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Abstract

Background: DNA methylation is an epigenetic process that regulates gene expression. Methylation can be modified
by environmental exposures and changes in the methylation patterns have been associated with diseases. Methylation
microarrays measure methylation levels at more than 450,000 CpGs in a single experiment, and the most common
analysis strategy is to perform a single probe analysis to find methylation probes associated with the outcome of
interest. However, methylation changes usually occur at the regional level: for example, genomic structural variants can
affect methylation patterns in regions up to several megabases in length. Existing DMR methods provide lists of
Differentially Methylated Regions (DMRs) of up to only few kilobases in length, and cannot check if a target region is
differentially methylated. Therefore, these methods are not suitable to evaluate methylation changes in large regions.
To address these limitations, we developed a new DMR approach based on redundancy analysis (RDA) that assesses

whether a target region is differentially methylated.

Results: Using simulated and real datasets, we compared our approach to three common DMR detection methods
(Bumphunter, blockFinder, and DMRcate). We found that Bumphunter underestimated methylation changes and
blockFinder showed poor performance. DMRcate showed poor power in the simulated datasets and low specificity in
the real data analysis. Our method showed very high performance in all simulation settings, even with small sample
sizes and subtle methylation changes, while controlling type | error. Other advantages of our method are: 1) it estimates
the degree of association between the DMR and the outcome; 2) it can analyze a targeted or region of interest; and 3) it
can evaluate the simultaneous effects of different variables. The proposed methodology is implemented in MEAL, a
Bioconductor package designed to facilitate the analysis of methylation data.

Conclusions: We propose a multivariate approach to decipher whether an outcome of interest alters the methylation
pattern of a region of interest. The method is designed to analyze large target genomic regions and outperforms the

three most popular methods for detecting DMRs. Our method can evaluate factors with more than two levels or the

simultaneous effect of more than one continuous variable, which is not possible with the state-of-the-art methods.
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Background

DNA methylation is an epigenetic mechanism where a me-
thyl group is added to cytosines placed in CG dinucleotides
(CpGs). This process regulates cellular gene expression and
is responsible for biological processes such as X chromo-
some inactivation. Disruption of the methylation pattern
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can lead to diseases such as cancer [1, 2] or diabetes [3, 4].
DNA methylation can be modified by environmental expo-
sures (e.g. smoking [5-7]) so it is becoming a common tool
in epidemiological studies.

DNA methylation microarrays allow performing a
genome-wide evaluation of the methylation status. The
analysis of these microarrays is comparable to the analysis
of gene expression microarrays. The current standard ana-
lysis for differential gene expression consists of performing
a linear regression of each expression probe against a vari-
able of interest and any relevant covariables. To test the
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significance, an empirical Bayes approach using the
variance of all genes is commonly used [8]. The result
of this analysis is a list of expression probes that are
most strongly associated with the outcome of interest.
This method was adapted for use in methylation studies,
where methylation values of individual CpG sites are
regressed against the variable of interest.

However, some authors suggest that methylation changes
usually occur at regional level [9, 10] and, in practical
terms, this involves detecting groups of consecutive
methylation probes that are associated with the outcome
(Differentially Methylated Regions, DMRs). A number of
methods have been implemented in R for this type of ana-
lyses: Bumphunter [11], DMRcate [12], Probe Lasso [13],
IMA [14] and MethyAnalysis [15]. We will focus on
Bumphunter and DMRcate as these are the most popu-
lar methods and are implemented in several methyla-
tion analysis pipelines (e.g. Champ package [16]). Both
methods are based on linear regression models, and use
various statistical techniques to scan the genome for
groups of probes associated with the variable of inter-
est, and provide lists of small DMRs (<2Kb).

Several authors have suggested that some factors (e.g.
genomic structural variants) can modify the methylation
patterns of large regions, between 100 Kb and several
Mbs [17-20]. Furthermore, it has been proposed that in
cervical cancer changes in the methylation pattern of a
large region can have a similar effect to the deletion of
that region [20]. Although Bumphunter and DMRcate
are powerful enough to detect changes in methylation
patterns in small regions [21], they have limited ability
to detect large DMRs. Both methods define candidate
DMRs based on the observed data, i.e. regions are con-
sidered depending on the observed effects of consecutive
CpGs. However, these packages are not able to test
whether or not a target region is differentially methylated.
Bumphunter was designed to detect DMRs where methy-
lation changes are in the same direction, i.e. most of the
CpGs in the region must be hypo- or hyper-methylated
sites. While this assumption may hold in small regions,
large regions are likely to contain probes that are posi-
tively and negatively associated with the outcome of inter-
est. Consequently, averaging the effect of the entire region
may provide a signal close to zero because the effects are
compensated. DMRcate parameters can be modified to
detect large DMRSs, although the accuracy of the method
in these conditions has not been properly tested. Another
of DMRcate’s limitations is that it does not provide a
measure of the statistical significance of the association.
Subsequently, blockFinder, an adaptation of Bumphunter
[22], was designed to find big DMRs, although it has some
drawbacks: 1) it also requires that all changes are in the
same direction; and 2) it only considers open sea probes,
and thus uses only a small fraction of all methylation
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probes. A common limitation of these three methods is
that they can only evaluate the effect of a single continu-
ous or a dichotomous factor. Therefore, it is not possible
to directly assess the combined effect of two variables or a
categorical variable with more than two levels.

To tackle these limitations, we propose a method for
assessing whether a target region of any size is a DMR.
Our method can detect these regions, even in the pres-
ence of epigenetic changes in different directions. Analyz-
ing DMRs can be seen as an extension of considering
more than one CpG as the outcome. Thus, our method is
based on a multivariate approach called redundancy ana-
lysis (RDA), which extends linear regression to multivari-
ate outcomes [23]. For the epigenomic data in our study,
we will consider methylation values of the region as a
multivariate outcome and the factor (i.e. case/control, sex,
age...) as the explanatory variable. Our new DMR method
is implemented in MEAL [24], a Bioconductor package
for analyzing methylation and expression data. MEAL in-
cludes functions for performing not only RDA but also
other analyses such as single probe analysis, allowing the
user to adjust for covariates such as surrogate variables
that control for batch effects or cell composition. To facili-
tate data visualization, the package also contains state-of-
the-art plotting functions, such as a Manhattan or a
Volcano plot.

In this paper, we demonstrate the advantages of using
RDA to perform DMR analyses, emphasizing situations
where methylation changes are produced in large genomic
regions. We compare its performance with three existing
approaches for detecting DMRs (Bumphunter, blockFinder,
and DMRcate) using simulated and real datasets.

Implementation

RDA can be thought of as a method for performing a linear
regression between a multivariate outcome (matrix Y, e.g.
multiple CpGs in a region) and a table of regressors (matrix
X, e.g. case/control, sex, age...). RDA has two steps. First, a
multiple linear regression between each variable of matrix
Y and all variables of matrix X is run (Additional file 1: Fig-
ure S1). This step results in a matrix with fitted values and
a matrix with the residuals. The second step is running a
Principal Components Analysis to fitted and residuals ta-
bles. PCA components of the fitted matrix are also called
RDA components. As a result, the main assumptions of the
data are linearity between the variables of matrix Y and
variables of matrix X and variance homogeneity of each
dataset. RDA analysis for methylation data has been im-
plemented in a function called runRDA.

RDA returns two statistics that are useful for measuring
the degree of association between our grouping factor
variable and the methylation in a DMR: the R-squared
(R?), and the RDA components. R*> measures the percent-
age of the variability observed in the CpGs in the region
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of interest that is explained by the variable of interest (e.g.
case/control, quantitative trait, multi-class variable, etc.).
The RDA components are useful for visualizing the results
and seeing how, in the case of categorical outcomes, indi-
viduals cluster on CpGs variables.

The significance of the association between the factor
and the region of interest is assessed using two approaches.
In the first approach, we use a permutation test imple-
mented in the function permutest of vegan R package [25].
This test returns a p-value indicating whether RDA compo-
nents are significantly associated with the variable that is
defining the different levels of groups of our variable of
interest. We have implemented another approach that is
providing a measure (p-value) of the evidence against the
probability of finding a random region in the genome with
an R? greater than or equal to that obtained in our region
of interest. It is expected that, if our target region is not as-
sociated with our variable of interest, the R* of such associ-
ation obtained from RDA would be lower than the R*
observed in any other region of the genome having the
same number of CpGs as in our target region. This ap-
proach is implemented in the function computeRDAR2 of
MEAL.

Our runRDA function implemented in MEAL package
[24] accepts as input several types of Bioconductor objects
such as GenomicRatioSet or GenomicRanges, facilitating
the use of our new method. runRDA relies on the RDA
implementation of vegan R package. Biplots can be cre-
ated to help RDA visualization and interpretation. The
MEAL package also includes a number of functions to
perform methylation data analysis including DMP, DMR
and variance comparison among groups. Adjustment for
covariates or/and surrogate variables (SVA) can also be
performed [26]. State-of-the-art plots can also be created
with MEAL.

Results

Simulation

We compared our RDA method against three well-known
methods (Bumphunter, blockFinder and DMRcate) in sim-
ulated datasets. A Beta distribution was used to simulate
methylation data (i.e. beta values). The simulation was per-
formed by simulating 8432 CpGs belonging to chromo-
some 22. Parameters of the beta distribution were based on
methylation data obtained from real data belonging to a
birth cohort study (n = 396). Notice that our RDA method
transforms these data into M-values to hold normality
assumption. In each simulated dataset, we introduced a
DMR by generating differentially methylated CpGs for two
groups (groups 1 and 2). There were DMRs of four differ-
ent sizes (500Kb, 300Kb, 100 Kb, and 50Kb) and datasets of
three different sample sizes (10, 40, and 100). We simulated
scenarios for three different effect sizes (difference in mean
methylation: 0.3, 0.1 and 0.05), and two different
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percentages of differentially methylated probes (30% and
10%) within the region. We simulated 200 datasets of
each combination of DMR size, sample size, and sce-
nario. Additionally, we have evaluated BlockFinder,
DMRcate and RDA methods in regions randomly in
order to estimate the number of false positive results.

Bumphunter and BlockFinder was ran with 1000 per-
mutations to determine the bumps’/blocks p-value and
setting the minimum effect size to consider a probe in a
bump/block to 0.05. RDA was run with 10,000 permuta-
tions to compute p-values. Next, we describe the main
simulation results based on the results obtained from
n =40 (unless stated otherwise).

Bumphunter included all true differentially methylated
probes in bumps when the effect size was equal to 0.3
(Table 1), while in the other scenarios, Bumphunter’s

Table 1 Analysis of methylation regions using current methods
(40 samples)

Region  Sim. Diff.

CpGs in R? (sd)

size DMP % Means  Bumps (%) Target region  Random region
500Kb 30 03 28.10 0.647 (0.109)  0.026 (0.010)
30 0.1 323 0430 (0.098)  0.025 (0.010)
30 0.05 0.21 0.346 (0.124)  0.026 (0.010)
10 03 9.16 0442 (0.075)  0.024 (0.008)
10 0.1 045 0277 (0.101)  0.026 (0.009)
10 0.05 0.02 0.205 (0.135)  0.025 (0.008)
300Kb 30 03 28.10 0674 (0.113)  0.026 (0.013)
30 0.1 376 7(0.083)  0.025 (0.008)
30 0.05 0.1 0332 (0.127)  0.026 (0.011)
10 03 8.80 0446 (0.084)  0.026 (0.009)
10 0.1 0.30 0.278 (0.100)  0.026 (0.010)
10 0.05 0.02 8(0.112)  0.026 (0.011)
100Kb 30 03 27.80 0.682 (0.125)  0.025 (0.011)
30 0.1 358 0430 (0.103)  0.026 (0.011)
30 0.05 0.15 7(0.122)  0.026 (0.011)
10 03 872 0453 (0.104)  0.027 (0.014)
10 0.1 035 0249 (0.112)  0.025 (0.010)
10 0.05 0.00 1(0.123) 0025 (0.011)
50Kb 30 03 27.70 0.705 (0.120)  0.027 (0.012)
30 0.1 393 0426 (0.096)  0.027 (0.012)
30 0.05 0.10 0.308 (0.096)  0.026 (0.010)
10 03 8.60 0442 (0.120)  0.028 (0.017)
10 0.1 042 0.250 (0.100)  0.026 (0.013)
10 0.05 0.03 0.149 (0.090)  0.028 (0.015)

Values represent the mean of the 200 simulations. Sim. DMP %, percentage of
DMPs introduced in the simulation; Diff. Means, Difference in mean
methylation between groups A and B; CpGs in Bumps (%), proportion of CpGs
in the modified region that are within a bump with FDR < 0.05. R% R? estimate
of RDA model; Target region, region that includes our simulated DMPs;
Random region, region without any of the simulated DMPs
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bumps only contained a small proportion of the simulated
DMPs. As expected, Bumphunter’s performance de-
creased as sample size decreased (n=10) (Additional
file 1: Table S1). With a sample size of 100, Bumphunter’s
performance increased but it still only detected a small
fraction of the real changes for effect sizes smaller than
0.3 (Additional file 1: Table S2).

We ran DMRcate using two different combinations of
the lambda and C parameters to optimize its ability to
detect large DMRs. Lambda represents the minimum
distance between two significant DMPs for them to be
assigned to two different DMRs. C controls the standard
deviation of the Gaussian kernel used to smooth the
overall signal in the region. In the first combination, we
set lambda as equal to the size of our target region. C
had the default value, such that the standard deviation
of the Gaussian kernel was greatly increased, and we
called this scenario extended smoothing. In the second
combination, we changed C to the default standard devi-
ation of the Gaussian kernel, and we called this scenario
standard smoothing. While we obtained higher recall
using the extended smoothing (Additional file 1:
Figure S2), these DMRs had Stouffer p-values close to
1 (Additional file 1: Figure S3). This means that these
DMRs are heterogeneous and contain many CpGs non-
differentially methylated, suggesting that DMRs are too
wide. Consequently, we decided to use the standard
smoothing in the comparisons. As expected, if we re-
quired that a DMRcate’s DMR comprised a higher propor-
tion of the target region, the power decreased (Additional
file 1: Figure S4). These results were very similar for sam-
ple sizes of 10 and 100 (Additional file 1: Figures S5-S10).

DMRcate had high power for large effect sizes and
regions and high precision in all scenarios (Fig. 1).
blockFinder had very low power and precision in all
scenarios (Fig. 1). RDA method showed the best re-
sults in all scenarios, showing a very high precision
and power (Fig. 1). As expected, the R> estimated
with RDA method was related to the proportion of
simulated DMPs and its beta change, but not with
the region size (Table 1). When performing the ana-
lyses in random regions, we observed that RDA prop-
erly controls type I error (5% of false positive results)
while DMRcate and blockFinder underestimated it (~0%
false positive results) Similar conclusions can be obtained
for sample sizes equal to 10 and 100 (Additional file 1:
Figures S5, S8 and Tables S1-S2).

Overall, Bumphunter only performed well in detecting
bumps when the effect size was large. While DMRcate
can be used to detect large DMRs, we have to balance
accuracy of DMR boundaries and power. We can prioritize
power by configuring DMRcate using the extended win-
dow; as a result, DMRs will be larger than our target region.
On the other hand, we can prioritize precision and use the
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standard window, in which case DMRcate will be unable to
detect the entire target region as a DMR. Independently of
the parameters, DMRcate showed the best performance
when the proportion of DMPs was large. blockFinder
showed very poor performance in all simulations. Fi-
nally, RDA showed good performance in all situations
and conditions.

Real data analysis: BRCA dataset

We used the BRCA (breast cancer) data from TCGA
(http://cancergenome.nih.gov/) to assess the methods’
performance. We used TCGAbiolinks to obtain data
for 466 samples with Illumina 450 K methylation and
clinical data [27]. We studied the methylation pattern of
the human epidermal growth factor receptor 2 (HER2) re-
gion (chr17:37,700,000-38,000,000). Our aim was to es-
tablish whether HER2 status (positive and negative) has
differentially methylated our region of interest. Besides the
DMR methods, we also run a single probe analysis to get
an estimate of the number of differentially methylated
probes. Bumphunter and blockFinder were run with 1000
permutations and setting the minimum effect size to con-
sider a probe in a bump/block to 0.1. DMRcate was run
using smoothing and RDA was run using M-values and
with 10,000 permutations to compute p-values.

We first run the different methods using a crude model
that only included HER2 status. Single probe analysis of
methylation data detected 19,083 DMPs (FDR <0.05)
throughout the genome. Our region of interest contained
147 DMPs (~67% of CpGs included in the HER2 region).
Interestingly, the CpGs with the lowest p-values were
found in the HER2 region (Additional file 1: Figure S11).
Bumphunter detected 359 significant bumps (FDR < 0.05)
in the genome, of which 14 were in our region of interest.
These bumps contained 40 CpGs or ~18% of the total
CpGs. blockFinder found 35 significant blocks (FDR <
0.05), two of them in chromosome 17. One block com-
prised 30Kb and the other just one CpG. DMRcate
returned 1414 DMRs ranging from 7 bases to 2.4 Mb, but
mostly with a width of few Kb or a width around a Mb
(Additional file 1: Figure S12). The top DMR detected by
DMRcate (based on the Stouffer p-value) was 2.4 Mb long
and included our target region. RDA analysis of the HER2
region showed a significant R? (0.063, p-value: < 107%).
HER2+ and HER2- samples were clearly separated in the
RDA representation (Fig. 2). The probability of finding a
region of the same size and a higher R* was <10™*, indicat-
ing that there is a very low probability of observing a re-
gion of this size that explains more than 5.8% of the
variability in methylation.

We also run all the methods using an adjusted model
that contained HER2 and 53 surrogate variables obtained
with smartSVA package. Single probe analysis returned
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considerably fewer DMPs (450) throughout the genome.
Our region of interest contained 116 DMPs, representing
53% of the region CpGs. The CpGs with the most sig-
nificant p-values were also found in the HER2 region
(Fig. 3). Bumphunter detected 12 significant bumps, of
which 9 were in our target region. These bumps comprised
33 CpGs or around 15% of the CpGs in this region. block-
Finder detected three significant blocks, all of them in our
target region comprising 32Kb. DMRcate called 7 regions
as DMRs, most of which were shorter than 1 kilobase.
DMRcate’s top DMR was 1.7 Mb in length and contained
our target region. RDA analysis returned a significant but
smaller R? (0.027, p-value: < 107%). The probability of find-
ing a similar-sized region with higher R* was also very low
(<107*). The RDA plot also separated the samples by HER2
subtype, but less clearly than using the crude model
(Fig. 3). This may indicate that some of the observed
differences can be explained by unobserved or technical
variables.

RDA analysis including HER2 and ER subtype
returned a higher and statistically significant R* (0.100,
p-value: < 107*). It was also very unlikely to find regions
of this size with the same or higher R* (p-value: < 107%).
In the RDA representation, the samples were separated
by HER2 subtype (Fig. 4). Separation by ER sample sub-
type was more evident in HER- than HER+ samples.
When we included surrogate variables in the model, the
R? was reduced to the value of HER2 only model (0.028,
p-value: < 107*). However, the probability of finding a re-
gion with a higher R* was still very low (<10™*). The
RDA plot clearly separated samples by HER2 sample
subtype in the first RDA component (Fig. 4). Only HER2+
samples were separated by ER sample subtype in the
second component.
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Discussion

We have tested the performance of Bumphunter, block-
Finder, DMRcate and our new method to detect large
DMRs in six simulated scenarios and in a real cancer
dataset.

Bumphunter failed to detect that the target region was
a DMR in both datasets. Due to its implementation,
Bumphunter can only detect small DMRs (around 1Kb),
which makes it unsuitable for calling large DMRs. In our
simulation, it failed to detect small methylation changes
and only included all DMPs in bumps when the effect
size was large (0.3). This poor performance may be
because we introduced the DMPs in random positions
in our target region. When the effect size was large, the
individual signal of each DMP was enough to call a bump,
but when the methylation change was low, Bumphunter
could not distinguish the signal from the background
noise. One of Bumphunter’s strength is the inclusion of a
method to test bumps’ significance. Although computing
these p-values is very time and memory consuming, it
provides a clear criterion for differentiating relevant from
spurious DMRs.

blockFinder, Bumphunter’s adaptation for large regions,
detected very few blocks in all situations, mainly because
blockFinder only uses open sea probes. In our simulation,
the DMPs were randomly distributed, so if DMPs were
not open sea probes, blockFinder was unable to detect a
DMR. The same problem applied to the real dataset,
where blockFinder only detected a significant DMR in the
crude model.

DMRcate showed good performance in both datasets.
In the simulations, DMRcate showed better results when
the signal was strong (high proportion of DMPs, high
methylation changes, and very large regions), and we
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suggest that this is due to the smoothing process. Where
there was a low proportion of DMPs or their methyla-
tion change was small, the smoothing removes this
signal. The smoothing also explains why DMRcate per-
formed better in the largest regions, even though it is
designed to detect small DMRs. DMRcate is designed to
detect groups of differentially methylated probes that are
near each other. In this situation, DMRcate can detect
weak signals because the smoothing compensates probes
with small changes with probes with greater changes.
However, the DMPs in our simulation were randomly
distributed throughout the region and thus were unlikely
to be grouped. In this situation, the smoothing weakens
the individual signal of each probe by combining the
signal of the DMPs with general noise. In large regions,
the total number of DMPs is higher, and the region can
be detected even after smoothing. The results from our
real dataset differed between the crude and adjusted
model, in that there were many differentially methylated
CpGs in the crude model. Since we changed the cluster-
ing parameter to allow us to group probes as far away as
the total length of the HER2 region, DMRcate detected
very large DMRs. In the adjusted model, there were very
few DMPs and all the DMRs were small (around 1Kb)
except for our target region. In both cases, DMRcate
called a DMR including our target region, although the
called region was much larger. Again, the smoothing
process is responsible for this behaviour: the marked
methylation changes in our target region compensate for
the noise of nearby probes, leading to detection of larger
DMR than our target region. As a result, there is a
greater risk of false positives. Where our target region is

close to a region with marked methylation changes,
DMRcate can include the target region within the DMR,
even if the target region does not have methylation
changes. Another issue is that DMRcate does not esti-
mate the significance of the DMR or the magnitude of
the effect, and the lack of a p-value makes it difficult to
distinguish spurious from true associations.

Our RDA method showed good performance in the
simulations, with very high power and precision in all
scenarios, even with small sample sizes (10 samples).
Our method provides an overall estimate of the association
between the methylation and the factor of interest: the R%.
We found that this estimate depends on the strength of the
association between the methylation data and the factor, in-
dependent of sample size or region length. Consequently,
the R? estimate is useful for comparing results from differ-
ent regions, and even for different experiments. In the sim-
ulations, the R* ranged from 0.8 for the biggest association
to 0.05 for the smallest. The R* of the scenarios with very
little association is very similar to what has been reported
in the literature. For instance, in a work that studied the in-
fluence of genotype and environment on DNA methylation,
they found that some important phenotypic variables (i.e.
sex, age, blood cell counts, principal components of geno-
types and some technical variables) together explained 17%
of the total variance of the global DNA methylation.

In the real dataset, RDA was the only method that
returned specific results for the target region. We got
R’s of the same magnitude than the R’s of the small
association scenarios, suggesting that the association of
the methylation with the cancer subtype was small but
relevant. In addition, our method computes the
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probability of finding a similar region with a bigger R?
which is useful for assessing whether the association be-
tween the regional methylation pattern and our factor is
specific to our region of interest. Another advantage is
that our method can evaluate an entire linear model,
allowing us to test the effects on methylation patterns of
categorical variables with more than two levels, or the ef-
fects of different variables at the same time. The plotting
function we have included in the MEAL package allows
the user to obtain a quick overview of how different cat-
egorical variables model the methylation pattern of the
region.

We must notice that RDA assumptions must be checked
before running the analysis. As stated in the Implementa-
tion section, RDA requires normality in the outcome
variable (e.g. methylation data) and linearity between
methylation and factor variable. In order to hold normal-
ity assumption, we analyze M-values instead of beta values
(runRDA function by default transforms beta values into
M-values by using logit2 transformation). Linearity can be
checked by visual inspection. In our particular example
(TCGA methylation data) linearity is satisfied since we are
analyzing a factor variable with two categories.

In studies to date, the association between variables
and methylation in large regions has been assessed using
DMPs or small DMRs [17, 18, 20]. In MEAL, we propose
a method that returns an overall estimate of this associ-
ation. One application could be to evaluate the effect of
structural variants on methylation, and thereby it may be
possible to propose mechanisms linking structural vari-
ants to diseases via regional changes instead of single
changes. If we do not have a region of interest a priori, we
can use RDA to complement current tools for detecting
DMPs and small DMRs. This would involve performing a
single probe analysis first, and, if we find a region with
many DMPs or small DMRs, check this with RDA.

Our RDA method has also been successfully applied to
expression data (Additional file 2), showing that regional
analysis using RDA could be extended to other omics
datasets.

Conclusions

We propose RDA as a new tool for evaluating the effect of
a variable on methylation in a large genomic region. Using
simulated and real datasets, we show that our method per-
forms better than the best state-of-the-art methods for
detect DMRs. RDA returns an estimate of the magnitude
of the regional association that is independent of sample
size and region length, allowing the comparison of results
obtained from different experiments. It also returns an
estimate of the statistical significance of the association,
which allows discarding spurious associations. In addition,
our method can evaluate factors with more than two
levels or the simultaneous effect of more than one
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continuous variable, which is not possible with the state-
of-the-art methods. Finally, the application of the RDA
method to gene expression, suggest that it could be ap-
plied to any other omics source, such as SNPs.

Availability and requirements
Project name: MEAL.
Project home page: http://bioconductor.org/packages/
release/bioc/html/MEAL.html
Operating system(s): Platform independent.
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License: Artistic-2.0.
Any restrictions to use by non-academics: none.
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