1, 0.01 and 0.001,
respectively.

To simulate the process of sampling from the cDNA
fragment population, we first indexed each of the N cDNA
molecule from 1 to N. Next, we used the Fisher-Yates
shuffle algorithm to shuffle the indices, creating a per-
mutation π = (π1, π2, . . . , πN ). The first S elements of
π represent the indices of sequenced fragments. For each
true gene count k from 1 to 100,000, we determined the
corresponding observed gene count as

X =
S∑

i=1
I(πi≤k),

where IA is the indicator function that takes value 1 when
the event A is true, and 0 otherwise. A total of 2000 iter-
ations were made, and the mean and the variance of the
observed gene counts were estimated from them.

Theoretically, the observed counts generated from this
process follow a hypergeometric distribution. Thus we
are able to calculate the ratio of the mean and vari-
ance (m) of the hypergeometric distribution for a given
coverage b as:

m = S(k/N)

S(k/N)((N − k)/N)((N − S)/(N − 1))

=
(

N
N − k

) (
N − 1
N − S

)

≈ N
N − S

= 1
1 − b

(6)

given N is very large (300M), k is very much smaller than
N (≤ 100K) and b = S/N . For sufficiently small b, m ≈
1 + b.

The sampling process naturally leads to a hypergeomet-
ric distribution of the observed counts because N is finite.
However, N is large and unknown in practice, hence the
need for an approximating distribution that does not have
an upper bound (see “Results” section on the GP model).

Modelling the posterior mean and the posterior variance
as functions of coverage
The posterior distribution of true count k for an observed
count x was determined as in Eq. 2. Then we identified
the relationship of both the mean and variance of the pos-
terior distribution with the coverage parameter. We first
modelled the mean and variance as linear functions such
that:

μ = x · Gm + Im ; σ 2 = x · Gs + Is,

https://github.com/joel-lzb/CORNAS
https://github.com/joel-lzb/CORNAS_Supporting_Data
https://github.com/joel-lzb/CORNAS_Supporting_Data
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where the parameters Gm and Gs are the gradients, and
Im and Is are the intercepts respectively. Then, we fitted
models for each of the parameters from simulations at var-
ious coverages (Additional file 1: Figure S2). Equations 3
and 4 are the final approximations to model the mean
and variance of the posterior distribution as a func-
tion of the observed gene count (x) and the sequencing
coverage (b).

Evaluation of CORNAS
Program settings
Two parameters need to be set in CORNAS. The first
one is α, which is used for determining the lower (1 −
α)/2 × 100th percentile (p(1−α)/2) and the upper (1 +
α)/2 × 100th percentile (p(1+α)/2). The second parame-
ter is the fold-change cut-off φ. To make a DEG call, we
require p+

(1−α)/2/p−
(1+α)/2 ≥ φ, where the superscript +

and − indicate the the posterior distribution with higher
and lower mean, respectively. The default settings are α =
0.99 and φ = 1.5. These values can be changed to make
CORNAS more conservative (e.g. increasing α and/or φ),
or more liberal (e.g. lowering α and/or φ).

NOISeq was run with a q=0.9 cut-off. GFOLD was
run with a 0.01 significance cut-off for fold changes. The
expression of a gene was considered up-regulated if the
GFOLD value was 1 or greater and down-regulated if
the GFOLD value was -1 or smaller.

Performance metrics
True positives (TP) are genes known to be differentially
expressed between two samples, and are detected as DEG
by the methods evaluated. False DEG calls are false pos-
itives (FP), while false negatives (FN) are missed true
DEG calls. For a DEG call method, its positive predic-
tive value (PPV) is the proportion of calls that are true
DEG (TP/(TP+FP)) and its sensitivity is the proportion
of true DEG that are called (TP/(TP+FN)). We consid-
ered sensitivity and PPV of each method jointly for Tests
2, 3 and 4. The F-score, which is the harmonic mean of
sensitivity and PPV, was calculated for each comparison
as 2 × (sensitivity × PPV)/(sensitivity + PPV). The mean
F-score per method was reported.

For Test 1, the false positive rate (FPR) is determined
from the no-fold change scenario as the true negatives
(TN) are explicitly known (FP/(FP+TN)) while the sensi-
tivity is calculated similarly as that in Tests 2, 3 and 4 from
the weak and strong effect scenarios.

Test 1: detection of differentially expressed genes in
simulated true gene count data
For this simulation, three scenarios of biological effects
were considered: no fold change (no effect), 1.5-fold
change (weak effect), 2-fold change (strong effect). The
maximum true counts considered under these three sce-
narios were 10,000, 6,666 and 5,000, respectively. We

assumed that each true gene count was emitted by a gene,
so that the set of all true gene counts under all three
scenarios corresponded to a total of 21,666 genes. The
observed counts for each gene was generated following
the procedure described in the simulation of the fragment
sampling process. A total of 100 iterations were made to
account for sampling variability in observed gene counts.
Where gene length information is required for a particular
method, we set it at 1000 bases.

Test 2: compcodeR simulation
We generated the simulated data set B_625_625 according
to the methodology described in the compcodeR paper
[23]. The number of DEG constituted 10% of the total
number of genes (12,498).

Test 3: human sex-specific gene expression
For the Pickrell study consisting of 29 females and
25 males from Nigeria, we used the number of total
sequenced reads from the published paper [24] and the
RNA-Seq count data from the ReCount database [45].
The sequencing coverage for each sample was calculated
as the number of total reads reported divided by the stan-
dard 300M cDNA fragment size. For samples with more
than one sequencing run, we took the average of the total
reads generated.

Test 4: coverage effects in tissue-specific gene expression data
In the Marioni data set, the same human liver and kid-
ney samples were sequenced in seven lanes each, with
five lanes loaded at an RNA concentration of 3 pM, and
another two with 1.5 pM. The 14 lanes were sequenced
in two separate runs. To reduce technical variation, we
used only data from run 2, where loadings with differ-
ent concentrations were run under the same conditions
and time. We estimated the number of cDNA fragments
representing the sample’s transcriptome as the product of
the loading concentration, the loading volume (assumed
as standard 120 μL), and the Avogadro constant 6.022 ×
1023mol−1. The set of true DEGs used was identified
based on curated information extracted from TISSUES
[29] on the 14th of June 2016. We selected 737 human kid-
ney genes and 4,126 human liver genes that have support-
ing experimental validation results and are identifiable
with Ensembl gene ID.

Effect of PCR amplification efficiency on sensitivity
The evaluation was conducted with the same dataset used
for Test 1. To simulate the effect of PCR amplification
efficiency in the study, we recalculated the sequencing
coverages for each CORNAS run by reducing the assumed
total number of fragments prior to PCR caused by dif-
ferent PCR amplification efficiencies (70%, 49%, 34%,
23% of total fragments for 95%, 90%, 85%, 80% amplifi-
cation efficiency respectively). Details on how the PCR
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amplification efficiencies were determined can be found
in the Additional file 1. For example, a sample that had
perfect amplification but had a sequencing coverage of
0.25 would have 300M fragments prior to PCR and 75M
reads produced. Supposed the reads produced remains
unchanged, but the PCR amplification efficiency is now
95%, the sequencing coverage estimated will then be 0.36
(75M / (300M × 0.7)). The new coverage is then used in
the 0.25 coverage CORNAS run with 95% PCR amplifica-
tion efficiency. For each coverage, the FPR were calculated
from the number of DEG called in the no effect scenario,
and the sensitivity was calculated from the DEG called
from the strong effect scenario. We generated the Receiver
Operating Characteristic (ROC) curves using the ROCR R
package [46]. The cut-offs for making a differential expres-
sion call were obtained by fixing α = 0.99 and then
varying φ from 1.5 to 0.75, and by fixing φ = 0.75 and
then varying α from 0.99 to 0.01.

Additional file

Additional file 1: Additional results referred in the main text. (PDF 569 kb)
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