
RESEARCH ARTICLE Open Access

Diverse effects of distance cutoff and
residue interval on the performance of
distance-dependent atom-pair potential in
protein structure prediction
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Abstract

Background: As one of the most successful knowledge-based energy functions, the distance-dependent atom-pair
potential is widely used in all aspects of protein structure prediction, including conformational search, model refinement,
and model assessment. During the last two decades, great efforts have been made to improve the reference state of the
potential, while other factors that also strongly affect the performance of the potential have been relatively less investigated.

Results: Based on different distance cutoffs (from 5 to 22 Å) and residue intervals (from 0 to 15) as well as six different
reference states, we constructed a series of distance-dependent atom-pair potentials and tested them on several groups of
structural decoy sets collected from diverse sources. A comprehensive investigation has been performed to clarify the effects
of distance cutoff and residue interval on the potential’s performance. Our results provide a new perspective as well as a
practical guidance for optimizing distance-dependent statistical potentials.

Conclusions: The optimal distance cutoff and residue interval are highly related with the reference state that the
potential is based on, the measurements of the potential’s performance, and the decoy sets that the potential is
applied to. The performance of distance-dependent statistical potential can be significantly improved when the best
statistical parameters for the specific application environment are adopted.

Keywords: Distance-dependent atom-pair potential, Protein structure prediction, Distance cutoff, Residue interval,
Reference state

Background
One of the major challenges in protein structure predic-
tion is to design accurate energy function that can
discriminate native or near-native structure from non-
native structures [1]. Especially in conformational search
[2–5], model refinement [6, 7] and model assessment
[8–12], energy function is always the primary issue to be
conquered. Although the detailed interactions of protein
atoms can be described by quantum mechanical equa-
tions [13, 14], the amount of computation for such kind
of macromolecule can easily go beyond the capability of
current computing resources. The common practice is

to approximate the interactions based on the classical
physics [15]. These energy functions generally contain
terms associated with bond lengths, bond angles, torsion
angles, van der Waals interactions, and electrostatic
interactions, which are often called physics-based energy
function [16, 17]. By virtue of the abundant structure
resources in Protein Data Bank [18], another category of
energy function (called knowledge-based energy function
[19, 20]) springs up and plays an increasingly important
role in protein structure prediction. So far the most
successful prediction methods are more or less based on
the knowledge-based energy function [21–24].
Any aspect of structural features which characterize

particular interactions in the folded proteins can be used
to derive knowledge-based energy functions, especially
those in pairwise form. The distance-dependent atom-
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pair potential [9, 25–29] is one of the most commonly
used pairwise energy functions, which characterizes the
distributions of pairwise distances between residue-
specific atom types in protein structures, and converts
them into energy based on the inverse of Boltzmann’s
law. Many distance-dependent atom-pair potentials have
been developed and widely used during the last two
decades, such as RAPDF [25], KBP [26], Dfire [27], Dope
[9], RW [29] and so on. Some potentials (e.g. dDFIRE
[30], RWplus [29], GOAP [31], ROTAS [32]) also com-
bine other energy terms for characterizing side-chain
orientation, angle distribution, solvent accessibility or
secondary structure preference, but the distance-
dependent terms still play the central role. In order to
develop more efficient distance-dependent atom-pair po-
tential, great efforts have been made to improve the ref-
erence state, which makes the reference state the major
difference between different potentials [33]. In fact,
Many other factors also strongly affect the performance
of distance-dependent atom-pair potential [34]. Distance
cutoff (interactions of atom pairs with distances larger
than the cutoff will be ignored) and residue interval
(only atom pairs from two residues with sequential inter-
vals equal or larger than the specified residue interval
are considered) are two important statistical parameters
for designing distance-dependent atom-pair potentials.
RAPDF chooses a relatively large distance cutoff of 20 Å
after testing four different values (5, 10, 15, and 20 Å)
on the same decoy sets. KBP and Dfire set the distance
cutoff to14.5 Å, whereas Dope and RW take distance
cutoffs of 15 and 15.5 Å, respectively. Despite its import-
ance, the distance cutoff was often determined without a
careful optimization in many potentials. Similar to the
situation of distance cutoff, the residue intervals in
different potentials are usually set to different values,
such as 1 (meaning that only atom-pairs within the same
residue are excluded from the statistics), 5, 10 and so on.
So far it is unclear what the optimal distance cutoff (or
residue interval) is, and how it is related to the reference
state and the decoy sets that the potential is applied to.
To specifically explore the effects of distance cutoff

and residue interval on the performance of distance-
dependent atom-pair potential, we constructed a series
of potentials with different distance cutoffs and residue
intervals as well as different reference states. All poten-
tials were tested on several groups of structural decoy
sets collected from diverse sources. We investigated the
performance variations of these potentials in native
recognition and decoy discrimination. We also explored
the preferences of optimal distance cutoff and residue
interval for different decoy sets and potentials with
different reference states. The evaluation results have
been compared with several widely used statistical po-
tentials. Moreover, we applied the potentials with other

residue intervals rather than used in potential construc-
tion, which yielded better performance in many cases.
The results and observations of this work provide new
insights and valuable references for determination of
distance cutoff and residue interval to optimize the
performance of distance-dependent atom-pair potential.

Methods
Distance-dependent atom-pair potentials with different
reference states
The distance-dependent atom-pair potential is derived by
counting the pair-wise distances of every two non-
hydrogen atoms in protein structures. With the assumption
that the distributions of structural features obtained from
protein structures obey the Boltzmann distribution of
statistical mechanics [19], the potential can be written as:

ui;j rð Þ ¼ −kBT ln
f OBSi;j rð Þ
f REFi;j rð Þ

" #

where kB and T are Boltzmann constant and Kelvin
temperature, respectively. f OBSi;j rð Þ is the observed prob-
ability of atom types i and j in a particular distance bin r
to r+Δr in native structures, which can be calculated

Table 1 Brief description of six reference states for distance-
dependent atom-pair potential

Reference statea Description

Averaging (ave-) Take the average distance distribution over
different atom types from experimental
conformations as the reference state, which
means the distance distributions for all types
of atom pair are identical in the reference
state [25].

Quasi-chemical
approximation (kbp-)

Use the overall distance distribution of atom
pair from experimental structures and calculate
the specific distance distribution of atom types
i and j based on the mole fraction (on the
whole dataset) of atom type i and j [26].

Finite ideal-gas (dfire-) Treat the reference state as finite ideal-gas that
probability of atom pair in a particular distance
bin increases in ra with a to-be-determined
constant a (a < 2) [27].

Spherical non-
interacting (dope-)

Treat the reference state as a sphere in which
all atoms of a protein evenly distributed
without ineraction. The size of sphere is
specifically decided by corresponding
experimental structure [9].

Random-walk chain
(rw-)

Treat the reference state as an ideal random-
walk chain of a rigid step length, which
mimics well the generic entropic elasticity
and inherent connectivity of polymer protein
molecules and yet ignores the atomic
interactions of amino acids [29].

Atom-shuffled (srs-) Generate a shuffled structure dataset by
preserving all atomic positions while shuffling
atom identities within each of the experimental
structures [28].

aThe abbreviation is given in parentheses
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from a non-redundant set of experimental structures.
f REFi;j rð Þ is the reference probability of atom types i and j
in the corresponding distance bin in the non-native
structures. Since such a structural database does not
exist for non-native structures, how to deal with the
reference state for calculating f REFi;j rð Þ is a critical issue in
designing potentials. We conducted our research on six
well-known reference states. The basic information of
these reference states are shown in Table 1 and more de-
tails can be found in our previous research article [33].

Potential construction with different distance cutoffs and
residue intervals
We constructed a series of distance-dependent atom-
pair potentials based on the aforementioned reference

states with different distance cutoffs and residue inter-
vals. A non-redundant structural dataset of 1762
proteins with pairwise sequence identity of <20%, reso-
lution of <1.6 Å and R-factor of <0.25 was obtained from
the PISCES webserver [35]. Proteins less than 50 resi-
dues or discontinuous in sequence in the original set
were already discarded.
All non-hydrogen atoms in each protein of the struc-

tural dataset have been considered for potential con-
struction, and the description of the atoms is residue
specific, for example, the Cα of lysine is different from
the Cα of leucine. Thus, a total of 167 atom types have
been defined. Since the amino acid sequence is asym-
metric (with C and N terminal), the atom pair i,j and j,i
were considered as different pairs and the total number
of atom pairs is 27,889. The atom-pair distance is
divided into different bins (0.5 Å in width) ranging from
3.0 Å to cutoff except for the first bin whose width is
3.0 Å. We implemented 18 distance cutoffs from 5.0 Å
to 22.0 Å with the spacing of 1.0 Å, so the numbers of
distance bins for potentials with different cutoffs ranged
from 5 to 39. We also implemented 16 residue intervals
from 0 to 15, where a residue interval of 0 means the
atom pairs within one residue or in different residues
with any sequential interval are all considered for poten-
tial construction. Eventually, we constructed 1728 (by
6 × 18 × 16) distance-dependent atom-pair potentials
with different reference states, distance cutoffs or

Fig. 1 The flowchart of our studies. Step 1. PDB dataset preparation; Step 2. Potential construction; Step 3. Potential application; Step 4.
Result analysis

Table 2 Basic information of the six groups of structural
decoy sets

Sets Name Number of sets Average lengtha Number of structures

I-TASSER 56 80 (47–118) 24,707

Moulder 20 174 (81–340) 6406

Rosetta 58 83 (50–146) 5858

3DRobot 200 133 (80–240) 60,200

CASP10 72 224 (24–587) 5805

CASP11 62 206 (37–462) 4522

Total/Ave 468 146 107,498
aThe length range is given in parentheses
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residue intervals. Figure 1 demonstrates the whole
process from dataset preparation to result analysis.
To verify the statistical validity of distance distributions

for all atom pairs, we checked the occurrence frequency
of each atom pairs for several extreme cases. Potentials
with distance cutoff of 5.0 Å and residue interval of 15
(abbreviated as P-5-15) are the ones most likely to
encounter the sparse data problem. Additional file 1:
Figure S1 shows that the minimum occurrence frequency
for P-5-15 is 12 (from the atom pair of SER-OG and
TRP-CA). Nearly 90% of atom pairs have more than 64
occurrences, which is sufficient for a potential with only 5
distance bins. Occurrence frequencies for potentials with
higher distance cutoff and residue interval increase
quickly (as shown in Additional file 1: Figure S1).
Moreover, the residue interval adopted in the potential

application is not necessarily the same as that have been
adopted for potential construction. To our surprise, we
found that adopting different residue intervals in poten-
tial application and construction sometimes resulted in
much better performance compared with adopting the
same residue intervals. Therefore, in this article we
tested all 16 residue intervals in every potential applica-
tion no matter which residue interval have been adopted
for potential construction. In this way, we can obtain 16

different energy scores when applying one potential to a
protein structure.

Protein structure decoy sets
We collected a large amount of protein structure decoy
sets to evaluate the potentials we constructed. These
decoy sets were generated by diverse methods and have
different characteristics (as shown in Table 2), which
composed a comprehensive environment for potential
application. The I-TASSER decoy sets [29] contain 56
non-redundant proteins whose structure decoys (300–
500 decoys for each protein) were generated by I-
TASSER Monte Carlo simulations and refined by GRO-
MACS4.0 MD simulation [36]. The Rosetta decoy sets
[37] were generated by Rosetta ab initio structure
prediction and each set includes 100 structure decoys (a
total of 5858 structures for 58 proteins). The Moulder
decoy sets [38] include 20 protein and their comparative
models generated by the homology-modeling tool
Modeller. The 3DRobot decoy sets were generated by
the fragment assembly method we previously developed
[39], which include 200 non-redundant proteins and a
total of 60,200 structures. The CASP10 and CASP11
decoy sets were directly downloaded from http://predic-
tioncenter.org. We removed the structures that are

Fig. 2 The variation of R1-num with the distance cutoff and residue interval for potentials based on different reference states. R1-num refers to
the number of decoy sets whose native structure is given the lowest energy score by the potential. a. aveREF. b. kpbREF. c. dfireREF. d. dopeREF.
e. rwREF. f. srsREF
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sequentially non-consecutive (the entire set will be re-
moved if the experimental structure is non-consecutive
in sequence) or shorter than the corresponding experi-
mental structure. Furthermore, we trimmed all predicted
structures to keep them identical in sequence to the
experimental structure. The final decoy sets from
CASP10 and CASP11 contain 72 proteins (a total of
5805 structures) and 62 proteins (a total of 4522 struc-
tures), respectively.

Performance measures
The performance of all potentials is evaluated by two
categories of measurement. The first one (R1-num and
Z-score) aimed to evaluate the ability of recognizing
native (experimental) structure within a structural decoy
set. R1-num refers to the number of decoy sets whose
native structure is given the lowest energy score by the
potential. Z-score is defined as (<Edecoy> − Enative)/δ,
where Enativeis the energy score of the native structure,
and <Edecoy> and δpresent the average score over all
structural decoys and the standard deviation respect-
ively. Therefore, the higher the Z-score is, the better is
the ability of native recognition. The second category of
measurement aimed to evaluate the ability of

distinguishing near-native structures from non-native
ones. In this paper, we calculated the Pearson’s correl-
ation coefficient (PCC) between the energy score and
TM-score [40] of all structures in the set, including the
native structure.

Results and discussion
Overview of the performance variation of potentials
We constructed 1728 distance-dependent atom-pair
potentials by different reference states, distance cut-
offs and residue intervals, and applied them to 468
protein structure decoy sets collected from different
sources. The results show that the choices of distance
cutoff and residue interval have significant effects on
the performance of the distance-dependent atom-pair
potential. Here, we summarized the overall perfor-
mances of these potentials in native recognition and
decoy discrimination.
Figure 2 shows the variation of R1-num with distance

cutoff and residue interval for potentials based on differ-
ent reference states. Both distance cutoff and residue
interval exhibit significant impacts on the value of R1-
num that the potential could achieve. Generally, the
shorter the distance cutoff, the higher the achieved value

Fig. 3 The variation of average PCC between energy score and TM-score with the distance cutoff and residue interval for potentials based on
different reference states. PCC refers to Pearson’s correlation coefficient. Since lower energy score (higher TM-score) is desired, the value of PCC is
usually negative, the lower the better. a. aveREF. b. kpbREF. c. dfireREF. d. dopeREF. e. rwREF. f. srsREF
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of R1-num, and the highest values are all located at the
left margin. The effects of the residue intervals are more
related with the reference states. For a given distance
cutoff of 5, the best residue intervals range from 4 to 15
for aveREF, dopeREF and srsREF, but are about 5 for
kbpREF and about 2 for dfireREF and rwREF. Similar
variation trends can be observed in the Z-score plot
(Additional file 1: Figure S2). Figure 2 also demonstrates
that aveREF outperforms other ones in native recogni-
tion, as aveREF recognizes 80% of the native structures
(378 out of 468) when adopting the best distance cutoff
and residue interval. The second-best potential is srsREF,
but its performance is much more sensitive to the choices
of distance cutoff and residue interval, which caused R1-
num values in a range from 11 to 361. The performances
of dfireREF and rwREF are quite similar, and the best R1-
num values they can achieve are 285 and 294, respectively.
The relatively worst performance in native recognition has
dopeREF, which is also most sensitive to the choices of
distance cutoff and residue interval.

Interestingly, the results of decoy discrimination
dramatically differ from those of native recognition. As
shown in Fig. 3, the best average PCC values (over all
468 decoy sets) between energy score and TM-score
(negative value, the lower the better) are located in
different regions of the contour figures for potentials
based on different reference states. aveREF achieves the
best average PCCs when both the distance cutoff and
residue interval are relatively large. kbpREF prefers
medium values of distance cutoff and residue interval,
and its best performance region (the average PCCs are
larger than −0.59 except for the four corners of the
contour figure) is much broader than potentials based
on other reference states. The variation pattern of aver-
age PCCs for dfireREF and rwREF is also very similar
and resembles that shown in Fig. 2. They are both par-
ticularly sensitive to the choices of distance cutoff and
residue interval. The best average PCC values they can
achieve are −0.65 and −0.66, respectively (by a distance
cutoff of about 18 and a residue interval of about 3), but

Fig. 4 The variation of average R1-num (over all 16 residue intervals) with distance cutoff for the six groups of decoy sets. R1-num refers to the
number of decoy sets whose native structure is given the lowest energy score by the potential. a. I-TASSER decoy set. b. Moulder decoy sets. c.
Rosetta decoy sets. d. 3DRobot decoy sets. e. CASP10 decoy sets. f. CASP11 decoy sets
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the worst values are around zero (by a distance cutoff of
about 10 and a residue interval larger than 6), corre-
sponding to a total inability to distinguish near-native
structure from non-native ones. The potential dopeREF
achieves the best average PCC values by a distance
cutoff of about 6 and a residue interval larger than 4.
This is also the only category of potential whose best
values of R1-num and average PCC occur in the same
region of the contour figure. The potential srsREF shows
the best performance by a distance cutoff larger than 16
and a residue interval of about 2. It performs worse
when both the distance cutoff and residue interval are
relatively larger. In general, the best choices of distance
cutoff and residue interval vary sharply with the refer-
ence states and measurements. Especially, there is an
obvious contradiction in the choice of the distance
cutoff to achieve the best R1-num as well as the best
average PCC values.

The potential’s performance on different decoy sets
In the above section we demonstrated the general results
on all decoy sets. In fact, the best choices of distance
cutoff and residue interval vary greatly among different
decoy sets, especially when evaluating the ability of
native recognition. Figure 4 shows how the average R1-
num (over all 16 residue intervals) change with the
distance cutoff for the six groups of decoy sets. It is
obvious that the highest average R1-num for the I-
TASSER, Moulder and 3DRobot decoy sets are all from
the potentials with the shortest distance cutoff. However,

the distance cutoffs are no longer the shorter the better
for the Rosetta and CASP decoy sets. This suggests that
the short distance atomic interactions in different decoy
sets have different degrees of impact on native recogni-
tion. We calculated the MolProbity scores [41] for de-
coys from the Rosetta and 3DRobot decoy sets (Typical
examples are shown in Fig. 5). The results imply that the
local structural qualities of decoys from these two decoy
sets are at different levels comparing to the qualities of
their native structures. The MolProbity scores for decoys
from the 3DRobot decoy sets are generally lower than
the scores of their native structures, which explains why
their short distance atomic interactions (highly related
with the local structural qualities) play a more important
role in native recognition. On the whole, the distance
cutoffs for the best R1-num are commonly in the short
side of the given range, which actually means that the
inclusion of atomic interactions of larger distances
usually introduces more noises than helpful information.
Figure 6 shows how the average R1-num (over all 18

distance cutoffs) vary with residue interval for the differ-
ent decoy sets. The average R1-num for the I-TASSER
and Moulder decoy sets increase rapidly with the de-
crease of residue interval, and the best performance is
achieved by a residue interval of 0. This clearly indicates
that the local structure quality (including the conforma-
tions of single residues) of decoys from I-TASSER and
Moulder is relatively poor, which renders the local
atomic interactions especially helpful for telling the
native structure apart from decoys. The results of the

Fig. 5 The distribution of MolProbity score from two typical decoy sets. a 1ail decoy set from Rosetta decoy sets; b 1PSRA decoy set from
3DRbot decoy sets. The native structure is highlighted by open circles
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3DRobot decoy sets show that the best performance
potentials are these with a residue interval of around 4,
and the worst performance potentials are those with a
residue interval of 1. The performance of potentials with
a residue interval of 0 are clearly better than that with a
residue interval of 1, which implies that the quality of a
single residue of 3DRobot decoys are still somewhat
worse than that of the native structures. Along the same
line of analysis, the results of the Rosetta and CASP
decoy sets suggest that their local structure qualities are
pretty good, at least much better than those of the
I-TASSER and Moulder decoy sets. Regarding the CASP
decoy sets, the inclusion of atomic interactions within
single residue greatly weakens the potential’s perform-
ance, which implies that decoys with high quality of resi-
due conformation (or side-chain packing) exist in the
sets. We used the functional module of residue analysis
in MolProbity [41] to perform the residue-by-residue
validation on the I-TASSER and CASP11 decoy sets.
Additional file 1: Figure S3 shows that the lowest

numbers of residue outlier in CASP11 decoys are com-
monly lower than those of their native structures, while
the opposite occurs in I-TASSER decoy sets. In fact, we
also estimated the difficulty of a decoy set for native rec-
ognition by counting the number of potentials that con-
fer the lowest energy on the native structure. As shown
in Fig. 7, the number of potentials that can recognize na-
tive structure from I-TASSER decoys are much larger
than those from CASP11 decoys. There is no decoy set
from I-TASSER whose native structure cannot be recog-
nized, while three native structures from CASP11 sets
(T0838, T0773 and T0769) are recognized by no poten-
tial and eight native structures can only be recognized
by less than 2% of potentials.
As shown in Additional file 1: Figure S4, short distance

cutoffs are never good choices for potentials to achieve
more significant PCCs between energies and TM-score,
which is a general observation on all six groups of decoy
sets. But the effects of the residue interval vary signifi-
cantly with different decoy sets (see Additional file 1:

Fig. 6 The variation of average R1-num (over all 18 distance cutoff) with residue interval for the six groups of decoy sets. R1-num refers to the
number of decoy sets whose native structure is given the lowest energy score by the potential. a. I-TASSER decoy set. b. Moulder decoy sets. c.
Rosetta decoy sets. d. 3DRobot decoy sets. e. CASP10 decoy sets. f. CASP11 decoy sets
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Figure S5). For the I-TASSER and Moulder decoy sets,
the lower residue intervals yield more significant PCCs,
which suggests that decoys with worse backbone struc-
ture also have bad local atomic interactions. On the
contrary, the local atomic interactions of decoys from
the Rosetta and CASP decoy sets do not help discrimin-
ate decoys with different backbone qualities. As shown
in Fig. 8, the PCCs of the 3DRobot and Moulder decoy
sets are much more significant than those of other decoy
sets, which is highly related with their great diversity of
structural topology.

Comparison with the existing statistical potentials
Table 3 shows the performance comparisons between
the potentials we built and several widely used statistical
potentials. Dfire and RW are purely distance-dependent
atom-pair potentials, and GOAP is a generalized all-
atom statistical potential which includes both distance-
dependent and orientation-dependent energy terms. We
compared their performances with those of two specific
potentials (ave-6-6 and rw-17-3) whose overall perfor-
mances in native recognition and decoy discrimination
are the best respectively. The potential ave.-6-6 success-
fully recognizes 378 native structures out of 468 decoy
sets. This is a significantly larger amount of recognized
structures than those the three existing statistical poten-
tials can recognize (134, 123 and 281 respectively).
However, the performance of ave.-6-6 in decoy discrim-
ination are clearly worse than those of the existing
potentials, especially for the I-TASSER and CASP decoy
sets. In contrast, the potential rw-17-3 performs well in
decoy discrimination, but relatively poorly in native
recognition. Although the overall results of rw-17-3 are
better than those of Dfire and RW, it cannot be
compared with GOAP. Due to the relatively poor per-
formance on Rosetta and 3DRobot decoy sets, the
average PCC of rw-17-3 (−0.66) is slightly weaker than
that of GOAP (−0.68).
The last column of Table 3 shows the best results from

the 1728 potentials. We can see that the majority of
them are much better than those from the existing
potentials including GOAP. Nevertheless, for different

Fig. 7 The number of potentials that can recognize the native structure for each set from I-TASSER and CASP11 decoy sets. There are 288 (18 dis-
tance cutoffs × 16 residue intervals) potentials on each reference state, and 1728 (288 × 6 reference states) potentials in total

Fig. 8 The distribution of PCC between energy score and TM-score
from 1728 potentials for the six groups of decoy sets. The bin width
of PCC (Pearson’s correlation coefficient) for statistic is 0.1
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decoy sets and measurements, the best results are also
obtained from different potentials (given in parentheses).
All native structures from I-the TASSER and Moulder
decoy sets are successfully recognized respectively by 6
and 89 potentials with a residue interval of 0 or 1. The
14 potentials that recognizes 49 native structures from
CASP11 decoy sets are all based on the averaging
reference state with a distance cutoff around 9 Å and a
residue interval from 6 to13.

Applying the potentials with different residue intervals
Generally, the same residue interval is used in both po-
tential construction and application, which does not ne-
cessarily represent the best choice. We applied all 1728
potentials by 16 different residue intervals, regardless of
what residue interval has been used to construct the
potential. Figure 9 shows the results averaged over
potentials of different distance cutoffs and reference
states. The left panel (Fig. 9a) shows the variation of
average PCC between TM-score and potential energies

with different residue intervals. For potentials built by
low residue intervals (e.g., ≤3), the performances do not
vary much when being applied with different residue in-
tervals. However, it is clearly better to adopt lower resi-
due intervals when applying potentials built by higher
residue intervals. Figure 9b shows the results of native
recognition, which indicates that lower residue intervals
are always better than higher ones, no matter by what
residue interval the potential has been constructed.
These results actually give us a special insight into how
the potential’s performance can be improved. However,
it should be noted that Fig. 9 shows only the overall re-
sults on all potentials and decoy sets, and the perform-
ance variation for a specific potential and decoy set may
deviate greatly from the overall distribution.

Conclusions
In this paper, we conducted a comprehensive study on
the effects of distance cutoff and residue interval on the
performance of distance-dependent atom-pair potential.

Table 3 Performance comparisons between the potentials we built and several widely-used statistical potentials

Decoy sets Measurements Dfire RW GOAP ave-6-6d rw-17-3e Bestf

I-TASSER R1-numa 43 53 45 42 41 56 (6)

Z-scoreb 2.80 4.42 4.98 2.42 2.97 11.21 (dope-5-0)

PCCc −0.47 −0.50 −0.50 −0.09 −0.51 −0.55 (rw-15/16–0)

Moulder R1-num 18 19 19 19 19 20 (89)

Z-score 2.67 2.78 3.48 2.97 2.75 8.17 (rw-8-0)

PCC −0.84 −0.83 −0.88 −0.52 −0.88 −0.89 (rw-16-2)

Rosetta R1-num 22 20 45 41 18 48 (ave-8-14, srs-6-8)

Z-score 1.55 1.48 3.38 3.11 1.46 3.56 (srs-6-7)

PCC −0.37 −0.36 −0.51 −0.31 −0.36 −0.45 (srs-6-13/15)

3DRobot R1-num 1 0 94 176 19 184 (ave-5-5/6)

Z-score 0.83 −0.30 1.85 3.19 1.16 3.50 (ave-5-5)

PCC −0.86 −0.85 −0.90 −0.70 −0.86 −0.88 (ave-19/20/21–5)

CASP10 R1-num 26 16 41 53 31 55 (ave-7-6/7/8)

Z-score 0.76 0.86 1.60 1.34 1.31 1.70 (dope-6-10/11/12)

PCC −0.40 −0.41 −0.53 −0.22 −0.54 −0.56 (rw-18-3, rw-19-4)

CASP11 R1-num 24 15 37 47 33 49 (14)

Z-score 0.82 1.01 1.91 1.37 1.50 1.72 (dope-6-11)

PCC −0.36 −0.40 −0.54 −0.23 −0.52 −0.52 (rw-17-3)

Total/Average R1-num 134 123 281 378 161 378 (ave-6-6)

Z-score 1.20 0.95 2.40 2.55 1.55 2.66 (dope-5-5)

PCC −0.60 −0.61 −0.68 −0.43 −0.66 −0.66 (rw-17/18–3)
aThe number of decoy sets whose native structure is given the lowest energy score by the potential
bDefined as (<Edecoy> − Enative)/δ, where Enativeis the energy score of native structure, <Edecoy> and δare respectively the average and the standard deviation of
energy scores of structural decoys
cThe average Pearson’s correlation coefficient between the energy score and TM-score of all structures in each decoy set, including the native structure
dThe potential based on the averaging reference state with both distance cutoff and residue interval to be 6
eThe potential based on the random-walk chain reference state with distance cutoff = 17 and residue interval = 3
fThe best values among the results of all 1728 potentials with different reference states, distance cutoffs and residue intervals. The corresponding potentials that
achieve this values are given in parentheses (e.g. rw-15/16–0 means the potentials rw-15–0 and rw-16-0). Only the number of potentials is given in parentheses if
more than 3 potentials can achieve the best value
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Hundreds of distance-dependent atom-pair potentials
with different distance cutoffs and residue intervals have
been constructed based on the same PDB dataset and
programming environment. By comparing and analyzing
their performances on six groups of decoy sets, we
found that the optimal distance cutoff and residue inter-
val are highly related with the reference state that the
potential is based on, the measurements of the poten-
tial’s performance, and the decoy sets that the potential
is applied to. The main findings of this research can be
summarized as follows:

(a)There are no universally optimal distance cutoff and
residue interval for potentials based on different
reference states.

(b)The potential’s abilities of native recognition and
decoy discrimination cannot be optimized
simultaneously with the same distance cutoff. The
best distance cutoffs for native recognition are
generally shorter than those for decoy
discrimination.

(c)The best choices of distance cutoff and residue
interval vary greatly with the specific application
environments (decoy spaces). In particular, when the
local structural qualities of decoys are evidently
inferior to those of the native structures, the
potentials with shorter distance cutoff or lower
residue interval can usually outperform other
potentials.

(d)Potential’s performance can be further improved by
applying the potential with a different residue
interval than the one used for potential construction

These conclusions provide basic guidance for the
optimization of distance cutoff and residue interval in
distance-dependent atom-pair potentials. According to

the performance comparisons between the potentials we
built and several widely used statistical potentials, the
improvements brought by the most suitable distance
cutoff and residue interval can enable the distance-
dependent atom-pair potentials to outperform many
other sophisticated statistical potentials.
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Figure S5. The variation of average PCC between energy score and
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