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Abstract

Background: Many R packages have been developed for transcriptome analysis but their use often requires
familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes.
Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data
transformations, which can be difficult to track.

Results: Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with
a uniform user interface and graphical data management that allows non-programmers to interactively explore
transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and
provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to
represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports
automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be
saved, shared and reproduced.

Conclusions: PIVOT will allow researchers with broad background to easily access sophisticated transcriptome
analysis tools and interactively explore transcriptome datasets.
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Background
Technologies such as RNA-sequencing measure gene ex-
pressions and present them as high-dimensional expression
matrixes for downstream analyses. In recent years, many
programs have been developed for the statistical analysis of
transcriptomics data, such as edgeR [1] and DESeq [2] for
differential expression testing, and monocle [3], Seurat [4],
SC3 [5] and SCDE [6] for single cell RNA-Seq data analysis.
Besides these, the Comprehensive R Archive Network
(CRAN) [7] and Bioconductor [8] host various statistical
packages addressing different aspects of transcriptomics
study and provides recipes for a multitude of analysis work-
flows. Making use of these R analysis packages requires ex-
pertise in R and often custom scripts to integrate the
results of different packages. In addition, many exploratory
analyses of transcriptome data involve repeated data manip-
ulations such as transformations (e.g., normalizations), fil-
tering, merging, etc., each step generating a derived dataset
whose version and provenance must be tracked. Previous

efforts to address these problems include designing stan-
dardized workflows [9], building a comprehensive package
[4] or assembling pipelines into integrative platforms such
as Galaxy [10] or Illumina BaseSpace [11]. Designing work-
flows or using large packages still requires a significant
amount of programming skills and it can be difficult to
make various components compatible or applicable to spe-
cific datasets. Integrative platforms offer greater usability
but trades off flexibility, functionality and efficiency due to
limitations on data size, parameter choice and computing
power. For example, the Galaxy platform is designed as
discrete functional modules which require separate file
inputs for different analysis. This design not only makes
user-end file format conversion complicated and time-
consuming, but also breaks the integrity of the analysis
workflow, limiting the sharing of global parameters, filter-
ing criteria and analysis results between modules. Tools
such as RNASeqGUI [12], START [13], ASAP [14] and
DEApp [15] provide an interactive graphical interface for a
small number of packages. But, these and other similar
packages all adopt a rigid workflow design, have limited
data provenance tracking, and none of the packages provide
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mechanisms for tracking, saving and sharing analysis re-
sults. Furthermore, many web-based applications require
users to upload data to a server, which might be prohibited
by HIPPA (Health Insurance Portability and Accountability
Act of 1996) for clinical data analysis.
Here we developed PIVOT, an R-based platform for

exploratory transcriptome data analysis. We leverage the
Shiny framework [16] to bridge open source R packages
and JavaScript-based web applications, and to design a
user-friendly graphical interface that is consistent across
statistical packages. The Shiny framework translates
user-driven events (e.g. pressing buttons) into R inter-
pretable reactive data objects, and present results as dy-
namic web content. PIVOT incorporates four key
features that assists user interactions, integrative analysis
and provenance management:

� PIVOT directly integrates existing open source
packages by wrapping the packages with a uniform
user-interface and visual output displays. The user
interface replaces command line options of many
packages with menus, sliders, and other option con-
trols, while the visual outputs provide extra inter-
active features such as change of view, active
objects, and other user selectable tools.

� PIVOT provides many tools to manipulate a dataset
to derive new datasets including different ways to
normalize a dataset, subset a dataset, etc. In
particular, PIVOT supports manipulating the
datasets using the results of an analysis; for example,
a user might use the results of differential gene
expression analysis to select all gene satisfying some
p-value filter. PIVOT implements a visual data
management system, which allows users to create
multiple data views and graphically display the
linked relationship between data variants, allowing
navigation through derived data objects and
automated re-analysis.

� PIVOT dynamically bridges analysis packages to
allow results from one package to be used as inputs
for another. Thus, it provides a flexible framework
for users to combine tools into customizable
pipelines for various analysis purposes.

� PIVOT provides facilities to automatically generate
reports, publication-quality figures, and reproducible
computations. All analyses and data generated in an
interactive session can be packaged as a single R object
that can be shared to exactly reproduce any results.

Implementation
PIVOT is written in R and is distributed as an R pack-
age. It is developed using the Shiny framework, multiple
R packages and a collection of scripts written by mem-
bers of J. Kim’s Lab at University of Pennsylvania.

PIVOT exports multiple Shiny modules [17] which can
be used as design blocks for other Shiny apps, as well as
R functions for transcriptomics analysis and plotting. A
proficient R user can easily access data objects, analysis
parameters and results exported by PIVOT and use them
in customized scripts. PIVOT has been tested on
macOS, Linux and Windows. It can be downloaded from
Kim Lab Software Repository (http://kim.bio.upenn.edu/
software/pivot.shtml).

Results
Data input and transformations
Read counts obtained from RNA-Seq quantification
tools such as HTSeq [18] or featureCounts [19] can be
directly uploaded into PIVOT as text, csv or Excel files.
Data generated using the 10× Genomics Cell Ranger
pipeline can also be readily read in and processed by
PIVOT. PIVOT automatically performs user selected
data transformations including normalization, log trans-
formation, or standardization. We have included mul-
tiple RNA-Seq data normalization methods including
DESeq normalization [20], trimmed mean of M-values
(TMM) [21], quantile normalization [22], RPKM/TPM
[23], Census normalization [24], and Remove Unwanted
Variation (RUVg) [25] (Table 1). If samples contain
spike-in control mixes such as ERCC [26], PIVOT will
also separately analyze the ERCC count distribution and

Table 1 List of tools currently integrated/implemented in PIVOT

PIVOT Modules Tools Integrated

Normalization DESeq, Modified DESeq, TMM, Upper quartile,
CPM/RPKM/TPM, RUV, Spike-in regression, Census

Feature/Sample
Filtering

List based, Expression based and Quality based
filters

Basic Analysis
Modules

Data distribution plots, Dispersion analysis,
Rank-frequency plot, Spike-in analysis, Feature
heatmap, etc.

Differential
Expression

DESeq2, edgeR, SCDE, Monocle, Mann-Whitney
U test

Clustering/
Classification

Hierarchical, K-means, SC3, Community detection,
Classification with caret, Cell state ordering with
Monocle2/Diffusion pseudotime

Dimension
Reduction

PCA, t-SNE, Metric/Non-Metric MDS, penalized
LDA,
Diffusion Map

Correlation Analysis Pairwise scatter plots, Sample/feature correlation
heatmap,
Co-expression analysis

Gene Set
Enrichment Analysis

KEGG pathway analysis, Gene ontology analysis

Network Analysis STRING protein association network, Regnetwork
visualization, Mogrify based trans-differentiation
factor prediction

Other Utilities Data map, Gene ID/Name conversion, BioMart
gene annotation query, Venn diagram, Report
generation, State saving
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allow users to normalize the data using the ERCC con-
trol. Existing methods can be customized by the user by
setting detailed normalization parameters. For example,
we implement a modification of the DESeq method by
making the inclusion criterion a user set parameter,
making it more applicable to sparse expression matrices
such as single cell RNA-Seq data [27].
Users can upload experiment design information such

as conditions and batches, which can be visualized as
annotation attributes (e.g., color points/sidebars) or used
as model specification variables for downstream analyses
such as differential expression. PIVOT supports flexible
operations to filter data for row and column subsets as
well as for merging datasets, creating new derived data-
sets. Multiple summary statistics and quality control
plots are automatically generated to help users identify
possible outliers. Users can manually select samples for
analysis, or specify statistical criteria on analysis results
such as expression threshold, dropout rate cutoff, Cook’s
distance or size factor range to remove unwanted fea-
tures and samples.

Visual data management with data map
When analyzing large datasets, a common procedure is
to first perform quality control to remove low quality el-
ements, then normalize the data and finally generate dif-
ferent data subsets for various analysis purposes. Some
analyses require filtering out genes with low expressions,
while others are designed to be performed on a subset of

the genes such as transcription factors. During second-
ary analyses, outliers may be detected requiring add-
itional scrutiny. All these data manipulations generate
a network of derived datasets from the original data
and require a significant amount of effort to track.
Failure to track the data lineage could affect the re-
producibility and reliability of the study. Furthermore,
an investigator might wish to repeat an analysis over
a variety of derived datasets, which may be tedious
and error-prone to carry out manually. To address
this problem, we implemented a graphical data man-
agement system in PIVOT.
As the user generates derived datasets with various

data manipulations, PIVOT records and presents the
data provenance in an interactive tree graph, the “Data
Map”. As shown in Fig. 1, each node in the data map
represents a derived dataset and the edges contain infor-
mation about the details of the derivation operation.
Users can attach analysis results to the data nodes as
interactive R markdown reports [28] and switch between
different datasets or retrieve analysis reports by simply
clicking the nodes. Upon switch to a new dataset se-
lected from the Data Map, PIVOT automatically re-runs
analyses and updates parameter choices when needed.
Thus, a user can easily compare results of a workflow
across derived datasets. The data map is generated with
the visNetwork package [29] and can be directly edited,
so that users can rename nodes, add notes, or delete
data subsets and analysis reports that are no longer

Fig. 1 Data management with data map. The map shows the history of the data change and the association between analysis and data nodes.
Users can hover over edges to see operation details, or click nodes to get analysis reports or switch active subsets
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useful. The full data history is also presented as down-
loadable tables with all sample and feature information
as well as data manipulation details.

Comprehensive toolset for exploratory analysis
PIVOT is designed to aid exploratory analysis for
both single cell and bulk RNA-Seq data, thus we have
incorporated a large set of commonly used tools (see
Table 1, also Additional file 1: Table S1 for compari-
son with other similar applications). PIVOT supports
many visual data analytics including QC plots (num-
ber of detected genes, total read counts, dropout rates
and estimated size factors; Fig. 2a, data from [30]),
transcriptome statistics plots (e.g., rank-frequency

plots, mean-variability plots, etc.; Fig. 2b), and sample
and feature correlation plots (e.g., heatmaps, smooth-
ened scatter plots, etc.). All visual plots feature inter-
active options and a query function is provided which
allows users to search for features sharing similar ex-
pression patterns with a target feature. PIVOT pro-
vides users extensive control over parameter choices.
Each analysis module contains multiple visual controls
allowing users to adjust parameters and obtain up-
dated results on the fly.

Integrative analysis and interactive visualization
PIVOT transparently bridges multiple sequences of
analyses to form customizable analysis pipelines. For

Fig. 2 Selected analysis modules in PIVOT. a The table on the left lists basic sample statistics. The selected statistics are plotted below the table,
and clicking a sample in the table will plot its count distribution. b Mean-Standard deviation plot (top left, with vsn package), rank frequency plot
(top right) and mean variability plot (bottom, with Seurat package). c The t-SNE module plots 1D, 2D and 3D projections (3D not shown due to
space). d Feature heatmap with the top 100 differentially expressed genes reported by DESeq2 likelihood ratio test
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example, with single cell data collected from hetero-
geneous tumor or tissue, a user can first perform
PCA or t-SNE [31] (Fig. 2c) to visualize the low di-
mensional embedding of the data. If there is clear
clustering pattern, possibly originated from different
cell types, the user can directly specify cell clusters by
dragging selection boxes on the graph, or perform K-
means or hierarchical clustering with the projection
matrix. One can proceed to run DE or penalized
LDA [32] to identify cluster-specific marker genes,
which can then be used to filter the datasets for gen-
erating a heatmap showing distinctive expression pat-
tern across cell types (Fig. 2d). Within each
determined cell type, a user may further apply the
walk-trap community detection method [33] to iden-
tify densely connected network of cells, which are in-
dicative of potential subpopulations [34].
As another example, for time-series data such as cells

collected at different stages of development or differenti-
ation, one can use diffusion pseudotime (DPT) [35],
which reconstructs the lineage branching pattern based
on the diffusion map algorithm [36], or monocle [3],
which implements an unsupervised algorithm for
pseudo-temporal ordering of single cells [37]. We have
incorporated the latest monocle 2 workflow in PIVOT,
including cell state ordering, unsupervised cell cluster-
ing, gene clustering by pseudo-temporal expression pat-
tern and cell trajectory analysis. Besides the DE method
implemented in monocle, one can also run DESeq,
edgeR, SCDE or the Mann-Whitney U test. A user can
specify whether to perform basic DE analysis or a multi-
factorial DE analysis with customized formulae for com-
plex experimental designs such as time-series or control-
ling for batch effects. Results are presented as dynamic
tables including all essential statistics such as maximum
likelihood estimation and confidence intervals. Each
gene entry in the table can be clicked and visualized as
violin plots or box plots, showing the actual expression
level across conditions. Once DE results are obtained,
the user can further explore the connections between
DE genes and identify potential trans-differentiation fac-
tors as introduced in the Mogrify algorithm [38]. PIVOT
provides several extensions of functionality from the ori-
ginal Mogrify method. The network analysis module al-
lows users to plot the log fold changes (LFC) of DE
genes in a protein-protein interaction network obtained
from the STRING database (Fig. 3a) [39] or a directed
regulatory network graph constructed from the Regnet-
work repository (Fig. 3b) [40]. With scoring based on
the p-value and log fold change, the graph can be
zoomed to only include top-rank genes, showing the
regulatory “hot spot” of the network. PIVOT provides
users with multiple options for defining the network in-
fluence score of transcription factors, and will produce

lists of potential trans-differentiation factors based on
the final ranking. As shown in Fig. 3c, with the FAN-
TOM5 expression data of fibroblasts and ES cells [41],
PIVOT correctly reports OCT4 (POU5F1), NANOG and
SOX2 as key factors for trans-differentiation [42]. In
addition to the DESeq results used by the original
Mogrify algorithm, a user can choose to use SCDE or
edgeR results to perform trans-differentiation analysis
on single cell datasets.
Another useful feature of PIVOT is that it provides

users multiple visualization options by exploiting the
power of various plotting packages. For example,
users can either generate publication-quality heatmap
graphs (implemented in gplots package [43]), or inter-
actively explore the heatmap with the heatmaply view
[44]. For principal component analysis, PIVOT uses
three different packages to present the 2D and 3D
projections. The plotly package [45] displays sample
names and relevant information as mouse-over labels,
while the ggbiplot [46] presents the loadings of each
gene on the graph as vectors. The threejs package
[47] fully utilizes the power of WebGL and outputs
rotatable 3D projections. In the network analysis
module, we utilize both igraph [48] and networkD3
[49] package to plot the transcription factor centered
local network. The latter provides a force directed
layout, which allows users to drag the nodes and
visualize the physical simulation of the network
response.

Reproducible research and complete provenance capture
PIVOT automatically records all data manipulations
and analysis steps. Once an analysis has been per-
formed, users will have the option of pasting related
R markdown code to a shinyAce report editor [50],
or download the report as either a pdf or interactive
html document. All results and associated parameters
will be captured and saved to the report along with
user-provided comments. PIVOT states are automatic-
ally saved in cases of browser refresh, crash or user
exit, and can also be manually exported, shared and
loaded. Thus, all analyses performed in PIVOT are
fully encapsulated and can be shared or disseminated
as a single data + provenance object, allowing univer-
sally reproducible research.

Conclusions
We developed PIVOT for easy, fast, and exploratory
analysis of the transcriptomics data. Toward this goal
we have automated the analysis procedures and data
management, and we provide users with detailed ex-
planations both in tooltips and a user manual. PIVOT
exploits the power of multiple plotting packages and
gives users full control of key analysis and plotting
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parameters. Given user input that leads to function
errors, PIVOT will alert the user and provide correct-
ive suggestions. PIVOT states and reports can be
shared between researchers to facilitate the discussion
of expression analysis and future experimental design.
PIVOT is designed to be extensible and future ver-
sions will continue to integrate popular transcriptome
analysis routines as they are made available to the re-
search community.

Availability and requirements
Project name: PIVOT.
Project home page: http://kim.bio.upenn.edu/software/
pivot.shtml
Operating systems: macOS, Linux, Windows.
Programming language: R.
Other requirements: Dependent R packages.
License: GNU GPL.
Any restrictions to use by non-academics: none.

Additional file

Additional file 1: Table S1. Comparison of tools integrated/
implemented in PIVOT to other similar applications. (DOCX 80 kb)
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network centered on that TF
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