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Abstract

Background: Genotyping-by-sequencing (GBS), a method to identify genetic variants and quickly genotype
samples, reduces genome complexity by using restriction enzymes to divide the genome into fragments whose
ends are sequenced on short-read sequencing platforms. While cost-effective, this method produces extensive
missing data and requires complex bioinformatics analysis. GBS is most commonly used on crop plant genomes,
and because crop plants have highly variable ploidy and repeat content, the performance of GBS analysis software
can vary by target organism. Here we focus our analysis on soybean, a polyploid crop with a highly duplicated
genome, relatively little public GBS data and few dedicated tools.

Results: We compared the performance of five GBS pipelines using low-coverage Illumina sequence data from
three soybean populations. To address issues identified with existing methods, we developed GB-eaSy, a GBS
bioinformatics workflow that incorporates widely used genomics tools, parallelization and automation to increase
the accuracy and accessibility of GBS data analysis. Compared to other GBS pipelines, GB-eaSy rapidly and
accurately identified the greatest number of SNPs, with SNP calls closely concordant with whole-genome
sequencing of selected lines. Across all five GBS analysis platforms, SNP calls showed unexpectedly low
convergence but generally high accuracy, indicating that the workflows arrived at largely complementary sets of
valid SNP calls on the low-coverage data analyzed.

Conclusions: We show that GB-eaSy is approximately as good as, or better than, other leading software solutions
in the accuracy, yield and missing data fraction of variant calling, as tested on low-coverage genomic data from
soybean. It also performs well relative to other solutions in terms of the run time and disk space required. In
addition, GB-eaSy is built from existing open-source, modular software packages that are regularly updated and
commonly used, making it straightforward to install and maintain. While GB-eaSy outperformed other individual
methods on the datasets analyzed, our findings suggest that a comprehensive approach integrating the results
from multiple GBS bioinformatics pipelines may be the optimal strategy to obtain the largest, most highly accurate
SNP yield possible from low-coverage polyploid sequence data.
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Background
The development of second-generation, short-read se-
quencing has revolutionized biological research, agricul-
ture and medicine, enabling innovations such as genomic
selection to raise crop yields and precision medicine to
diagnose and treat disease. The single-nucleotide poly-
morphisms (SNPs) identified by high-throughput sequen-
cing serve as markers for association between genotypes
and phenotypes. Whole-genome sequencing can identify
millions of SNPs, but for many applications involving
genetic linkage, such high densities of markers are un-
necessary. Reduced-representation approaches involve se-
quencing a subset of locations spread throughout the
genome to reduce genome complexity and rapidly geno-
type samples using SNP markers. The earliest reduced-
representation sequencing method, restriction site associ-
ated DNA (RAD) sequencing, used restriction enzymes to
divide the genome into sheared DNA fragments, which
were size fractionated and then sequenced on next-
generation sequencing platforms [1–3]. RAD sequencing
remains the method of choice for biological diversity ap-
plications in which reference genomes are not available. In
this and similar methods, each sample is assigned a
unique barcoded adapter for multiplexed sequencing in a
single Illumina flow-cell lane, thereby increasing the num-
ber of samples under investigation and reducing financial
costs. Although this method works well on crops such as
soybean [4], the large amount of high-quality DNA re-
quired for the size selection step, and consequent higher
DNA preparation costs, makes RAD sequencing unsuit-
able for routine use in plant breeding.
Genotyping-by-sequencing (GBS), a simplified reduced-

representation sequencing approach [5], has gained popu-
larity in crop research and plant breeding for high
throughput, low-cost genotyping. It has been applied to
projects ranging from genomic selection to gene mapping
to genome-wide association studies in numerous crop
species [6–10]. Like RAD sequencing, GBS relies on re-
striction enzymes to generate a reduced representation of
the genome for sequencing. However, the GBS library
preparation protocol involves fewer steps than RAD se-
quencing, requires less DNA, and lacks a size selection
step [5]. In GBS, DNA samples are digested and ligated to
barcoded adapters in single wells, pooled, and then
enriched by PCR. An important development in GBS was
the incorporation of a two-enzyme digestion into the
protocol [11].
In contrast to the relatively simple and straightforward

library preparation, GBS and RAD sequencing data ana-
lysis is complicated by the nature of the random loca-
tion, reduced-representation approach. The data analysis
requires individual alignment of the reads, generates a
large proportion of missing data, and requires several
statistical assumptions to be made in order to call

variants. Bioinformatics software packages and work-
flows have been developed to provide the architecture
for analysis of reduced-representation sequencing data
[12–14]. Several of these platforms utilize the same tools
and algorithms commonly applied to whole-genome se-
quence data, while others utilize algorithms developed
specifically for GBS and RAD sequencing. Although de-
signed to facilitate and simplify data processing, these
GBS pipelines nevertheless can be difficult for non-
specialist researchers such as plant breeders to install or
implement. Issues include high levels of complexity, re-
quirements for additional libraries or uncommon pack-
ages, or additional processing steps outside of the
pipelines. A different approach, TASSEL / TASSEL-GBS
[15, 16], provides an all-in-one desktop software package
that is easy to install and use, and performs both GBS
data processing and genetic analysis using the resources
of a stand-alone PC. However, while this software is
widely adopted in cereal genetics, it was optimized for
use in maize, and uses heuristics such as the reduction
of reads to tags before alignment to enable reasonable
run times on PC hardware. These heuristics are less
clearly advantageous in recently polyploid species; for
this reason, others (e.g. [14]) have developed different
approaches for crops such as soybean. Finally, the all-in-
one software package approach means that users cannot
themselves modify TASSEL-GBS to accommodate new
sequencing technology or other software packages.
More recently, known segregating sites from pan-

genome data have been shown to substantially improve
accuracy and yield from reduced-representation sequen-
cing [17]; however, for other crops such as soybean and
many others important for food production, population-
level diversity is not yet sufficiently well characterized at
the whole-genome level, and better tools to identify SNPs
ab initio are still needed. In addition, recently polyploid
genomes such as soybean [18] present a complication to
the performance of alignment and variant calling for all
forms of reduced-representation sequencing. This may in-
fluence the performance of different approaches relative
to more straightforward diploid genomes.
Here we present GB-eaSy, a GBS bioinformatics pipeline

that efficiently incorporates widely used genomics tools,
parallelization and automation to increase the accuracy,
efficiency and accessibility of GBS analysis. GB-eaSy has
been specifically developed to be straightforward to install
and use on typical UNIX / HPC hardware, to contain
readily updateable public software where possible, and to
match or exceed the performance of current GBS SNP-
calling methods used on soybean or other complex, re-
petitive and recently polyploid genomes. It can process
reduced-representation data from any organism with a
reference genome. We compared the performance of GB-
eaSy to four other GBS bioinformatics data analysis
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platforms using low-coverage Illumina sequence data
from three soybean populations. GB-eaSy rapidly and ac-
curately identified the greatest number of SNPs across all
three populations, with SNP calls in close agreement with
whole-genome sequencing of selected lines.

Methods
Samples
GBS libraries were constructed from three soybean pop-
ulations (Table 1). Population 1 consisted of 378 F2 lines
resulting from a cross between the accession Prize and
an NMU-mutagenized individual from the reference
genotype Williams 82. Population 2 contained 391 F2 in-
dividuals from a cross between two breeding lines. Fi-
nally, Population 3 consisted of 81 unrelated accessions
(with 2–4 replications) that form an association panel.

GBS library preparation
GBS libraries were prepared according to the two-enzyme
protocol described in [6] with minor modifications (kindly
provided by Dr. P. Brown, UC Davis). Two-enzyme pairs
(HindIII-MseI and HindIII-BfaI) were used to achieve a
balanced representation of HindIII cut sites. In brief, re-
striction and ligation were carried out simultaneously,
followed by PCR amplification. First, 5 μl of DNA (25–
50 ng/μl, 125-250 ng total) from each sample was pipetted
into its own well on a 384-well plate that contained
restriction-ligation master mix. The master mix in each
well consisted of 2.5 μl 10× NEB CutSmart buffer (final
concentration 1×), 2.5 μl 10 mM dATP (final concentra-
tion 1 mM), 0.1 μl (2 U) HindIII, 0.2 μl MseI or BfaI,
0.1 μl concentrated T4 DNA ligase (40 U), 0.5 μl each of
10uM adapters, and 14.1 μl molecular biology-grade
water. The barcoded “rare adapters” were designed to
anneal to the cut HindIII site, while the non-barcoded
“common adapters” annealed to the cut MseI or BfaI site.
Covered with foil, the 384-well plates underwent di-

gestion and ligation in the thermocycler at 37 °C for

1 min, 25 °C for 1 min, repeated 100 times. Next, 8 μl
from each well was pooled into a 1.5 mL microfuge tube,
cleaned using Agencourt AMPure XP beads (Beckman
Coulter Life Sciences, Indianapolis, Indiana, USA), dried,
and suspended for PCR amplification in a solution of
Phusion Master Mix (NEB, Ipswich, MA). PCR settings
for amplification were 98 °C for 30s, 15 cycles (98 °C for
10s, 68 °C for 30s, 72 °C for 30s), 72 °C for 5 m, followed
by 4 °C until sample recovery. Next, AMPure cleanup
was repeated, and the resulting library was evaluated on
a Bioanalyzer 2100 (Agilent, Santa Clara, CA) using a
DNA7500 chip to assess amplification success, fragment
size, and DNA concentration. Finally, each library was
diluted to 10 nM DNA in LIB buffer (10 mM Tris-HCL
(EB) w/ 0.05% Tween-20) and run on either an Illumina
HiSeq2500 or HiSeq4000 using the HiSeq SBS sequen-
cing kit version 4 at the Roy J. Carver Biotechnology
Center at the University of Illinois at Urbana-
Champaign.

GBS data analysis platforms
Tassel-GBS
TASSEL-GBS was developed to assign SNP genotypes
from GBS data in a time- and storage-efficient manner
[16] (Table 2). Unlike SNP calling for whole-genome data,
which involves first aligning all reads to the reference gen-
ome and then calling SNPs, TASSEL-GBS dramatically re-
duces computational demands by consolidating reads into
a master “tag list” containing the unique sequences. This
tag list is then aligned to a reference genome. For species
lacking a reference genome, the consensus allele at each
position is considered the reference allele. Variant identifi-
cation in the TASSEL5GBSv2 pipeline (https://bitbucke-
t.org/tasseladmin/tassel-5-source/wiki/Tassel5GBSv2Pipe-
line) consists of two main steps: SNP discovery and
production SNP calling. In SNP discovery, TASSEL-GBS
determines SNPs and SNP coverage within each tag for
each sample and outputs the results to a database. In

Table 1 GBS library data for the three populations analyzed in this study

Population 1 Population 2 Population 3

Description F2 from cross between
Prize and mutagenized
Williams 82

F2 from cross between
two breeding lines

81 unrelated lines

Number of samples 378 391 200

Sequencer Illumina HiSeq2500 Illumina HiSeq4000 Illumina HiSeq2500

Read length 100 bp 100 bp 100 bp

Number of reads 234,574,472 (single-end) 392,001,642 (single-end) 247,063,538 (single-end)

Average depth per sequenced base 1.87 reads 3.63 reads 4.47 reads

Average percent of genome covered by at least 1 read 2.29 2.02 2.35

Average percent of genome covered by at least 2 reads 1.08 1.42 1.71

DNA was extracted using the CTAB method [19] except for the Prize x NMU-mutagenized Williams 82 population (Population 1), which used the E-Z 96 Plant DNA kit
(Omega Bio-Tek, Norcross, GA). All libraries were sequenced at low coverage typical of plant breeding experiments, with coverage varying from 1.87× to 4.47×
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production SNP calling, SNP genotypes in each sample are
output. Each step is performed internally with TASSEL-
GBS plugins, except alignment, which is carried out exter-
nally using software such as BWA-MEM [20]. Prior to run-
ning TASSEL, we removed adapter sequence from the
reads using cutadapt [21] after finding that adapter contam-
ination severely impaired the accuracy of TASSEL-GBS
SNP calls relative to the other methods.

Stacks
Stacks is a software package developed for RAD sequencing
that identifies SNPs and calculates population statistics
from any restriction enzyme-based, reduced-representation
sequence data [12] (Table 2). After demultiplexing and
cleaning the sequenced reads, Stacks assembles loci from
each sample (with or without a reference genome) and
groups together loci across samples to construct a catalog.
Comparison between the catalog and loci from each sample
allows inference of SNPs and genotypes. Optional add-
itional steps include creation of genetic maps and calcula-
tion of population statistics. Like TASSEL-GBS, each step
except alignment (here performed by BWA-MEM) uses the
software’s internal algorithms.

IGST
IGST (IBIS Genotyping by Sequencing Tools) processes
GBS data by implementing several popular genomic soft-
ware tools connected by Perl and Python scripts [13]
(Table 2). After setting up a predefined directory struc-
ture and naming input files according to a specific con-
vention, the user issues a single command that runs the
entire pipeline. IGST demultiplexes and cleans barcoded
reads using Sabre (https://github.com/najoshi/sabre),
aligns demultiplexed reads to the reference genome
using BWA-ALN [22], converts the aligned sequences to
BAM format using SAMtools [23], and identifies SNPs
using SAMtools and BCFtools [23]. The resulting SNP
calls are filtered by VCFtools [24].

Fast-GBS
Fast-GBS follows a strategy similar to IGST but employs
a different alignment algorithm, a different variant caller,

and a bash script that runs each software program [14]
(Table 2). As with IGST, the user must set up a prede-
fined directory structure and name files according to a
specific convention before inputting a single command
to run the workflow. This pipeline demultiplexes reads
using Sabre, trims and cleans reads using Cutadapt,
aligns reads to the reference genome using BWA-MEM,
and calls variants using Platypus [25]. As a haplotype-
based variant caller, Platypus identifies single-allele SNPs
as well as compound SNPs consisting of short strings of
adjacent alleles. To facilitate comparisons with the other
pipelines, we used the VariantsToAllelicPrimitives script
within the Genome Analysis Toolkit [26] to deconvolute
the multi-allelic SNPs into individual allelic primitives,
as recommended by [27].

GB-eaSy
The GB-eaSy pipeline developed for this project consists
of a Bash shell script that executes several bioinformatics
software programs in a parallel UNIX / Linux environ-
ment. This workflow requires a reference genome and is
compatible with both single- and paired-end Illumina
reads. Its name derives from its straightforward, trans-
parent implementation of GBS variant calling; GB-eaSy
is appropriate for users without extensive command-line
expertise as well as for experienced bioinformaticians
who may choose to modify any step of the script. GB-
eaSy implements the same well-tested and regularly
updated tools commonly adopted in whole-genome se-
quencing. In contrast to some GBS pipelines, GB-eaSy
does not require the user to follow strict instructions re-
garding directory structure or file names; instead, the
Bash script performs these steps automatically. The GB-
eaSy shell script, a walkthrough of each command, and a
tutorial using sample data are hosted at https://github.-
com/dpwickland/GB-eaSy.
Before starting the pipeline, the user modifies a param-

eters file with settings customized for their GBS project
(e.g. path to raw sequencer output file, path to barcodes
file, number of CPU cores to use). The user then issues
a single command to execute the pipeline. The first step
of GB-eaSy uses the software GBSX [28] to demultiplex

Table 2 Major steps of the 5 GBS workflows analyzed

TASSEL-GBS IGST Fast-GBS Stacks GB-eaSy

Demultiplex
reads

GBSSeqToTagDBPlugin,
TagExportToTagDBPlugin

Sabre Sabre process_radtags GBSX

Trim adapters cutadapt* trimAdaptor3.py cutadapt process_radtags GBSX

Align to
reference

bwa-mem* bwa-aln bwa-
mem

bwa-mem* bwa-
mem

Call SNPs DiscoverySNPCallerPluginV2,
ProductionSNPCallerPluginV2

SAMtools/
BCFtools

Platypus pstacks, cstacks, stacks,
populations

BCFtools

Each workflow uses a different series of tools to carry out read demultiplexing, adapter trimming, alignment to the reference genome, and SNP calling
*step performed manually outside the workflow
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reads and trim adapter sequences based on a user-created
barcodes file containing the short barcode sequences that
uniquely identify each sample; for our study, we modified
the GBSX script (GBSX.jar) to include the HindIII cut site,
which was not supported initially. Next, demultiplexed
reads are aligned to the reference genome using BWA-
MEM; GB-eaSy hastens this alignment step by processing
read files in parallel using GNU Parallel [29]. After align-
ment, BCFtools is used to create a pileup of read bases
from which it calls SNPs. This SNP-calling step uses GNU
Parallel to process each entry in the reference genome file
(e.g. each chromosome, each scaffold) on its own CPU
core, greatly increasing the efficiency of SNP identifica-
tion. Finally, the output VCF file is filtered by VCFtools ac-
cording to a user-specified minimum read depth (Table 2).

Whole-genome sequencing
To validate the output from the GBS pipelines, Illumina
whole-genome sequence (WGS) data was obtained
(experimentally in the case of Prize for Population 1 and
the case of LG12 for Population 2, or from the data ob-
tained by [30] for four lines of the soybean NAM associ-
ation panel for Population 3) for comparison of GBS and
WGS SNP calls (Table 3). As with the GBS pipelines,
WGS reads were aligned to the reference genome using
the software BWA-MEM. However, variant calling on
the WGS datasets was carried out with GATK Haploty-
peCaller, a software not used by any of the GBS pipe-
lines, to provide independent assessment of GBS SNP
call accuracy.

Pipeline comparisons
The five GBS pipelines and the WGS pipeline described
above were run with the following parameters to make the
analysis as equivalent as possible between workflows:
minimum read length of 80 bases after adapter and bar-
code trimming, minimum base quality of 20 and mini-
mum mapping quality of 20 for variant calling
(corresponding to a 1 in 100 chance of an incorrect base
call or mapping call, respectively), and identification of

SNPs only (no indels). Other parameters were set at de-
fault values. The software package VCFtools was then
used to remove SNP calls supported by less than 2 reads
(i.e. minimum depth of 2 reads) to increase the reliability
of distinguishing homozygous from heterozygous geno-
types (note that our lowest coverage dataset has an aver-
age depth per sequenced base of 1.87×). Recent versions*
of component software packages and commands were
used for each pipeline, with the following exceptions: for
IGST, commands were drawn from SAMtools version
0.1.18 and Picard version 1.119 because the IGST work-
flow was incompatible with later versions. Finally, 11 CPU
cores were used at any steps that carried an option for
parallelization. In-house scripts, BCFtools and VCFtools
were used to compute and compare the number of
chromosomal SNPs identified by the pipelines and to cal-
culate missing data values. All programs were run on a
Linux server with two Intel® Xeon® X5650 processor chips,
each with six CPU cores, and 48 GB RAM.
GNU parallel 20,170,122.
JAVA 1.8.0_121.
Picard 2.10.0.
BWA 0.7.15-r1140.
Platypus 0.8.1.
TASSEL 5.0, build April 6, 2017.
VCFtools 0.13.
GBSX_v1.3.
SAMtools/BCFtools 1.5.
Cutadapt 1.12.
Stacks 1.46.

Results
GBS SNP calls and their agreement with WGS SNP calls
We compared the SNP calls within and between pipelines
on three different populations. Populations 1 and 2 were
each 384-well plates used to sequence populations of F2
individuals chosen to mimic mapping populations or
breeding studies, while Population 3 was a set of 81 di-
verse lines, again replicated across a 384 well plate, that
can be used as a GWAS diversity panel [30]. Population 1

Table 3 WGS library data for six lines

Prize LG12 Magellan Maverick Prohio Skylla

Population of origin Population 1 Population 2 Population 3 Population 3 Population 3 Population 3

Read length 100 bp 150 bp 150 bp 150 bp 150 bp 150 bp

Number of reads 130,404,160
(paired-end)

43,756,742
(paired-end)

12,880,066
(paired-end)

19,038,600
(paired-end)

34,177,159
(paired-end)

23,190,927
(paired-end)

Coverage (LN / G) 13.65 6.87 2.02 2.99 5.37 3.64

Percent of genome
covered by at least 1 read

98.67 97.76 74.38 94.06 98.36 96.16

Percent of genome
covered by at least 2 reads

98.31 97.04 73.03 85.18 97.27 90.36

Prize and LG12 were also included in GBS Populations 1 and 2, respectively. Magellan, Maverick, Prohio and Skylla were included in GBS Population 3. Coverage was
computed as the product of read length and number of reads, divided by genome size
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was derived from a cross between Prize (a US-adapted
cultivar) and Williams 82 (the target of the reference gen-
ome project [18]), while Population 2 was derived from a
cross between two breeding lines that should be equally
distant from the reference genome. After preparing GBS
libraries and obtaining low-coverage Illumina sequence
data (ranging from 1.87 to 4.47× depth per sequenced
base), we called SNPs using the five pipelines and com-
puted the total number of SNPs identified and the number
of SNPs shared between pipelines. In addition, we com-
pared the GBS SNP calls to WGS SNP calls of selected
lines to calculate the SNP concordance and allelic con-
cordance between GBS and WGS. The analysis excluded
indels to simplify comparisons among the methods (some
methods call only SNPs) and to focus on SNPs, which are
the markers of choice in most breeding projects. All SNPs
were called relative to the Williams 82 soybean reference
genome.
In terms of SNP yield, the relative ranking of each

pipeline remained similar across all three populations:
GB-eaSy called the most SNPs, followed in order by
Fast-GBS, IGST and Stacks (rank depending on popula-
tion), and TASSEL-GBS (Fig. 1). In Population 1, the
number of SNPs identified ranged from 35,328 (TAS-
SEL-GBS) to 88,298 (GB-eaSy). Population 2 had the
greatest number of SNP calls, ranging from 88,423
(TASSEL-GBS) to 249,472 (GB-eaSy); the comparatively
large SNP yield of Population 2 likely resulted from the
HiSeq4000 outputting 150,000 more reads than the
HiSeq2500 used with Populations 1 and 3 (Table 1). In
Population 3, the number of SNPs called ranged from
78,848 (TASSEL-GBS) to 163,571 (GB-eaSy). Within

each population, a small portion of SNPs was called by
all five workflows, with the proportion of convergent
SNPs being roughly consistent (Fig. 2a). A similar trend
appears in the data for individual soybean lines (Fig. 2b).
Because the SNP concordance between GBS analysis

platforms was unexpectedly low (Fig. 2), whole-genome
data of six lines was obtained for comparison of GBS
and WGS SNP calls. To avoid biasing these comparisons
in favor of a particular GBS platform, GATK Haplotype-
Caller (a tool not used by any of the GBS workflows)
was used to call SNPs in the WGS datasets. The GBS
data for these individual lines follows the population-
level pattern of GB-eaSy finding the most GBS SNPs,
closely followed by Fast-GBS (Fig. 3a). SNP concordance
was calculated as the percentage of GBS SNP sites (e.g.
chromosome 1, position 8144) that were also identified
by WGS (Fig. 3b). Depending on the line under study,
either Stacks, TASSEL-GBS or IGST exhibited the high-
est SNP concordance with WGS. Across all pipelines,
SNP concordance was relatively lower in the lines Ma-
gellan, Maverick, Prohio and Skylla due to the low
coverage of their WGS data (ranging from 2.02× to
5.37×) and therefore fewer sites sampled (Fig. 3b).
We also assessed the allelic agreement (e.g.

chromosome 1, position 8144, nucleotide C) between
GBS SNP calls and WGS SNP calls for the set of
concordant SNPs identified above (Fig. 3c). In every
line examined, GB-eaSy, TASSEL-GBS and IGST all
achieved high allelic agreement (above 99%) with
WGS, Fast-GBS reached allelic agreement between
97.19% and 99.54%, and Stacks reached allelic agree-
ment between 95.55% and 98.45%. While GB-eaSy,

Fig. 1 Number of SNPs identified by each pipeline in 3 populations. SNPs with a minimum read depth of 2 reads are shown
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Fig. 2 SNP overlap among 5 GBS pipelines. a shows overlap for the 3 populations. b shows overlap for 6 lines from those populations: Prize is
from GBS Population 1, LG12 is from GBS Population 2, and the four remaining lines are from GBS Population 3. SNPs with a minimum read
depth of 2 reads are shown. All SNPs were called relative to the Williams 82 reference genome

Wickland et al. BMC Bioinformatics  (2017) 18:586 Page 7 of 12



TASSEL-GBS and IGST attained similarly high WGS-
agreement rates, GB-eaSy identified the greatest num-
ber of SNPs in allelic agreement with WGS in each
line (Fig. 3d).

Missing data
GBS, unlike RAD-seq used for biological diversity ana-
lysis, is tuned to identify as many SNPs as possible, with
missing data accounted for in later analysis by

Fig. 3 Comparisons between GBS SNPs and WGS SNPs for 6 individual soybean lines. Prize is from GBS Population 1, LG12 is from GBS
Population 2, and the four remaining lines are from GBS Population 3. Panel a shows the total number of SNPs identified in each line by 5 GBS
pipelines. Panel b shows the percent of GBS SNP sites from panel A in agreement with WGS for each line. Panels c and d show the percent and
number (respectively) of GBS SNP alleles from panel A in agreement with WGS. SNPs with a minimum read depth of 2 reads are shown. Below
each soybean line is shown its average depth of sequenced GBS bases followed by its WGS coverage. All SNPs were called relative to the
Williams 82 reference genome
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imputation of haplotypes using reference genome data.
However, any GBS data analysis must consider the large
proportion of missing/unsampled data, which can often
be a limiting factor in downstream applications of the
genotype data. The more sensitive a method is to poly-
morphisms with lower coverage, the more missing data
in percentage terms is likely to be observed when com-
paring samples; therefore, the key parameter is the out-
right number of SNPs that are present in a sufficient
proportion of lines for the analysis to be used. Within
the three populations, the average percentage of sampled
SNPs not present in any given line was fairly consistent:
83.4% (GB-eaSy) to 89.7% (Stacks) in Population 1,
59.4% (TASSEL-GBS) to 71.5% (GB-eaSy) in Population
2, and 62.4% (TASSEL-GBS) to 69.6% (GB-eaSy) in
Population 3 (Table 4). In Population 1, GB-eaSy found
the most SNPs present in at least 25% and 50% of sam-
pled lines, while TASSEL-GBS found more SNPs present
in at least 75% and 90% of sampled lines (Table 4). In
Population 2, Stacks identified the most SNPs present in
at least 25% of lines, GB-eaSy identified the most present
in at least 50% and 75% of lines, and TASSEL-GBS iden-
tified the most SNPs at the 90% level. Finally, in Popula-
tion 3, Fast-GBS found the greatest number of SNPs
present in at least 25% of lines, while GB-eaSy found the
greatest number of SNPs at the 50%, 75% and 90%
levels. In this case, the variation in performance across
the three populations was substantial, but GB-eaSy
showed the best or among the best performance for each

population. Notably, since each pipeline produces a dif-
ferent subset of valid SNPs (Fig. 2), the optimal strategy
for minimizing missing data is likely the combination of
multiple approaches.

Run time and disk space
The pipelines differed widely in their time to comple-
tion. TASSEL-GBS (including the initial Cutadapt step)
finished most rapidly for each population (Table 5), as
expected from its extensive use of tag heuristics to speed
alignment. Fast-GBS and GB-eaSy alternately ranked as
second and third fastest, depending on the population
and the total number of reads. Stacks and IGST used
the most wall-clock time per sample, with IGST taking
at least three times as long as TASSEL-GBS in every
population.
The disk space required paralleled the run time in

most pipelines (Table 5). For each population, TASSEL-
GBS required the least amount of storage. GB-eaSy and
Stacks used approximately twice TASSEL-GBS’ disk
space requirement. Despite their parameters being set to
delete intermediate files where applicable, IGST and
Fast-GBS used substantially more disk space than the
other methods.

Discussion
Despite the availability of multiple tools for GBS data
processing, a need exists for a GBS pipeline that is easy
to install, fits with standard tools, is optimized for high

Table 4 Missing data fraction generated by each GBS pipeline

TASSEL IGST Fast-GBS Stacks GB-eaSy

Population 1

Missing data per line 84.5% 85.4% 85.0% 89.7% 83.4%

SNPs in 25% of lines 6812 12,334 18,731 3576 23,633

SNPs in 50% of lines 1237 1714 2984 202 3558

SNPs in 75% of lines 736 112 382 31 407

SNPs in 90% of lines 335 25 75 2 119

Population 2

Missing data per line 59.4% 70.8% 70.0% 66.1% 71.5%

SNPs in 25% of lines 65,119 68,805 122,801 142,154 120,437

SNPs in 50% of lines 35,107 39,055 76,485 52,991 76,717

SNPs in 75% of lines 2185 1548 4418 372 4880

SNPs in 90% of lines 973 26 219 21 187

Population 3

Missing data per line 62.4% 69.3% 68.4% 67.2% 69.6%

SNPs in 25% of lines 54,960 65,695 88,904 69,300 88,025

SNPs in 50% of lines 18,859 22,369 32,077 19,756 32,698

SNPs in 75% of lines 6196 7813 12,204 4539 13,005

SNPs in 90% of lines 775 479 934 98 1352

The average percent of missing data per line is shown, as well as the number of SNPs detected at various proportions within each population
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density SNP calling in polyploid crop genomes, and
quickly and reliably identifies a large number of accurate
SNPs while minimizing its storage footprint. We devel-
oped GB-eaSy, a GBS bioinformatics pipeline suitable
for both command line novices and experienced bioin-
formaticians, and aim it primarily at the soybean com-
munity, where use of such processing software is
increasing. However, GB-eaSy should be applicable to any
non-model plant species with a reference genome, par-
ticularly to polyploids with repetitive genomes such as
soybean. The 1.1-gigabase, recently paleopolyploid soy-
bean genome contains multiple copies of 75% of its genes
[18], which presents challenges to accurate processing of
genomic data. Therefore, soybean qualifies as a suitable
test subject to assess the accuracy of GB-eaSy’s SNP calls.
Comparison of GB-eaSy to other GBS data workflows in-
dicated that GB-eaSy rapidly and accurately identified the
most SNPs in all three soybean populations examined,
without demanding excessive disk space.

Different SNP calling strategies
A key difference among GBS pipelines that may explain
their discrepant results is the software used for variant
calling, and its approach to determining the consensus
genotype in a group of reads and whether that consen-
sus varies from the reference. Both IGST and GB-eaSy
use BCFtools/SAMtools as the variant caller, which re-
lies on a Bayesian strategy to select as the consensus
genotype at a given locus the base with the highest
Phred score that maximizes the posterior probability
[31]. If the consensus genotype at the locus differs from
the reference, a SNP is called. Previous work has vali-
dated the accuracy of the BWA and SAMtools/
BCFtools combination used in IGST and GB-eaSy. For
instance, [32] evaluated thirteen variant calling pipe-
lines consisting of combinations of three read aligners
(BWA-MEM, Bowtie2, Novoalign) and four variant cal-
lers (GATK HaplotypeCaller, SAMtools mpileup, Free-
bayes, Ion Proton Variant Caller) against a dataset of
highly confident “gold standard” human variants pub-
lished by the 1000 Genomes Project. In that study, the
combination of BWA-MEM with SAMtools achieved the
greatest accuracy in SNP identification. The two pipelines
using these tools in our study (IGST and GB-eaSy)
attained the greatest allelic concordance with WGS in the
six lines studied.

Each of the other three pipelines investigated here uses
a different variant caller. TASSEL-GBS, which calls SNPs
using its own binomial likelihood ratio method [16], also
agreed well with WGS SNP calls. However, because it
found fewer SNPs overall, TASSEL-GBS’ number of vali-
dated SNPs was lower than that of GB-eaSy and IGST.
Stacks uses a multinomial-based likelihood model for
SNP calling, which produced an allelic agreement above
95% but the fewest validated SNPs in each line due in
part to its finding fewer SNPs overall. Stacks’ variant
caller consults the reference genome only for read place-
ment, not for nucleotide comparisons, as it is optimized
for high-coverage analysis of biological diversity RAD se-
quencing experiments in which reference genomes are
often not available [12]. For the low-coverage data typ-
ical of plant breeding workflows, it is likely a disadvan-
tage that Stacks does not utilize the Bayesian priors
available from high-quality reference genomes. However,
for organisms lacking a reference genome, the Stacks ap-
proach is likely optimal. Finally, Fast-GBS’ variant caller,
Platypus, uses a haplotype-based strategy to identify var-
iants. A previous analysis [33] found that comparison of
Fast-GBS SNP calls with WGS data in soybean yielded
an accuracy of 98.7%, a result consistent with those pre-
sented here. Platypus’ superiority in indel identification
but comparatively lower performance in SNP calling has
been reported [34], which may explain its slightly lower
agreement with WGS compared to the tools used
in TASSEL-GBS, IGST and GB-eaSy.
Across all six lines examined, GB-eaSy, TASSEL-GBS

and IGST identified SNPs with the greatest accuracy
(over 99%), based on comparison to WGS SNPs called
by GATK HaplotypeCaller (Fig. 3). The accuracy of Fast-
GBS and Stacks was lower but still reasonably high
(never below 97%). This high accuracy among all five
workflows, coupled with the low SNP convergence be-
tween them, indicates that they arrived at largely com-
plementary sets of valid SNP calls (Fig. 2b and Fig. 3).
For instance, GB-eaSy, TASSEL-GBS and IGST con-
verged on just 2501 (12.85%) of their total 19,465 unique
SNPs found in Prize (Fig. 2b). Similarly, these three pipe-
lines converged on just 6781 (17.02%) of their 39,853
unique SNPs found in Skylla (Fig. 2b). These results
echo a previous report on barley GBS data in which ap-
proximately half of SNPs called by TASSEL-GBS and
BCFtools/SAMtools were unique to each pipeline [35].

Storage, run time and ease of use
TASSEL-GBS, the workflow with the smallest storage re-
quirements, used approximately half of the hard disk
space required by Stacks and GB-eaSy. While it used the
least disk space, TASSEL-GBS identified the fewest
SNPs. Both IGST and Fast-GBS found more SNPs than
TASSEL-GBS but required the largest amount of disk

Table 5 Wall-clock time to completion for each GBS pipeline
(h:mm)

TASSEL IGST Fast-GBS Stacks GB-eaSy

Population 1 2:08 12:17 3:20 8:36 5:21

Population 2 4:58 18:46 8:01 16:34 6:51

Population 3 3:38 11:28 4:06 10:15 4:23

Wickland et al. BMC Bioinformatics  (2017) 18:586 Page 10 of 12



space due to their generation of many uncompressed
intermediate files, even with parameters set to delete
intermediate files where applicable. This characteristic
could hinder their adoption by users with limited com-
puter storage capacity. Across pipelines, these patterns
also emerged in run time differences, which may be de-
termined to a large extent by read-write rather than
CPU operations. IGST and Stacks required considerably
more time to run than TASSEL-GBS, Fast-GBS and GB-
eaSy. For instance, IGST needed over 18 h to process
data from Population 2, while TASSEL-GBS finished in
less than 5 h. Long completion times limit the through-
put of data processing, making the slower pipelines less
suitable for time-sensitive projects. GB-eaSy’s run times
were intermediate, ranking ahead of IGST, Stacks and
occasionally Fast-GBS but behind TASSEL-GBS.
Given the complexities of GBS analysis, a critical

element of any bioinformatics pipeline is ease of use.
The five analysis platforms in this study rely on two
command input strategies. In TASSEL-GBS and Stacks,
the user inputs individual commands that each run a dif-
ferent step of the pipeline. In contrast, IGST, Fast-GBS
and GB-eaSy automate this process by requiring just one
command from the user to execute all steps; however,
IGST and Fast-GBS also depend on adherence to a rigid
convention for file naming and directory structure to en-
sure successful completion. GB-eaSy does not require
the user to follow strict instructions for setting up direc-
tory structure or naming files. Instead, it uses a parame-
ters file to customize the analysis for each project based
on user input.
Another consideration in ease of use is the ability of a

method to carry out all the steps necessary to produce
accurate SNP calls. For our data, TASSEL-GBS and Fast-
GBS required extra steps not built into their pipelines to
improve the accuracy of their SNP calls. Fast-GBS ini-
tially appeared to identify significantly fewer SNPs than
the other methods and showed lower agreement with
WGS. However, after decomposition of compound SNPs
into allelic primitives using the VariantsToAllelicPrimi-
tives script, the apparent performance of Fast-GBS im-
proved considerably; these optimized results were used
in the comparison. Prior to running TASSEL, we re-
moved adapter sequence from the reads using Cutadapt,
adding an additional step to the workflow, after finding
that adapter contamination significantly impaired the ac-
curacy of TASSEL-GBS SNP calls. Again, the optimized
results after the trimming step were used in the com-
parison. In GB-eaSy, these additional steps either are not
required or are built into the pipeline itself.

Conclusions
Here we introduce the GB-eaSy pipeline and compared
its performance to four other GBS workflows and to

whole-genome sequencing on low-coverage data from
soybean. Differences were apparent between the per-
formance of these methods depending on the aims of
the developers. TASSEL-GBS was designed for plant
breeding applications and to run on individual PCs, and
is thus optimized for maximum computational effi-
ciency. The compromises inherent in the tag strategy
limit the number of SNPs that TASSEL-GBS can identify
using datasets such as those utilized here. Stacks is a
method developed primarily for high-depth RAD se-
quencing on organisms without reference genomes. It is
likely to be an excellent choice for breeders in orphan
crops, as well as for biological diversity applications, but
the reference-genome independence of the variant call-
ing algorithm and the low-coverage data used here ren-
der the current version less accurate than methods
incorporating reference sequences for low-depth GBS in
soybean. Fast-GBS and IGST are, like GB-easy, methods
designed for plant breeding applications on complex
crops with high-quality reference genomes. The overall
performance of these methods in terms of SNP number
and accuracy is similar. GB-easy has an advantage over
the other methods in terms of resources needed (par-
ticularly disk space), ease of implementation, and num-
ber of accurate SNPs identified. Although our results
demonstrate relatively low SNP concordance between
GBS pipelines, comparison of each GBS pipeline to
WGS data indicates that the SNP calls from each are
highly accurate, particularly those generated by GB-eaSy,
TASSEL-GBS and IGST. These findings suggest that a
comprehensive approach integrating the results from
multiple GBS analysis methods may be the optimal strat-
egy to obtain the largest, most highly accurate SNP yield
possible from low-coverage polyploid sequence data.
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