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Abstract

Background: ‘Next-generation’ (NGS) sequencing has wide application in medical genetics, including the detection
of somatic variation in cancer. The lon Torrent-based (IONT) platform is among  NGS technologies employed in
clinical, research and diagnostic settings. However, identifying mutations from IONT deep sequencing with high
confidence has remained a challenge. We compared various computational variant-calling methods to derive a
variant identification pipeline that may improve the molecular diagnostic and research utility of IONT.

Results: Using IONT, we surveyed variants from the 409-gene Comprehensive Cancer Panel in whole-section tumors,
intra-tumoral biopsies and matched normal samples obtained from frozen tissues and blood from four early-stage
non-small cell lung cancer (NSCLC) patients. We used MuTect, Varscan2, IONT's proprietary lon Reporter, and a simple
subtraction we called “Poor Man'’s Caller.” Together these produced calls at 637 loci across all samples. Visual validation
of 434 called variants was performed, and performance of the methods assessed individually and in combination. Of
the subset of inspected putative variant calls (n = 223) in genomic regions that were not intronic or intergenic, 68
variants (30%) were deemed valid after visual inspection. Among the individual methods, the lon Reporter method
offered perhaps the most reasonable tradeoffs. lon Reporter captured 83% of all discovered variants; 50% of its variants
were visually validated. Aggregating results from multiple packages offered varied improvements in performance.

Conclusions: Overall, lon Reporter offered the most attractive performance among the individual callers. This study
suggests combined strategies to maximize sensitivity and positive predictive value in variant calling using IONT deep

sequencing.
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Background

“Next-generation” sequencing technology (NGS) has
facilitated unprecedented discoveries of genomic
variation relating to the molecular biology of complex
diseases such as cancer [1, 2]. Sequencing of DNA to
survey genomic aberrations, including point mutations
and copy number alterations, in various malignancies has
implicated variants in canonical oncogenes and tumor
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suppressor genes as drivers [2—4]. Of note, NGS-derived
knowledge has underlined therapeutically pliable and
actionable alterations in cancer including activating
mutations in EGFR, MET, BRAF, FGFR2 and FGFR3,
and PIK3CA [5-11]. NGS studies highlight the value of
incorporating sequencing technologies in personalized
treatment strategies and potentially in clinical decision
making [12].

The heterologous pathological makeup of clinical speci-
mens represents a unique challenge for surveying genomic
aberrations in the clinic [13]. For example, formalin-fixed
paraffin embedded (FFPE) cancer specimens, which are
typically used for sequencing assays in the clinic, are likely
to comprise an admixture of tumor and normal cells.
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This effectively reduces the allele frequency of the tumor-
associated variant to be discerned [14]. In addition to
histopathological considerations such as tumor microdis-
section, it has been suggested that NGS should reach
a sufficient sequencing depth, sometimes referred to as
“clinical depth,” in order to discern somatic aberrations
that exist only in small fractions of the specimen cells.
These measures help attain the desired clinical value and
goals of NGS technologies [15, 16].

Various NGS platforms have provided methods for deep
sequencing [16—18]. One of these platforms, the Ion Tor-
rent (IONT), has been commonly used for deep sequenc-
ing in the molecular pathology laboratory setting to
survey cancer hot spots or targeted exons of cancer genes
(e.g. 409-gene comprehensive cancer panel) [19-22].
However, this platform carries significant sequencing
problems. Overall, the quality of base calling accuracy
generated by IONT sequencing (quantified as a Phred
score) is lower in comparison to other sequencing plat-
forms. Additionally, IONT is more prone to misreading
the length of homopolymers compared to other platforms
(e.g. Illumina) [23]. These observations warrant the need
for better analytical solutions to detect true somatic muta-
tions in IONT sequencing data with high confidence,
avoiding false positives that may arise due to sequencing
error or inaccurate calling measures. However, methods
for high-confidence identification of true mutations from
Ion Torrent-based deep sequencing have remained under-
developed, poorly described, or underutilized [23].

We surmised that development of a somatic variant
calling pipeline would offer opportunities for advancing
clinical translation of such sequencing platforms. To this
end, in this study we compared and contrasted various
computational algorithms for calling somatic point muta-
tions (single-nucleotide variants, or SNVs) in tumors,
from data generated on the Ion Torrent platform. Using
these results, we have derived a working pipeline for
identification of high-confidence variants.

Methods

Sample description

We surveyed variants in surgically resected non-small cell
lung cancer (NSCLC) tumors as well as in normal sam-
ples (either uninvolved nasal tissue or blood cells) from
four patients with early-stage NSCLC. In addition to the
whole tumor sections, six to eight multi-regional intra-
tumoral core needle biopsies (CNBs) from each NSCLC
tumor core were also examined. The malignant and nor-
mal samples were acquired from early-stage (stages I-III)
NSCLC patients evaluated at The University of Texas
MD Anderson Cancer Center following informed consent
under an institutional review board (IRB) approved proto-
col. Tumors were classified using the 2004 World Health
Organization (WHO) classification system as described
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previously [24]. All samples were obtained snap-frozen.
Table 1 below summarizes the numbers and types of
malignant and putatively normal samples (# = 35). Fol-
lowing identification of somatic variants (see below), one
of the CNB specimens in case NSCLC 4 was found to
contribute almost half of the total variants in the entire
sample set and, thus, was excluded from all downstream
analyses.

Sequencing platform

Genomic DNA was isolated from all samples using the
All Prep DNA/RNA kit from Qiagen according to the
manufacturer’s instructions. We used 40 ng of DNA from
each sample for deep targeted sequencing. Deep sequenc-
ing of all exons in a panel of 409 genes [lon Ampliseq
Comprehensive Cancer Panel (CCP, Life Technologies)]
was performed using the lon Torrent Proton sequenc-
ing platform from Life Technologies. The CCP comprises
over 50% of the Wellcome Trust Sanger Institute Can-
cer Gene Census: tumor suppressor genes, oncogenes as
well as DNA repair genes implicated as potential drivers
and targets in cancer based on published sequencing stud-
ies of various malignancies [21, 22]. Barcoded libraries
(covering 16,000 amplicons distributed among four pools)
were generated from 40 ng DNA using the Ion Ampliseq
library 2.0 kit according to the manufacturer’s instruc-
tions. Libraries were quality controlled using the DNA
high sensitivity kit and the 2100 bioanalyzer instrument
(Agilent Technologies). The libraries were also quanti-
fied by quantitative polymerase chain reaction analysis
using the Ion library quantification kit (Life Technologies)
according to the manufacturer’s instructions. Amplified
and clonal templates from libraries were generated by
emulsion PCR using the Ion Proton Template OT2 kit.
Sequencing was performed by multiplexing four barcoded
templates on each Proton I chip and using the Ion Tor-
rent Proton instrument (Life Technologies) according to
the manufacturer’s instructions.

Variant calling

The BAM files generated from deep sequencing and
aligned by Ion Torrent Variant Server (ITV) had mean
coverage depth of 1406; mean coverage of the 1 Mb target
region was 95.6% at 100X (exceeding that in all but two
samples) and 72.4% at 800X.

Table 1 Sample description

Tumor section Tumor CNB Normal
NSCLC 1 1 6 Blood
NSCLC 2 1 8 Nasal
NSCLC 3 1 7 Blood
NSCLC 4 1 6 Blood
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In order to perform tumor-normal analysis on the
BAM files, we applied the following software packages
(described in detail in Table 2), using blood or nor-
mal nasal samples as the paired-normal control: Ion
Reporter (IR) [25], MuTect (MU) [26], and Varscan2 (VS)
[27]. We also called variants in an unpaired manner using
the Torrent Variant Caller (TVC) [28] and then con-
structed a straightforward tumor-normal variant subtrac-
tion routine by comparing the VCFs produced by TVC,
a method we dubbed the “Poor Man’s somatic detector”
(PM).

We used Variant Tools [29] to annotate the variants
for each method with data from ANNOVAR [30], the
1000 Genomes Project (1 KG) [31] and the Exome Variant
Server (EVS) [32]. For each method, we then excluded
variants found in either 1KG or EVS. Finally, for the pur-
poses of our final tabulation, we also excluded variants
annotated as intronic or intergenic by ANNOVAR. An
in-house analysis framework designed for quality control
and reproducibility, called SyQADA (System for Qual-
ity Assured Data Analysis), was used to implement and
execute all the bioinformatic pipelines described above.

Tuning VS and MU for ion torrent sequence data

The default settings for VS and MU were tuned for
[llumina-generated sequence. We ran these programs on
Ion Torrent data with those defaults and found that MU
produced an order of magnitude fewer calls, and VS pro-
duced an order of magnitude more, than IR did. Further-
more, our visual inspection (discussed below) indicated
poor performance of these two callers’ default settings on
Ion Torrent data. We therefore explored modified options
for these two programs, in order to find parameters that
produced better performance.

For VS, we determined that excluding variants anno-
tated with a p-value greater than 10~ produced numbers
of total variants more comparable to (but still larger than)
the other callers. For MU, the default settings produced
fewer than 10 total calls across all samples. Because MU
had been designed to work with the GATK and Illumina
data, we inspected the annotation file that is output along-
side each MU-generated VCF to look for categories of
exclusion criteria (flags in the annotation file) that were

Table 2 Software versions used
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removing variants for reasons perhaps inappropriate for
data from the Ion Torrent platform. We found two such
candidate categories and created two new sets of MU
VCFs, one containing those variants that were rejected
only with the nearby gap events flag, and one for
the clustered read position flag. Since we had
already “validated” (by visual inspection) a complete set
of variants at this point, we simply re-ran our caller con-
cordance analysis including these new data. Variants with
the annotation of clustered read position had
very poor overlap with the existing set and further exhib-
ited poor performance on the existing visually inspected
variants, so we discarded these. However, MU output
that included variants flagged as nearby gap_ events
(“MG”) overlapped well with good performance on the
existing visually inspected variants, so we randomly
selected additional variants scored by MG (in the man-
ner above) to provide the same basis for analysis as the
other methods. After these new MG variants were visu-
ally inspected (although this new validation set was rich in
MG variants, we chose to increase our sample from other
callers at the same time, so this validation set was also
anonymized with respect to the generating method), we
re-ran the caller concordance analysis on the comprehen-
sive set of variants. The numbers of variants and loci given
in this text reflect this larger set. The script used to cre-
ate the relaxed MG-generated VCEF file is included in the
Additional file 1.

Visual inspection

To assess accuracies among the methods, we performed
a rigorous visual inspection of all the variants found in
common by two or more callers. For each method, we
added to the inspection set a random selection of at most
50 variants called by that method only. For IR, there were
only 23 such variants; VS alone called almost 309 variants
that did not intersect with other callers). Thus, of the 637
loci identified in total, we examined 434 distinct genomic
loci, intronic and exonic. Among these, 223 variants were
obtained after filtering out those in intronic and inter-
genic regions. Several of the variants were identified at the
same locus by different technologies in different patients,
yielding multiple sample sets at a few loci.

Software Label Version Notes

lon Reporter IR lonReporter Version 0.1.2 lonReporter VCF employs TVC 4.2

Poorman’s PM Torrent Variant Caller 4.2 Subtract variants found in normal

Varscan VS varscan2.3.5 reject p-value p > 1076

MuTect MU muTect-1.1.7 jar

MuTect-Gaps MG muTect-1.1.7 jar nearby gap_events added (see “Results” section)

Unmodified MuTect (MU) was not used in the analyses described because it produced so few variants
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Selection of variants for visual inspection
To derive a set of variants that we could use as a met-
ric for quality of variant discovery, we used the Integrated
Genome Viewer (IGV) [33] for visual inspection of a large
fraction of the variants identified by the four packages.
To select the variants for inspection, we constructed an
iPython notebook [34] employing Python and the Pandas
data analysis framework [35] to identify common variants
and produce our results tables.

Inspection workflow

We generated an anonymized list of variants for visual
validation and created an IGV batch script to load the
samples in which each variant was called, as well as the
accompanying normal sample. Then four of us (AD, JF,
HK, PS) each independently inspected between 10 and 50
variants and attempted to classify them into one of the fol-
lowing categories: valid, bad, or homopolymer, plus a tem-
porary category uncertain. Together, we then reviewed
our individual calls to reach consensus, and further cat-
egorized the uncertain sites into one of the three final
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categories. Then one of us (AD) inspected and classified
all the remaining variants based on the common under-
standing gained in the “training set”

Compared to other sequencing technologies (such as
Sanger and Illumina), Ion Torrent sequencing output is
relatively weaker around homopolymer runs (sequence
regions of consecutive identical nucleotides) due to align-
ment slippage caused by the technology’s less accurate
estimate of homopolymer length beyond a few bases
[36]. In our PCR-based targeted sequencing, this was
most conspicuous at the boundaries of amplicons, where
homopolymers in the read caused cascades of variant calls
at adjacent locations all through the read set; however, the
problem was often present in the interior of amplicons as
well.

Our method for variant classification is described in
Fig. 1. The criteria for variant classification are given
below. IGV snapshots of examples are found in the
Additional file 1, numbered to correspond to the criteria
below:

A variant was called a homopolymer if the neighbor-
ing (within approximately 10 bp) reference sequence had

Training Workflow
Remainder Independent
of variants |l| Inspection
Protocol setfor e Royiew & Decision
the rest of variants
Generate IGV
batch file
:—--I IGV control script loads locus and samples in IGV I
:
E | Name IGV screen capture for the locus |
Per v
Locus
i
| Move image file to indicate
decision
v v
Valid Bad Homopolymer
1. Bidirectional 1. Unidirectional 1. Alignment
2. High Coverage 2. Coverage < 200 slippage
3.Seen in > 5% of 3.Seen in < 5% of 2. Conspicuous
reads reads unidirectional
4. Clean mapping in 4. Poor mapping in coupling
IGV IGV
5. Found in normal
sample
Fig. 1 Variant Inspection Workflow. We used the depicted workflow to organize the variants called by the four software packages. We determined
validity of variants via visual inspection after having established the categorization criteria described in the lower three boxes by consensus (Review
and Decision, following independent inspections by individuals 1-4)
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a homopolymer run of at least 6 bases and the reads
supporting the call showed

(i) obvious alignment slippage (seen as a locus where the
called variant base is present on reference sequence
in close proximity) [Additional file 1: Figure S1] or

(ii) conspicuously coupled calls at two or more nearby
loci not detected in both forward and reverse reads
[Additional file 1: Figure S2].

Rarely, an exception was made if the presence of a
homopolymer run of 5 or 6 bases still produced good
mappings and plausible variant calls, provided that the
reference sequence surrounding it was sufficiently hetero-
geneous [Additional file 1: Figure S7]. A call that was not
a homopolymer was classified simply as bad if it

(iii) did not have supporting reads on both strands
[Additional file 1: Figure S3],

(iv) was found in less than 5% of the reads (with allele
frequency precision supported by 200 reads)
[Additional file 1: Figure S4],

(v) was found among reads that predominantly showed
signs of poor mapping in IGV [Additional file 1:
Figure S5], or

(vi) was found at more than 5% in the normal sample
[Additional file 1: Figure S6] (in at least one case, PM
called a false positive because a variant obviously
present in comparable numbers in both tumor and
normal was not called in the normal by TVC).

A typical valid call was bidirectional, had high coverage,
was seen in more than 5% of the somatic reads but not
found in the normal, and showed clean mapping in IGV.

For both our consensus calling and our complete clas-
sification of all putative variant sites, we built an IGV
control script to refresh the IGV browser, move to the next
location, load each sample exhibiting the call as well as a
corresponding normal, sort the displayed reads by base-
call, and then take an automatic snapshot (a PNG file)
named for the locus. After evaluation, each snapshot was
moved to the appropriate subdirectory (valid, homopoly-
mer, bad). Some snapshots were tagged with descriptive
terms to help in collective evaluation during consen-
sus. This workflow blinded the inspector(s) to which
method(s) called each variant, as well as to variant annota-
tion and sequence context. The semi-automated workflow
greatly reduced the amount of human input required to
display and classify variants, consequently reducing the
risk of clerical error (omission, duplication, misnaming,
misclassification, etc.) during analysis of several hundred
variants.

The validation set included variants found both in exons
and introns, all of which underwent identical scrutiny.
However, since our downstream focus is ultimately on
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biological interpretation of coding sequences, we subse-
quently restricted our analyses and summaries to exonic
(non-intronic, non-intergenic) variants.

Performance evaluation

We evaluated the performance of the methods by calcu-
lating sensitivity and positive predictive value (PPV). We
chose positive predictive value because it is a useful mea-
sure in the diagnostics towards which this study is geared;
furthermore, the domain of negative results necessary
to calculate specificity is unknown. Each line in Table 3
reports sensitivity and PPV for an individual caller or a set
of callers (a “strategy”). Sensitivity and PPV are formally
defined in this context as follows: Let V be the number of
variants that we classified as valid, let v be the number of
valid variants correctly called by the strategy, and let C be
the total number of variants called by the strategy. Then
we define PPV to be v/C. Under the assumption that a
somatic mutation existing in the DNA would have been
detected by at least one of the four individual callers, V' is
a proxy for the true number of valid variants. From these
quantities, we define Sensitivity to be v/V. We extrapo-
lated the PPV for the individual callers and sensitivity for
all strategies by assuming that the observed rates in the
inspected variants also held in the uninspected variants to
achieve an estimate of the true number of DNA mutations
among all called variants.

Validation by digital PCR

We studied select valid variants by digital poymerase
chain reaction (PCR) using the QuantStudio platform
(ThermoFisher Scientific). For digital PCR, 2 chips were
run per sample per assay on the QuantStudio 3D Analysis-
Suite software. Digital PCR assays were custom synthesis
and run with a no-template and a negative control as part
of assay validation; positive controls of these mutations
were not available. Further details are in Additional file 1:
Table S1.

Results
We called variants with the four methods, Ion
Reporter (IR), MuTect with Gaps (MG), Varscan2 (VS),
and “Poor Man’s” (PM). Calling was done on somatic
samples from 4 patients, 30 samples in all, using each
patient’s corresponding normal sample as a contrast. The
four methods together identified 1648 variants at 1318
genomic loci, of which 813 called variants at 637 loci were
annotated as one of the following by ANNOVAR: exonic,
UTR3, UTRS5, stopgain, splicing or as non-coding RNA
variants. We focused our analysis on these mutations.
The breakdown of the 637 called variant loci by method
was as follows: 106 for MG, 127 for IR, 199 for PM, and
381 for VS. The overlaps among methods varied substan-
tially by combination and are displayed in Fig. 2. The
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Table 3 Performance of variant calling strategies

Strategy Calls (Q) Valid (v) PPV* (SE, n) Sensitivity* (SE,n = 223)
IR 127 64 0.50 (0.044,127) 0.83 (0.025)
MG 106 41* 0.39 (0.056, 76) 0.53 (0.033)
PM 199 71* 0.36 (0.043,124) 0.92 (0.018)
VS 381 26* 0.07 (0.030, 72) 0.34 (0.031)
Any one 637 77* 0.12 (0.022,223) 1.00 (NA)
IRN MG 42 40 0.95 (NA, 42) 0.52 (0.033)
RN PM 94 58 0.62 (0.050, 94) 0.75 (0.029)
IRNVS 27 26 0.96 (NA, 27) 0.34 (0.031)
MG N PM 40 39 097 (NA, 40) 0.51 (0.033)
MG N VS 31 22 0.71 (0.082,31) 0.29 (0.030)
PMNVS 29 26 0.90 (NA, 29) 0.34 (0.031)
Any two 1 61 0.55 (0.047,111) 0.79 (0.027)
RN MG N PM 38 38 1.00 (NA, 38) 049 (0.033)
IRNAMGNVS 22 22 1.00 (NA, 22) 0.29 (0.030)
IRNPMNVS 27 26 0.96 (NA, 27) 0.34 (0.031)
MG NPMNYVS 22 22 1.00 (NA, 22) 0.29 (0.030)
Any three 43 42 0.98 (NA, 43) 0.55 (0.033)
IRNMGNPMNVS 22 22 1.00 (NA, 22) 0.29 (0.030)
IRUPM 232 77* 0.33 (0.026,157) 1.00 (NA)
(IRUPM)N (MG U VS) 51 45 0.88 (0.046, 51) 0.58 (0.033)

Variant calls made and calls validated by visual inspection are given for each software package, as well as their intersections, excluding those variants identified by ANNOVAR
as intronic or intergenic, which leaves 223 relevant SNPs collectively identified. The column labelled PPV shows Positive Predictive Value. Sensitivity and PPV were calculated
as Sensitivity = v/V and PPV = v/C, respectively, where numerator v is the number of valid variants correctly called by a given caller or set of callers, denominator V' is the
extrapolated set of 77 valid variants (including 68 examined variants that we classified as valid plus 9 additional “valid” variants estimated via extrapolation), and denominator
Cis the total number variants called by all callers. The strategies described as “Any one,” “Any two,” and “Any three” each require the variant site to be identified by at least
that many packages, which is effectively a union of sites identified by all the combinations in that section of the table. Asterisks (¥) indicate values that were extrapolated.
Standard error (SE) for PPV and Sensitivity is provided when n « min(p, 1 — p) > 5, where n is the number of variants examined rather than the number called, because the
latter is based on an extrapolation and does not contribute to estimated precision

greatest agreement among methods was between IR and
PM, perhaps not surprisingly, since both make use of Life
Technologies’ TVC (Poor Man’s does tumor-normal sub-
traction of TVC’s VCEF files); 74% of IR’s and 47% of PM’s
variants were also identified by the other package. Over
70% of calls from IR were corroborated by at least one of
the other callers, more than for any other method. Overall,
this indicated a generally higher quality for IR calls.

A full description of results is in Table 3. In all, we exam-
ined a total of 223 putative variant sites after excluding
those in intronic or intergenic regions. Of these, 68 were
classified as valid. For the metrics in Table 3, homopoly-
mer calls were lumped with other bad calls as “not valid”
Numbers marked with an asterisk(*) in the table were
extrapolated from the PPV calculated on our 223 sites to
estimate the number of additional valid variants that may
exist in the sites we did not validate.

lon Reporter MuTect (MG)
106

Fig. 2 Venn Diagram of Number of Variants Grouped by Method
Combinations. Listed under each method name are that method'’s
total called variants. (Note, areas are not scaled according to set size.)

Caller performance
Overall, among the individual packages, IR exhibited the
best PPV, .50, with a corresponding sensitivity of .83.
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PM did achieve a higher sensitivity of .92, but its PPV was
lower at .36. MG offered a modest increase in PPV over
PM but had a much lower sensitivity. VS made the largest
number of calls, the large majority of which were called by
that program alone. Although VS identified approximately
one-third of the estimated number of total valid calls, its
PPV was low at .07. Notably, among 53 variants inspected
visually that were called by either MG only or VS only,
none were found to be valid.

Aggregating results from multiple packages

To examine the value in aggregating results from multiple
software packages, we considered the performance among
called variants within all sets depicted in Fig. 2. Indeed,
and as one might expect, corroboration of a variant call
by an additional software package was a strong predictor
of the call being classified as valid. Table 3 includes results
for combinations of packages.

Perhaps the most obvious way to combine callers is to
accept a variant if any method identified it as such. This
strategy, labelled “Any One” in Table 3, had, by definition,
a sensitivity of 1, but a PPV of only .12. To look at ways
to increase PPV, we considered various combinations of
callers. A more limited union of variants identified only
by IR or PM (IR U PM) retrieved all valid variants (sen-
sitivity of 1) with a PPV of .33, a notable increase over
the “Any One” strategy. Other strategies we examined
included requiring a variant site to be agreed on by at
least 2 or 3 of the packages, or even by all 4. We also
evaluated specific combinations. The particular combi-
nation of IR and PM (IR N PM) yielded the most favor-
able sensitivity among 2-method intersections (.75) with
a corresponding PPV of .62, exceeding the PPV for IR
alone(.50).

Two sets with MG (IR N MG and MG N PM) gave high
PPVs, exceeding .95, with sensitivities above .50. Although
selecting variants called by “Any Two” callers yielded a
sensitivity of .79, the PPV of .55 was inferior to that of
IR N PM. If one can tolerate a sensitivity of .55, and
generate calls from these four packages, the strategy of
requiring at least 3 packages to identify a site yielded a
PPV of .98. All 22 instances when all four packages called
the same site were validated (PPV = 1, sensitivity of
.29). On these data, this result was actually inferior to
using only IR N MG N PM (PPV = 1, sensitivity of .49),
which has the added virtue of not requiring the VS cal-
culation. For the reader wishing to consider alternative
strategies with these 4 variants callers and the unique sam-
ple set of multiple tumor samples from the same patient,
we refer to a supplemental table (“Variant-Annotation-
Dataframe.txt”), containing more complete read depth
and allele frequency on a per-sample, per-variant level.

To provide a molecular (non-visual) form of validation
to at least a few of the variant calls, we performed digital
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PCR. Variants were validated in two separate patients for
two different genes, STK11 and KMT2D (each unique
to one patient). For each variant, validation was observe
in additional samples from the same patient. Further, in
these examples, the allele frequencies from digital PCR
strongly corresponded to those from NGS. Further details
are available in Additional file 1: Table S1.

Discussion

While our study included one type of tumor (NSCLC)
from four patients, our goal here was to develop meth-
ods for better analysis of somatic mutations from IONT
data. Although our results and conclusions are meant to
be strictly interpreted for research rather than clinical set-
tings, we surmise that the analytical methods we outline
in our present study are generalizable to various somatic
study designs, particularly using IONT sequencing data.
Further, features of the NGS data or genome context
could be incorporated to improve the performance of the
individual callers, tuning some of the parameters of the
algorithms. We did not attempt to do so in this study. Such
strategies were explored elegantly in [37].

In our study we performed an evaluation of multiple
strategies for identifying somatic point mutations in data
from the Ion Torrent sequencing platform. We began with
the existing software packages Ion Reporter (IR), Varscan
(VS), and MuTect with a modification to include vari-
ants excluded only because of its “nearby_gap_events”
filter (MG), which we considered a reasonable modifi-
cation given the implicit presence of gaps in amplicon
sequencing. We also implemented a simple “Poor Man’s”
(PM) variant-subtraction routine based on the indepen-
dent calls made by TVC on tissues and paired normal
samples. We then applied various combinations of these
callers, considering both unions and intersections of vari-
ant sets from individual methods to explore a range of
tradeoffs among sensitivity and PPV. Since it is probable
that some sites with a true variant were not picked up by
any of the 4 methods, the estimates of sensitivity we give
below serve as an upper bound.

Among the single callers, IR offered perhaps the most
reasonable tradeoff of PPV and sensitivity, capturing 83%
of all discovered variants (“sensitivity”) with a validation
rate among them (“PPV”) of 50%. We also considered
2-way and higher order combinations to explore wider
ranges of metrics that might be appropriate for different
settings. For example, requiring a variant to be called by
two methods increases PPV (over just one of the methods)
at a corresponding cost of sensitivity. This may naturally
be attractive when sorting through a large number of
calls when high validity is important but visual inspec-
tion of reads is not practical. Combinations of IR, MG,
and PM offered flexible ranges of accuracies. For exam-
ple, if a 50% sensitivity is acceptable, then high PPV (95%)
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can be attained with 2-way combinations of MG and
either IR or PM. However, if one had sufficient resources
to perform some validation, or could accept some false
positives, near-perfect sensitivity (all variants discovered)
might perhaps be obtainable by running just two meth-
ods, IR and PM, and accepting initially anything called by
either. Three- and four-way combinations yielded some
examples of small increases in PPV and sensitivity over
the 2-way callers IR U MG and MG U PM, but given
our limited sample size it is unclear how quantifiable
this is.

Where specificity approaches unity, as we observed with
“Any Three” callers and for particular 2-way combina-
tions, the value of visual validation becomes debatable. It
may then be necessary only to validate the larger fraction
that are called by no more than 2 callers. Additional filters
for homopolymers, low-coverage calls, and higher stan-
dards for presence in normal, could also easily be applied
to the results. This might improve calling enough to obvi-
ate the need for running one or more of the methods.

In particular, running VS may offer many useful results
or features but, for practical purposes in these data, should
be run in combination with another caller, as we have
done in this evaluation, particularly with IR or a version of
PM. However, in these data, VS is largely redundant with
MG, and, since none of the 34 examined variants called
by VS only was found to be valid, one might consider
eliminating VS from the caller set without much adverse
effect. The advantage of retaining VS is in refining the PPV
of other callers, at the expense of roughly doubling the
computation requirement.

Not surprisingly, accuracy was relatively better in exonic
regions than in introns. This matches intuition because
the exons are typically more complex regions than introns,
meaning that there are likely to be fewer homopoly-
mer regions in the exome than in intronic regions of
the genome (though of course, runs of homopolymeric
codons do occur). Since our data set is specifically targeted
to a gene set (lon Torrent’s Comprehensive Cancer Panel,
409 genes), we intend to incorporate exclusion of intronic
calls into our prospective workflow.

We noted variants that were found in all or the majority
of sample CNBs from a particular patient. Some vari-
ants exhibit more intra-tumoral heterogeneity (ITH) and
were found in few CNBs or in one biopsy, albeit these
were relatively rarer. It cannot be neglected that, using
the select sequencing platform and calling strategies, vari-
ants are more challenging to detect in more complex ITH.
Nonetheless, the presence of variants in CNBs of one
patient but not in biopsies from another patient provides,
indirectly, confidence on the validity of these variants.
Previous large-scale sequencing efforts have underscored
driver mutated genes in NSCLC [6-38, 38, 39]. In our set
of four patients, we found “valid” variants in a couple of
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mutated drivers such as KEAPI, STK11, KMT2D (also
known as MLL2) and TP53. It is important to mention
that these mutated driver genes were detected in spe-
cific patients and in the majority of tumor samples from
those specific patients. Also, one patient (smoker lung
adenocarcinoma) exhibited both driver TP53 and KEAPI
mutations, a mutation profile that has been previously
described to be typical of smoker lung adenocarcinoma
patients [7]. Based on these initial observations (identi-
fication of mutated bona fide NSCLC drivers), we draw
at least some confidence in our variant calling results.
Nonetheless, using digital PCR (QuantStudio Life Tech-
nologies platform), we confirmed the presence of vari-
ants in STK11 and KMT2D in two different patients
(Additional file 1: Table S1). Because we performed a
limited validation analysis on a number of variants, the
possibility of failed validation (either due to false positives
by the calling algorithms or false negatives due to limita-
tions of using custom primers and digital PCR) cannot be
ruled out.

It is important to note that our study utilized frozen
NSCLC tissues that typically display adequate quality of
double-stranded genomic DNA and not FFPE processed
specimens that are typically used for NGS assays in the
clinic and comprise artificial base changes due to fixation.
Although FFPE specimens better emulate the expected
quality of sequencing in the clinic, we opted to use frozen
tissues here, since this study represents our first attempt
to compare and contrast different calling algorithms to
improve base calling quality from IONT sequencing data.
It is important to mention that the Ion Torrent sequenc-
ing platform has several limitations that we do not probe
in the present study. Identification with precision of small
insertions and deletions (indels) using the Ion Torrent
platform is challenging. This limitation is significant in
studies of NSCLC since actionable (responsive to tyro-
sine kinase inhibitors) exon 19 deletions in the EGFR
oncogene are common in non-smoker NSCLC patients
(mainly of the adenocarcinoma subtype). In this context,
the necessity for caution arises in interpreting sequenc-
ing results, particularly in the clinical (e.g. CLIA) setting,
generated by the Ion Torrent platform. A more complete
evaluation of variants in a study like ours would ide-
ally include additional automated validation procedures,
such as orthogonal sequencing technology, beyond sim-
ply evaluating variants by visual inspection. To partly
address this need, we did validate a couple of the dis-
covered variants by digital PCR, variants in STK11 and
KMT2D. Yet, these aforementioned limitations notwith-
standing, our study’s findings warrant further inves-
tigation of the outlined analytical methods in future
studies aimed at confidently distinguishing mutations
from sequencing artifacts in FFPE specimens sequenced
with IONT.
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Conclusion

This investigation provides a rough set of parameters
with which an investigator can design a variant calling,
and accompanying validation, strategy for a set of exper-
iments. It also suggests improvements in variant calling
for such data based on tiered strategies (such as accepting
any variant called by 3 methods and visually inspecting
those called by fewer). Of the several strategies explored
here, selection of the one to be considered optimal may be
dependent on the tissues being investigated, the expected
tumor cellularities (and thus cancer cell fractions), and the
resources available for validation (visual or molecular), as
well as other issues intrinsic to an individual study design.

Additional file

Additional file 1: Supplementary Materials. (PDF 1208 kb)
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