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Abstract

Background: Computational scanning of peptide candidates that bind to a specific major histocompatibility
complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are
being actively developed. Recently, machine-learning-based methods have generated successful results by training
large amounts of experimental data. However, many machine learning-based methods are generally less sensitive
in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional
neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is
known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be
encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC
binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC
binding, but also sensitively detect locally-clustered interactions.

Results: Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction
model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest
benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular,
the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were O.
86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher
than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could
synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces
for peptide-MHC class | binding predictions using the DCNN. ConvMHC web server can be accessible via http://
jumong kaist.ac kr:8080/convmhc.

Conclusions: We developed a novel method for peptide-HLA-I binding predictions using DCNN trained on ILA data
that encode peptide binding data and demonstrated the reliable performance of the DCNN in nonapeptide binding
predictions through the independent evaluation on the latest [EDB benchmark datasets. Our approaches can be
applied to characterize locally-clustered patterns in molecular interactions, such as protein/DNA, protein/RNA, and
drug/protein interactions.
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Background

Cytotoxic T lymphocytes (CTLs) play a key role in elimin-
ating infections caused by intracellular pathogens. Since
the CTL T-cell receptor recognizes foreign peptides in
complex with major histocompatibility complex (MHC)
molecules on the infected cell surface, the response of the
host immune system to pathogens can be activated by
peptide binding of MHC molecules. Determining peptides
that bind specific MHC molecules is important for identi-
fying T cell epitopes and can facilitate the development of
peptide-based vaccines and design of immunotherapies.
However, experimental identification of peptide-MHC is
time-consuming and laborious; computer-assisted binding
predictions can be a cost-effective and practical alternative
and various methods have been developed [1].

Sette and Sidney grouped HLA class I (HLA-I) mole-
cules into HLA supertypes using binding specificities char-
acterized by the binding motifs of peptides [2]. Early
peptide binding prediction methods were based on search-
ing for allele-specific peptide binding motifs [3, 4]. As more
experimental data became available, statistical methods
have been developed using positional scoring matrixes that
utilize amino acid occurrence frequencies at each position
[5, 6]. Recently, more sophisticated machine learning
methods [7-9] have generated the most successful results
by training large amount of experimental data derived from
public databases, such as the Immune Epitope Database
[10]. Allele-specific machine learning methods generally
achieve more accurate predictions as more data are learned
for each HLA-I allele. A significant portion of currently
available data was biased towards a limited number of
common alleles [11], and this makes it difficult to predict
peptide bindings for rare alleles. Sequence-based pan-
specific methods have been proposed to overcome this
problem and transfer the knowledge of other peptide-
MHC binding information to improve the predictions for
rare and even new alleles [12—14].

The pan-specific methods utilize information on not only
the peptide sequence but also the MHC residues in
peptide-MHC contact sites derived from the crystal struc-
tures of peptide-MHC complexes. The contact sites are
clustered around the peptide anchor positions and the
binding pockets of MHC molecules [14—16]. The amino
acids of a peptide interact with MHC molecules in com-
pensatory and synergistic manner rather than independ-
ently [17-19]. A large-scale structural simulation study of
the peptide-MHC binding landscapes revealed statistically
significant pairwise correlations in amino acid preferences
at different positions of a peptide [15]. Many machine
learning-based methods have a risk of learning the features
associated with amino acids of peptide and the HLA-I mol-
ecule independently. Therefore, they could be less sensitive
in recognizing the locally-clustered interactions, which
could synergistically produce peptide-HLA-I binding.
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Deep convolutional neural network (DCNN) is a branch
of deep learning methods that extract and learn high-level
representations (features or patterns) from the low-level
raw data through nonlinear transformations of multiple
layers. It was originally designed to process the spatial and
temporal data, particularly two-dimensional images with
multiple color channels. DCNNs are inspired by the ani-
mal visual cortex and imitate cognitive functions of the
cortex using three key concepts: capturing local motifs of
highly connected pixels, invariance to the motif location,
and hierarchical composition of the local motifs [20].
DCNNs have achieved successful results in many object
recognition and detection tasks [21-23]. Recent studies
have proposed bioinformatics applications of DCNNs in-
cluding protein contact predictions [24] and small mol-
ecule bioactivity predictions [25, 26].

In this study, we propose a novel method for pan-
specific peptide-HLA-I binding prediction using DCNN.
The peptide-HLA-I binding structure can be encoded into
two-dimensional image-like array (ILA) data. A contact
site between the peptide and MHC molecule is corre-
sponded to a “pixel” of the ILA data. For each “pixel”,
physicochemical property values of the amino acid pair at
the contact site are assigned to its channels. The locally-
clustered contact sites at peptide anchor positions and
binding pockets of the HLA-I molecule form local motifs
on the ILA data, which can be captured by DCNN. The
resultant multi-channel ILA data were used to train the
DCNN for peptide-HLA-I binding prediction. The DCNN
showed a reliable performance for the independent bench-
mark datasets. In particular, we report that the DCNN sig-
nificantly outperformed other tools in peptide binding
predictions for alleles belonging to the HLA-A3 supertype.
We also highlight the ability of DCNN to recognize the
locally-clustered interactions in three peptides that bind to
HLA-I molecules in synergistic manner.

Methods

Figure 1 shows the schematic representation of overall
training process of our DCNN. Each peptide binding in-
formation was encoded into ILA. The DCNN extracts
low-level features from the ILA and combines them into
high-level features(motifs) through multiple convolu-
tional and pooling layers. The DCNN learns these high-
level features to be used for classifying the ILA into
binder or non-binder through fully connected layers.

Training datasets

For benchmark with other tools, including NetMHCPan
[14], SMM [5], ANN [7], and PickPocket [6], we used
the same training dataset used in these tools. The data-
set was compiled from three sources (the IEDB and the
Sette and Buus laboratories) contained BD2009 and
BD2013 data from [27] and additional binding data,
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Fig. 1 Schematic representation of overall training process of the DCNN. An ILA is converted from peptide binding information of
training dataset. The DCNN extracts low-level features from the ILA and combines them into high-level features(motifs) through multiple
convolutional and pooling layers. The DCNN learns these high-level features to be used for classifying the input ILA into binder or

Classification
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which can be downloaded from the IEDB website
(http://tools.iedb.org/mhci/download/). We used nona-
peptide binding data for HLA-A and -B to generate a
pan-specific prediction model. For the binary classifica-
tion of peptide binding affinities, peptides with a half-
maximal inhibitory concentration (IC50) value of less
than 500 nM were designated as binders. In total, the
training dataset consisted of 118,174 binding data cover-
ing 76 alleles: 37 HLA-A (72,551) and 39 HLA-B

(45,623). Additional file 1: Table S1 shows the detailed
description of the training dataset.

Encoding peptide binding data into ILA data

As depicted in Fig. 2, a peptide binding structure can be
encoded into a width (W) x height (H) ILA with C chan-
nels. The ILA width and height were the number of con-
tact residue of the HLA molecule and the number of
amino acids of the peptide, respectively. A contact site

Color channel vector containing
physicochemical properties for two amino

acids(one of the peptide and the other of the
HLA molecule) at the contact site

assigned to its channels

Fig. 2 Encoding a peptide binding structure into an ILA. The left panel shows the nonapeptide (green)-HLA-A*02:01 (magenta) complex (PDB
entry 1gsf). HLA residues at contact sites are depicted in cyan. The right panel shows the ILA data. The ILA width and height were the number of
contact residue of the HLA molecule and the number of amino acids of the peptide, respectively. A contact site between the peptide and MHC
molecule is corresponded to a “pixel” of the ILA. For each “pixel”, physicochemical property values of the amino acid pair at the contact site are
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between the peptide and MHC molecule is corre-
sponded to a “pixel” of the ILA. For each “pixel”, physi-
cochemical property values of the amino acid pair at the
contact site are assigned to its channels. We used 9
physicochemical scores out of 11 physicochemical scores
suggested by [28] excluding two highly correlated scores
(pairwise correlation, R®>0.8) as the physicochemical
property values of an amino acid; the channel size C is
18, the sum of the number of physiochemical scores of
the amino acid pair at the contact site.

We used 34 HLA-I contact residues proposed by
NetMHCPan [14]. Consequently, the nonapeptide-HLA-
I binding data were encoded into ILA data with the di-
mension of 34 (width) x 9 (height) with 18 channels.

Constructing and training the DCNN

As shown in Fig. 3, our DCNN architecture is closely
based on of the popular DCNN architecture proposed by
Simonyan and Zisserma [23], which uses very small filters
for capturing fine details of images and allows more elab-
orate data transformations through increased depth of the
network. We concatenated three convolution blocks with
two convolution layers and a max pooling layer, and then
connected three dense layers to the ends of the network.
In all convolution layers, convolution filters of 3 x 3 were
used, and the numbers of filters for the convolution blocks
were 32, 64, and 128, respectively. In order to avoid
overfitting, we applied the dropout [29] acting as a
regularization next to each convolution block. The ReLU
[30] activation function was used for nonlinear transform-
ation of the output value of each convolution layer. We
used the Adam optimizer [31] with learning rate 0.001 for
200 epochs.

The DCNN was trained on the ILA data converted from
118,174 binding data covering 76 HLA-I alleles. In order
to prevent the DCNN from overfitting the training data,
the DCNN training was performed using leave-one-out
and 5-fold cross-validations. The ILA data were split into
76 allele subsets in leave-one-out cross-validation and 5
equal sized subsets in 5-fold cross-validation, respectively.
For each cross-validation round, a single subset was
retained as the validation data for testing the DCNN, and
the remaining subsets were used as training data. The
cross-validation was repeated for the number of subsets:
i.e, 76 times in leave-one-out cross-validation and 5 times
in 5-fold cross-validation, with each subset used exactly
once as the validation data. In a single cross-validation
round, training-validation was repeated for maximum of
200 epochs. The training and validation losses were mea-
sured for each epoch, and the training process was
stopped early at the epoch in which the validation loss
had not been decreased for 15 consecutive epochs [32].
We implemented the DCNN using Keras library(https://
github.com/fchollet/keras).
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Fig. 3 The DCNN architecture. The DCNN architecture is closely
based on of the popular DCNN architecture proposed by
Simonyan and Zisserman. Three convolution blocks with two
convolution layers and a max pooling layer are concatenated,
and three classification layers are then connected to the ends of
the network. The dropout was next applied to each convolution
block as a regularization. ReLU was used for the nonlinear

transformation of the output value of each convolution layer

Independent evaluation of the DCNN

Trolle et al. [33] developed a framework for automatic-
ally benchmarking the performance of peptide-MHC
binding prediction tools. Based on this framework, the
IEDB has evaluated the performance of participating
prediction tools on IEDB experimental datasets, which
are updated weekly, and published the results via the
website (http://tools.iedb.org/auto_bench/mhci/weekly/).
We performed a blind test of the DCNN using the latest
experimental IEDB data accumulated since March 21,
2014. The accumulated data were grouped by IEDB ref-
erences, alleles, and measurement types and split into 68
test subsets consisting of 43 subsets for 15 HLA-A al-
leles and 25 subsets for 10 HLA-B alleles (Additional file
2: Table S4). We performed the benchmark with other
participating tools, including NetMHCPan, SMM, ANN,
and PickPocket, for each subset. For the reliable bench-
mark, we used the latest standalone version of the pre-
diction tools downloaded from the IEDB website (http://
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tools.iedb.org/mhci/download/), which were trained on
the same training data as that of our DCNN. The F1
score, the harmonic mean of precision and recall, was
used to quantify the prediction performance, where an
F1 score reaches its best value at 1 and worst value at 0.
The F1 score is defined as:

precision X recall
Fl=2xE—m 20
precision + recall

. TP
recision = ————
p TP + FP’
; TP
recall = —m—

TP + FN’

where TP, FP, and FN are the numbers of true positives,
false positives, and false negatives, respectively.

Identifying informative pixels recognized by the DCNN

In order to find locally-clustered interactions, informative
pixels captured by the DCNN on the ILA classified as a
binder were investigated. This was enabled due to the
development of several recent methods that identify
informative pixels of DCNN inputs, including Deconvnet
[34], guided backpropagation [35], and DeepLIFT [36].
The informative pixels were found by using high-
resolution DeepLIFT method in this study.

Results and discussion

Training results

In order to compare the prediction performance of the
DCNN and other prediction methods, the DCNN was
trained on the dataset that was used in other tools. The
118,174 nonapeptide-HLA-I binding data for 76 HLA-A
alleles (72,551) and 37 HLA-B alleles (45,623) were
encoded into the two-dimensional ILA data. The pre-
dictive performance was evaluated with leave-one-out
and 5-fold cross-validation approaches. DCNN models
were trained up to 200 epochs with early stopping con-
dition. The mean validation losses were 0.318 in leave-
one-out and 0.254 in 5-fold cross-validation, and the
mean validation accuracies were 0.855 and 0.892, re-
spectively (Table 1), and this indicate that our DCNN
was able to be generally trained on the ILA data without
much overfitting problems. Additional file 3: Table S2
and Additional file 4: Table S3 show the detailed cross-
validation results.
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Table 1 Summary of cross-validation results

Average accuracy
0.855

Average loss
0318

Leave-one-out

5-fold 0.892 0.254

Independent evaluation of the DCNN

We performed a blind test of the DCNN using the latest
IEDB experimental data accumulated since March 21,
2014. The data were grouped by IEDB references, alleles,
and measurement types and split into 68 test subsets con-
sisting of 43 subsets for 15 HLA-A alleles and 25 subsets
for 10 HLA-B alleles. For each subset, the prediction per-
formances of other prediction tools, including NetMHC-
Pan, SMM, ANN, and PickPocket, were measured. The F1
scores were used to quantify their predictive perfor-
mances. Table 2A and 2B summarize the prediction re-
sults for HLA-A and HLA-B test subsets, respectively,
and Additional file 2: Table S4 shows the detailed predic-
tion results. The mean and median of the F1 scores of the
DCNN were 0.638 and 0.696, respectively; these values
were slightly higher than those of other tools, suggesting
that the DCNN was more reliable in nonapeptide-HLA-A
binding predictions (Table 2A). The mean of the F1 scores
of the DCNN was 0.593, which was almost the same as
those of other tools; however, the median was 0.667,
which was higher than that of the other tools, indicating
that the DCNN was also reliable in nonapeptide-HLA-B
binding predictions (Table 2B).

In particular, our DCNN showed significantly higher pre-
diction performance than other prediction tools for the
subsets for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01
alleles belonging to the HLA-A3 supertype (Table 3).

The HLA-A3 supertype were known to have import-
ant locally-clustered interactions that synergistically sta-
bilizes the peptide-MHC complexes [26]. We thus
investigated whether the trained DCNN was captured
this features by inspecting its informative sites or pixels
for three peptide-MHC complex pairs that were cor-
rectly predicted by our method but were failed in other

Table 2 Prediction results for HLA-I test subsets
(A) Summary of prediction results for 43 HLA-A test subsets

DCNN  NetMHCPan  SMM  ANN  PickPocket
Mean 0638  0.608 0601 0579 0.561
Median 0696 0667 0667 0667 0625
Standard Deviation 0230  0.267 0250 0286 0318
(B) Summary of prediction results for 25 HLA-B test subsets

DCNN  NetMHCPan  SMM  ANN  PickPocket
Mean 0593  0.606 0578 0606 0.560
Median 0667 0625 0615 0643 0593
Standard Deviation 0286  0.286 0302 0290 0277
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Table 3 Prediction results for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles

IEDB ID Allele Meas. DCNN NetMHCPan SMM ANN PickPocket

Type

315312 HLA-A*31:01 binary 0.857 0.667 0.571 0.667 0400

1031253 HLA-A*03:01 ic50 0.941 0.875 0.667 0.875 0.941

1026840 HLA-A*68:01 binary 0340 0.275 0456 0.208 0.045

1026840 HLA-A*68:01 ic50 0.667 0.600 0.583 0444 0.143
Mean 0.701 0.604 0.569 0.549 0.382

methods: KVFGPIHEL for HLA-A*31:01, RAAPPPPPR
for HLA-A*03:01, and LPQWLSANR for HLA-A*68:01.

In KVFGPIHEL-HLA-A*31:01, the amino acids K, V,
and F of the peptide were preferred at the primary and
second anchor positions 1, 2, and 3, respectively, but the
nonpolar and hydrophobic L was deleterious at the pri-
mary anchor position 9, and the charged H was tolerated
at the secondary anchor position 7. We investigated the
informative pixels on the transformed ILA data captured

by the DCNN to identify the locally-clustered motifs at
positions 1, 2, and 3. Fig. 4a shows that the informative
pixels with higher red intensities (red and blue intensities
indicated the degree of contribution to the binder and
non-binder, respectively) were dominant and locally-
clustered at the positions 1, 2, and 3, whereas the inform-
ative pixels with higher blue intensities were located at
position 9. These findings were consistent with the fact
that the locally-clustered patterns recognized by the
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Fig. 4 Informative pixels on the ILA data. (@) In KVFGPIHEL-HLA-A*31:01, the informative pixels with higher red intensities (red and blue intensities
indicated the degree of contribution to the binder and non-binder, respectively) were dominant and locally-clustered at the positions 1, 2, and 3
(b) In RAAPPPPPR-HLA-A*03:01, informative pixels with higher red intensities were dominant and locally-clustered at the peptide positions 1 and
2 (c) In LPQWLSANR-HLA-A*68:01, informative pixels with red intensities were slightly dominant at positions 4, 5, and 6 and at the primary anchor
position 9, with clustering at position 9
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DCNN were informative when the KVFGPIHEL was clas-
sified as a binder.

In RAAPPPPPR-HLA-A*03:01, the positively charged
amino acid R of the peptide was preferred at the secondary
anchor position 1, but the amino acids A, and R at the pri-
mary and secondary anchor positions 2, 3, and 9, respect-
ively, were tolerated. Considering binding contributions of
the individual amino acids at the primary and secondary
anchor positions, the peptide could not be a binder. Fig. 4b
shows that the informative pixels with higher red intensities
were dominant and locally-clustered at the peptide posi-
tions 1 and 2, thus suggesting that the locally-clustered in-
teractions between the amino acids at the peptide positions
could produce stable binding together.

In LPQWLSANR-HLA-A*68:01, the positively charged
R of the peptide was preferred at the primary anchor pos-
ition 9, but the L, P, and Q were not preferred at the pri-
mary and secondary anchor positions 1, 2, and 3,
respectively. The amino acids at positions 4, 5, 6, and 7
were tolerated. As shown in Fig. 4c, informative pixels with
red intensities were slightly dominant at positions 4, 5, and
6 and at the primary anchor position 9, with clustering at
position 9, thus indicating that amino acids at positions 4,
5, 6, and 9 synergistically induced stable binding.

We found that our DCNN was able to correctly predict
the three binder peptides KVFGPIHEL, RAAPPPPPR,
and LPQWLSANR with preferred amino acids only at
some primary and secondary anchor positions but with
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amino acids that could synergistically induce stable bind-
ing. This small number of cases are insufficient to support
the general higher prediction performance of DCNN ap-
proach for the HLA-A3 supertype, but these cases provide
the possibilities that the DCNN can capture the locally-
clustered interaction patterns in the peptide-HLA-A3
binding structures, which cannot be easily captured by
other methods.

Web server

We developed ConvMHC(http://jumong kaist.ac.kr:8080/
convmbhc), a web server to provide user-friendly web inter-
faces for peptide-MHC class I binding predictions using
our DCNN. The main web interface consists of the input
form panel (left) and the result list panel (right) as shown
in Fig. 5. Users can submit multiple peptide sequences
and a HLA-I allele in the input form panel. Once the pre-
diction process is completed, the user can see the predic-
tion results of the input peptides in the result list panel.
For each prediction result, the user can also identify the
informative pixels captured by the DCNN on the ILA data
through a pop-up panel.

Conclusions

In this study, we developed a novel method for pan-specific
peptide-HLA-I binding prediction using DCNN trained on
ILA data that were converted from experimental binding
data and demonstrated the reliable performance of the
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submit multiple peptide sequences and a HLA-I allele in the input form panel. Once the prediction process is completed, the user can see the
prediction results of the input peptides in the result list panel. For each prediction result, the user can also identify the informative pixels captured
by the DCNN on the transformed binding ILA data through a pop-up panel
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DCNN in nonapeptide binding predictions through the in-
dependent evaluation on IEDB external datasets. In particu-
lar, the DCNN significantly outperformed other tools in
peptide binding predictions for alleles belonging to the
HLA-A3 supertype. By investigating the informative pixels
captured by the DCNN on the ILA data converted from the
binder nonapeptides that were predicted correctly by the
DCNN but were failed in other methods, we found that the
DCNN was better able to capture locally-clustered interac-
tions that could synergistically produce stable binding in the
peptide-HLA-A3 complexes: KVFGPIHEL-HLA-A*31:01,
RAAPPPPPR-HLA-A*03:01, and LPQWLSANR-HLA-
A*68:01.

We anticipate that our DCNN would become more reli-
able in peptide binding predictions for HLA-A3 alleles
through further training and evaluations on more experi-
mental data. DCNNs for MHC class II will be generated
and evaluated in further studies. Moreover, our approaches
described herein will be useful for identifying locally-
clustered patterns in molecular binding structures, such as
protein/DNA, protein/RNA, and drug/protein interactions.
However, it is not easy to build a reliable prediction model
using DCNNs because deep learning tasks require large
amounts of training data to extract high-level and general-
ized representations from the data. Currently, in order to
overcome the limited training data, state-of-the-art learning
technologies, such as generative adversarial nets [37] and
transfer learning [38] are attracting attentions. These tech-
nologies can be effectively applied to generate more reliable
binding prediction models.

Additional files
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