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Abstract

Background: Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology
were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations
between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or compu-
tation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology
Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy
of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks,
creating general graph structures from OWL ontologies that exploit the ontologies’ semantic content remains a
challenge.

Results: We developed a method to transform ontologies into graphs using an automated reasoner while taking into
account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we
can identify relations between classes that are implied but not asserted and generate graph structures that encode for
a large part of the ontologies’ semantic content. We demonstrate the advantages of our method by applying it to
inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that
performance is increased when graph structures are inferred using deductive inference according to our method. Our
software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph.

Conclusions: Onto2Graph is a method to generate graph structures from OWL ontologies using automated
reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

Keywords: Ontology, OWL, Automated reasoning, Semantic similarity, Ontology visualization

Background
An ontology is an explicit representation of a conceptu-
alization of a domain [1, 2], and ontologies are widely
applied in biology and biomedicine for annotation and
integration of data [3]. The BioPortal ontology reposi-
tory alone now lists over 500 ontologies [4], with several
more ontologies under development. In the past, ontolo-
gies in biology were widely developed as directed acyclic
graphs (DAGs) in which nodes stand for classes of enti-
ties within a domain, and edges for relations between
these classes. For example, the classes developmental cell
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growth (GO:0048588), cell growth (GO:0016049) and
cell development (GO:0048468) in the Gene Ontology
(GO) [5] would be represented as nodes, and the rela-
tions between them by an edge from developmental cell
growth to cell growth with an is-a label, and from devel-
opmental cell growth to cell development with a part-of
label [6].
More recently, many ontologies are implemented in

the Web Ontology Language (OWL) [7]. OWL is
a formal language based on Description Logics [8]
and offers a formal, model-theoretic semantics. Conse-
quently, there have been several approaches for con-
verting graph-based representations of ontologies into
representations based on first order logic or descrip-
tion logic. For example, the OBO Relation Ontology
[6] provides a systematic way to transform graphs
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into formal theories by giving explicit definitions for
relations. Furthermore, approaches have been devel-
oped to convert graph-based representations of ontolo-
gies into OWL ontologies using an explicit translation
relation [9, 10].
However, ontologies are not only used to express the

knowledge within a domain but also for data analy-
sis [3]. In particular, ontology enrichment analysis and
semantic similarity measures are applied for predicting
protein-protein interactions [11, 12], finding candidate
genes of diseases [13–15] or classifying chemicals [16].
Most of these measures crucially rely on graph struc-
tures [17]. For example, the majority of semantic sim-
ilarity measures used in biology are graph similarity
measures [18], and ontology enrichment analysis uti-
lizes the graph structure of ontologies to detect over- or
under-represented classes [19, 20]. Consequently, there
is now a gap between the increasingly more formal
representation languages used for ontologies in biol-
ogy and the analysis methods that utilize them, and a
need to generate graph structures from ontologies that
also take into account the semantics of the axioms in
ontologies.
One of the standard reasoning tasks in OWL ontolo-

gies is the generation of the backbone taxonomy under-
lying an ontology [8] based on the axioms provided.
This classification task is used to generate graphs in
which subsumption (i.e., is-a) relations are expressed,
but cannot easily be used to generate different types
of edges, such as those labeled part-of, which repre-
sent axioms involving complex class descriptions [6]. In
general, these edges can also not be created syntacti-
cally; an obvious example is a general concept inclu-
sion axiom (i.e., an axiom in which a complex class
description instead of a named class appears on both
sides of a subclass axiom), in which axioms involving
object properties cannot clearly be associated with a sin-
gle class, or the inferences resulting from the use of
inverse object properties or property hierarchies. While
axioms in OWL may be arbitrarily complex and may
not easily be representable in a graph-based form, they
may imply axioms that can naturally be expressed in
the form of a graph. For example, when nodes in a
graph represent named classes, an axiom such as A or
B SubClassOf: R some C cannot be represented (as
A or B would not have a representation). However, this
axiom implies that both A SubClassOf: R some C
and B SubClassOf: R some C, and these inferences
can be represented by two edges labeled R between A and
C as well as between B and C.
Here, we describe a method to generate graph struc-

tures from OWL ontologies using only the semantic
information (i.e., the axioms) contained in the ontolo-
gies combined with automated reasoning. We extend our

previous work on visualizing ontologies in the AberOWL
ontology repository [21] by improving our algorithm to
generate sparser graphs (through the use of a transi-
tive reduction) and making our conversion available as a
stand-alone tool so that other researchers can integrate
it in their analyses. Our method generates taxonomies as
well as graphs containing other types of edges.We demon-
strate that the graphs generated by our method outper-
form taxonomies and graphs generated using syntactic
approaches when predicting protein-protein interactions
through measures of similarity, demonstrating that our
approach not only improves usability and representa-
tion of ontologies but also ontology-based data analysis
methods. We implement our method in the Onto2Graph
tool which is freely available at http://github.com/bio-
ontology-research-group/Onto2Graph.

Methods
Ontologies
We obtained a list of all ontologies from the AberOWL
ontology repository [22] to run our experiments. We
downloaded all ontologies on 4 November 2015. We fur-
ther perform a detailed evaluation on the Gene Ontology
(GO) [5], and the GO extended with additional axioms
and links to other ontologies, GO-Plus [23], also down-
loaded from the AberOWL ontology repository on
4 November 2015.

Interaction datasets and functional annotations
For evaluation of the performance of different types of
graphs in computing semantic similarity, we selected the
Biological General Repository for Interaction Datasets
(BioGRID) [24], which contains over one million protein-
protein interactions and genetic interactions that occur
in different types of organisms. Particularly, we selected
the protein-protein interactions and genetic interactions
occurring in fruitfly (Drosophila melanogaster), mouse
(Mus musculus), nematode worm (Caenorhabditis ele-
gans), yeast (Saccharomyces cerevisiae) and zebrafish
(Danio rerio) to evaluate our results. We downloaded all
interaction data from BioGRID on 29/11/2015.
As second interaction dataset, we identified GO annota-

tions with the IGI (inferred from genetic interaction) and
IPI (inferred from protein interaction) evidence codes.
These annotations contain the interaction partner as part
of the annotation, and we use these as a second interac-
tion dataset for evaluation (separated into protein-protein
interactions for the IPI evidence code and genetic inter-
actions for IGI).
We obtained the GO annotations of proteins and genes

from FlyBase [25], the Mouse Genome Informatics (MGI)
database [26], WormBase [27], Saccharomyces Genome
Database (SGD) [28], and the Zebrafish Information Net-
work (ZFIN) [29]. We downloaded all GO annotations
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on 29/11/2015. Table 1 provides an overview over the
datasets we use.

Onto2Graph
The Onto2Graph tool is developed in the Groovy lan-
guage and implements the conversion algorithm (see
Algorithm 1) to automatically transform OWL ontologies
into graphs. Onto2Graph can generate graphs in dif-
ferent representation formats: RDF/XML [30], GraphViz
[31], the OBO Flatfile Format [32], GraphML [33], and
an output format used for the ontology enrichment tool
OntoFUNC [34]. Onto2Graph uses the OWLAPI [35] to
process ontologies and integrates the Elk reasoner [36],
HermiT [37] as well as the structural reasoner that is part
of the OWLAPI [35]. Output formats and reasoners can
be selected as command line parameters and are gener-
ated using the Java Universal Network/Graph Framework
(JUNG) [38].

Visualizing graphs
In order to enable users to visualize the graphs, we gen-
erate graphs using OWLAPI’s structural reasoner and the
Elk reasoner for all ontologies in AberOWL and store
them in an OpenLink Virtuoso RDF store [39] for which
we provide a public SPARQL endpoint at http://bio2vec.
net/sparql/. Differences between syntactically generated
graphs and graphs generated through the Elk reasoner can
be retrieved through SPARQL queries. We further devel-
oped a visualisation environment to browse the structure
of the graphs and analyse them easily. The visualiza-
tion is based on LodLive project [40], and we modified
the project so that it is possible to browse two graphs
simultaneously for comparison. The resulting web inter-
face is located in http://bio2vec.net/graphs/.

Computing similarity and evaluation
We compute semantic similarity over the GO using
the Semantic Measures Library (SML) [17]. We use the

Table 1 Overview of the databases used in this work

Database Species Number of genetic
interactions (IGI)

Number of physical
interactions (IPI)

BioGRID Fly 9978 37809

Mouse 309 22914

Worm 2330 6318

Yeast 210791 127161

Fish 70 214

GO Fly 3151 2840

Mouse 7996 12434

Worm 2253 3205

Yeast 3738 2415

Fish 3623 720

simGIC similarity measure [41] and Resnik’s measure [42]
to compute pairwise semantic similarity between proteins
within a species, using the best-match average as strat-
egy to combine multiple pairwise similarity values. As
the SML considers only subclass edges when computing
semantic similarity, we rewrite other edge types generated
through our algorithm as subclass edges before computing
semantic similarity.
For each protein, we rank each protein by their similar-

ity in descending order. Using our datasets of interactions
as positive instances and all other pairs of proteins as
negatives, we generate the ROC curves and compute the
area under the ROC curve (ROCAUC) [43]. When com-
paring the difference between two ROC curves, we com-
pute the difference in ROCAUC and perform a Wilcoxon
rank sum test to determine whether the difference is
significant [44].

Results and discussion
Converting OWL ontologies into graphs
We developed an algorithm (Algorithm 1) to transform
OWL ontologies into multi-graphs using an automated
reasoner that generates a proof for every edge included in
the graph. The input of the algorithm is an OWL ontol-
ogy with a set of object properties based on which edges
in the graph are generated. Subclass (is-a) edges are cre-
ated directly using an automated reasoner by classifying
the ontology. For edges based on an object property o,
however, such as a part-of edge, our algorithm identi-
fies the most specific (existential) o-successor of a class
X (an o-successor of node ns is a node nt in the result-
ing graph that should be connected through an edge
labeled o to ns). For this purpose, the algorithm first
identifies all candidate o-successors PX of class X by
querying for classes that are a subclass (or equivalent
class) of o some X. It then queries each subclass Y of
X for subclasses of o some Y to identify the candidate
o-successors PY of Y (to improve performance of the
algorithm, we only query all direct subclasses Y of X;
if any subclass of X would be a candidate o-successor,
then at least one direct subclass of X would also be a
candidate o-successor). The direct o-successors of X are
then classes that are candidate o-successors of X but not
of any Y :

Succo(X) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

C∣C ⊑ ∃o.X ∧ C /∈ ⋃
Y⋤X

PY
⎫⎪⎪
⎬
⎪⎪⎭

(1)

Furthermore, to build a more concise graph while con-
sidering the semantics of the axioms involving object
properties, we have added the option to perform a transi-
tive reduction of the resulting graph over edges resulting
from transitive object properties, subclass edges, and any
combinations thereof.
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http://bio2vec.net/sparql/
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Input : ontologyO, t_flag
Output : graph G = (V ,E)

1 V← classes(O)
2 E← ∅
3 ClassifyO
4 for each pair (x, y) of direct subclasses inO do
5 E← E ∪ (x, y, isa)
6 end
7 for each object property o ∈ O do
8 for each class C ∈ O do
9 cand-o-succ(c)

← direct-subclasses(o some C)
10 end
11 end
12 for each object property o ∈ O do
13 for each class C ∈ O do
14 o-succ(c)← cand-o-succ(c);
15 for each direct subclass D of C do
16 if t_flag and o ∈ R+ then
17 o-succ(C)

← o-succ(C)/subcl(o some D)
18 end
19 o-succ(C)

← o-succ(C)/cand-o-succ(D)
20 end
21 for each class X ∈ o-succ(C) do
22 E← E ∪ (C,X, o)
23 end
24 end
25 end
26 return G
Algorithm 1: Algorithm to generate a sparse graph
representation of an ontology using an automated
reasoner to interpret the ontology axioms. Any
operation involving retrieving subclasses or direct
subclasses (subcl and direct-subclasses) as well as
classifying the ontology is performed using an auto-
mated reasoner.

The conversion is performed in two different steps
(see Algorithm 1). In the first step, the algorithm pro-
cesses the ontology and pre-computes the candidate
o-successors of each class. In the second step, the o-
successors are identified and added to the output graph
as edges; if required, a transitive reduction is performed
at this stage. The backbone of the graph is formed by the
taxonomy of the ontology, i.e., the subclass and equiva-
lent class relations between named classes, and we add
the o-successors generated for each class: if C has an
o-successor D, we generate an edge from C to D labeled o.
The algorithm can generate multiple edges with dif-
ferent labels between the same nodes. For example,

if o1 is a sub-property of o2 and an o1-labeled edge
is generated between nodes X and Y, then our algo-
rithm will also generate an o2-labeled edge between X
and Y unless this edge is removed due to a transitive
reduction.
We implement two versions of the algorithm, one in

which all operations are performed semantically through
an OWL reasoner, and another in which operations are
performed syntactically by analyzing the expression of the
axioms. When using OWL reasoning, we currently use
either the Elk reasoner [45] or HermiT [37], and plan to
support further reasoners in the future.
When analyzing the OWL axioms syntactically, instead

of using the Elk reasoner, we use the OWLAPI [35] to
obtain all asserted subclass and equivalent class axioms
in the ontology; within these, we identify the axioms in
which a single class is asserted to be a subclass or equiv-
alent class to a class expression Cexp. We then examine
whether Cexp syntactically follows the pattern o some X
to generate the candidate o-successors X.
Figure 1 shows an example of three graphs generated

by our approach from GO-Plus, first by using the syntac-
tic approach to generating the graph (Fig. 1a), and then
by utilizing the Elk reasoner without (Fig. 1b) and with
(Fig. 1c) transitive reduction. Our approach is able to gen-
erate a graph-based representation based on any object
property used within an ontology, and our method is
particularly useful to generate these representations for
transitive object properties.

Semantically generating graphs improves performance of
semantic similarity
Graph structures generated from ontologies are used for
visualization as well as by several data analysis meth-
ods, and we evaluate the generated graphs by applying
a (graph-based) semantic similarity measure to genes
and gene products annotated with GO and evaluating
the results for their performance in predicting protein-
protein interactions and genetic interactions. To perform
this evaluation, we select the GO-Plus ontology [23].
GO-Plus contains all the axioms in GO together with
additional axioms, and may therefore be more suitable to
demonstrate our approach as more edges can be inferred
based on the additional axioms.
We generate two kinds of graphs from both of the

ontologies: as a baseline, we generate graphs syntactically,
i.e., based on the asserted axioms contained in each of
the ontologies; and we generate graphs semantically by
using our method with Elk reasoner. We also build graphs
of different complexity. The first pair of graphs we gen-
erate contain only subclass relations but ignore all other
object properties in the ontologies. The second kind of
graph contains subclass relations and part-of relations,
and the third kind of graph contains subclass, part-of
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a b c

Fig. 1 Example of inferring edges resulting from sub-property axioms and applying transitive reduction. a Syntactic reasoner, b Elk reasoner with t
flag FALSE, c Elk reasoner with t flag TRUE

and regulates relations. While GO contains additional
object properties, we limit our analysis to subclass, part-
of and regulates as these are the most frequently used
object properties in GO. Table 2 shows the runtime of
Onto2Graph when converting the GO-Plus ontology, as
well as the runtime for computing the pairwise semantic
similarity (using the simGIC measure) between all gene
products in the mouse based on their GO annotations.
To employ these different graph representations

of the ontologies in predicting interactions, we
use functional annotations of proteins in fruitfly
(Drosophila melanogaster), mouse (Mus musculus), worm
(Caenorhabditis elegans), yeast (Saccharomyces cere-
visiae) and zebrafish (Danio rerio) to compute pairwise
semantic similarity over these graphs using the simGIC
[41] semantic similarity measure. We use the similarity
values to indicate interactions (either protein-protein
interactions or genetic interactions) and evaluate the

results using ROC analysis [43]. The results include the
area under the ROC curve (ROCAUC) for each combi-
nation of the three generated graphs and the reasoners
used to generate the graphs. We further perform a two-
tailed Mann-Whitney U test to determine whether the
observed differences in ROCAUC are significant and use
Bonferroni correction [46] to adjust p-values for multiple
testing. Table 3 summarizes our results. Full results are
provided as Additional files 1 and 2.
We find that performance in predicting both protein-

protein interactions and genetic interactions generally
improves when using graphs generated by the Elk rea-
soner compared to graphs generated syntactically. While
the increase in ROCAUC is not very large, it is, how-
ever, significant for several of our evaluation datasets. For
example, for genetic interactions in yeast, we observe an
increase of 0.011 AUC, which is significant (p = 1.2 ×
10−24, Mann-Whitney U test).

Table 2 Runtime of the Onto2Graph algorithm and semantic similarity computation over the GO-Plus ontology

Reasoner Properties Transitive reduction Edges generated Conversion runtime Semantic similarity runtime

Elk reasoner SubClassOf True 146850 1 min 37 s 4 min 59 s

False 146850 0 min 58 s 4 min 54 s

Elk reasoner SubClassOf + PartOf True 154583 10 min 50 s 5 min 42 s

False 165457 10 min 37 s 5 min 44 s

Elk reasoner SubClassOf + PartOf + Regulates True 159261 16 min 34 s 6 min 21 s

False 170112 16 min 10 s 6 min 15 s

Syntactic reasoner SubClassOf True 73692 0 min 48 s 3 min 25 s

False 73692 0 min 46 s 3 min 30 s

Syntactic reasoner SubClassOf + PartOf True 82034 0 min 49 s 3 min 59 s

False 82205 0 min 47 s 4 min 8 s

Syntactic reasoner SubClassOf + PartOf + Regulates True 85335 0 min 48 s 5 min 8 s

False 85506 0 min 49 s 4 min 42 s

For the conversion and semantic similarity computation, we used a 3.20 GHz Intel i5-3470 CPU with 8 GB 1600 MHz DDR3 RAM and allowed Onto2Graph to use four threads
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Fig. 2 ROC Curves for predicting genetic interactions. We compare the performance of predicting genetic interactions using graphs generated from
Gene Ontology Plus and the annotations available from Gene Ontology Annotation and BioGRID database. The green line refers to the performance
obtained from the graph generated semantically without transitive reduction, brown with transitive reduction, and the pink line refers to the graph
generated syntactically

Furthermore, if we compare the Elk-generated graphs
with transitive reduction to Elk-generated graphs with-
out transitive reduction, we also observe a slight increase

in ROCAUC for predicting genetic interactions in yeast
(0.2 × 10−5, Mann-Whitney U test). Generally, we
observe a small but significant performance increase
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in most of our evaluation datasets, thereby demon-
strating that our approach can generate graphs that
may be better suited for biological data analysis than
graphs generated using the asserted axioms in ontolo-
gies alone. The Fig. 2 shows a selection of the evaluation
sets for which we observe significant improvement of
ROCAUC.

Conclusions
We developed the Onto2Graph conversion algorithm
and tool that enables users to convert ontologies into
graphs efficiently and utilizes an automated reasoner to
infer edges in an ontology graph based on the ontol-
ogy’s deductive closure. The tool integrates two differ-
ent ways to perform this conversion, by using OWL
reasoning and by syntactically analyzing the ontology
axioms. The Onto2Graph tool can output graphs gen-
erated from OWL ontologies in several file formats
which can then be used for ontology-based data analy-
sis, such as semantic similarity or ontology enrichment
analysis.
We demonstrated that the graphs generated by

Onto2Graph can outperform graph structures gener-
ated syntactically or based on the ontology’s taxonomy
alone when applied to computation of semantic similar-
ity and prediction of protein-protein interactions. While
the observed differences are small, our results neverthe-
less demonstrate how inclusion of more information that
is already present within ontologies can contribute to
biological discovery.
A major limitation of our current approach is the

reliance on a single (existential) pattern to generate edges
while many ontologies now use more complex axioms.
While the Onto2Graph method can be applied to other
relational patterns that should represent an edge within
a graph, we did not implement this due to the compu-
tational costs involved in using arbitrary OWL axiom
patterns [8]. In the future, the graph generated by our
approach can also be used to infer additional edges used
to build knowledge graph embeddings [47], and there-
fore contribute to applications of machine learning with
ontologies.

Additional files
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transitive reduction. Supplementary file 2 contains full comparison results
for semantically generated graphs with and without transitive reduction.
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