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Abstract

Background: RNA structure prediction is an important field in bioinformatics, and numerous methods and tools
have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost
all existing methods are based on a single model and return one solution, often missing the real structure. An
alternative approach would be to combine different models and return a (small) set of solutions, maximizing its
quality and diversity in order to increase the probability that it contains the real structure.

Results: We propose here an original method for predicting RNA secondary structures with pseudoknots, based on
integer programming. We developed a generic bi-objective integer programming algorithm allowing to return
optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the
combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool,
called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure
with the highest F1-score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous,
regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F1-scores are always higher

than 70% for any number of solutions returned.

Conclusion: The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning
several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One
perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the
comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective
algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-

evry fr.
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Background

RNAs are involved in numerous pathologies such as
cancer and neurodegenerative diseases. Determining the
structure of an RNA is an important step in the under-
standing of its biological and biochemical function, its
classification and its interaction with other molecules. In
this paper, we are interested in the prediction of the sec-
ondary structure of RNAs with pseudoknots. Pseudoknots
can have important roles in the translation process. For
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example, some studies have shown that the interaction of
a pseudoknot with the ribosome induces a break of the
ribosome during the translation, by causing a deformation
of the tRNA in the P site [1].

Predicting the secondary structure with pseudoknots
of an RNA sequence is a subject which is heavily stud-
ied in the literature. In fact, this problem was proved to
be NP-hard for various energy models [2, 3] and, as the
current provided tools are not satisfactory, it is still an
open subject. Two main approaches exist for predicting
RNA structures (with or without pseudoknots): the ther-
modynamic approach and the comparative approach. The
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thermodynamic approach consists in, either computing
the structure of minimum free energy (MFE) according
to a set of thermodynamic parameters, or computing the
structure of maximum expected accuracy (MEA) with
a partition function. The comparative approach consists
in finding a conserved RNA structure between several
species. This approach needs therefore several (homolo-
gous) sequences as inputs, unlike the first approach where
only one sequence is needed.

Many tools have been proposed in the literature for pre-
dicting RNA pseudoknots. We can cite for instance tools
based on MFE models [4-9], tools based on MEA mod-
els [10, 11] and tools based on the comparative approach
[12, 13]. However, the results of a single given model can
only approach the real structure. For example, it is now
established that the real structure has a very low energy,
but not necessarily the minimum one (indeed, many fac-
tors are involved, such as the environment). Approaches
able to combine different models are therefore interesting.
To our knowledge, very few tools have been proposed to
combine different models for the prediction of secondary
structures of RNAs with pseudoknots. Combination has
been used for the prediction of a consensus structure of
several homologous sequences, as performed in ILM [13]
which combines the comparative approach with an MFE
model, and in IPknot [10] which combines the compara-
tive approach with an MEA model. An algebraic dynamic
programming method [14] has also been proposed to
combine the MEA and the MFE models. However, no ded-
icated tool is available. Moreover, very few tools, namely
pKiss [4], McGenus [5] and Tfold [12], have been pro-
posed to return several solutions of secondary structures
with pseudoknots. Proposing a unique solution, the opti-
mal one according to a given model, is restrictive, for
the reasons given above. It is important to consider also
sub-optimal solutions. Our goal is to develop a method
combining different models and returning both several
optimal and several sub-optimal solutions. In this paper,
we are interested in the thermodynamic approach, as we
consider a single RNA sequence of interest as input.

The majority of RNA secondary structure prediction
tools were developed using the dynamic programming
methodology [4, 5, 7, 11]. In [6] and [10], another
approach was proposed: integer programming. An inte-
ger program is a mathematical formalization of a problem.
It consists in an objective function to optimize on a set
of integer variables, subject to a set of linear constraints.
This approach is very flexible, allowing to model mathe-
matically a large range of problems. It has been applied
to various domains, from economy to industry. To our
knowledge, only one team has used integer programming
for RNA secondary structure prediction with pseudo-
knots. First they developed an integer program [6] to find
the structure of MFE using the stacking energy parameters

Page 2 of 15

of Mfold 3.0 [15]. Then they provided the IPknot software
[10] based on an MEA model using base pair probabilities
computed with different models like the McCaskill [16] or
the Dirks and Pierce [8] models. This team also used inte-
ger programming to predict RNA-RNA interactions [17].
Note that integer programming has also been employed in
related domains such as multiple RNA sequence-structure
alignment [18] or 3D RNA structure by inserting local 3D
motifs in RNA secondary structure [19].

In this paper, we propose an original method based on
bi-objective integer programming minimizing two crite-
ria for the prediction of RNA secondary structures with
pseudoknots. This approach allows us to combine two
thermodynamic models into a single bi-objective inte-
ger program (BOIP), from which we can get the set of
optimal secondary structures having the best trade-off
between the two criteria. Note that a method to find
bi-objective optimal solutions for the RNA folding prob-
lem, combining also two thermodynamic models, namely
the MEA and the MFE models, was also developed [14].
This method defines a binary Pareto product opera-
tor using algebraic dynamic programming and studies
different implementations of this operator. The authors
showed that this combination generates Pareto sets with
some diversified structures with their variations. As stated
before, sub-optimal solutions are equally of great inter-
est from a biological point of view. We therefore propose
an algorithm to retrieve the k-best (sub-)optimal solu-
tions for any BOIP and apply it to our specific issue. In
this work, we consider a first model based on the MEA
model proposed in [10], to which we will refer as Mod1.
A second model, based on the MFE model proposed in
[6], will be refered as Mod2. We have thus performed the
following steps:

e e developed an original generic algorithm, that
allows to return several optimal and several
sub-optimal solutions for any BOIP.

e We combined the two thermodynamic models Mod1
and Mod2 for prediction of RNA secondary structure
with pseudoknots into one BOIP.

e We implemented this BOIP with our generic
algorithm to predict several optimal and several
sub-optimal RNA secondary structures. The tool is
called BiokoP (Bi-objective programming pseudoknot
Prediction) and is available on our EvryRNA platform.

We evaluated our algorithm on a dataset of 198 pseu-
doknotted RNA sequences from PseudoBase++ [20]. The
first observation is that the real structure is often given
by a sub-optimal solution, which confirms the need of
returning sub-optimal solutions. BiokoP was then com-
pared with other tools proposing several solutions for
pseudoknotted RNA secondary structure prediction. To
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our knowledge, only two tools are available in the litera-
ture, namely pKiss [4] and McGenus [5]. BiokoP was also
compared to IPknot [10], in the case where one solution
is returned. Considering the dataset of pseudoknotted
secondary structures, BiokoP gives better Fi-scores than
the other tools. The results in function of the type of
pseudoknots show that BiokoP gives homogeneous results
regardless of the pseudoknot type. Indeed, the Fi-scores
are always higher than 70% for any number of solutions
returned, contrary to those of pKiss and McGenus. The
results also show that BiokoP is more likely to return the
best structure (according to the F;-score) among the opti-
mal solutions than the other tools. We also experimented
BiokoP on a dataset of pseudoknot-free RNA sequences
from RNA STRAND [21]. We compared BiokoP on this
dataset with the other tools and with RNAsubopt [22].
RNAsubopt is able to predict pseudoknot-free structures
and sub-optimal solutions. The results show that BiokoP
is able to predict pseudoknot-free secondary structures
with Fj-scores close to those of RNAsubopt and better
than those of pKiss and McGenus.

The paper is organized as follows: in the “Methods”
section, we start by giving some fundamental definitions
in multi-objective optimization. We present our algo-
rithm, which aims to compute several solutions (optimal
and sub-optimal), for any BOIP. Then, we present how we
combined the two models Mod1 and Mod?2 into a single
BOIP to predict RNA secondary structures with pseudo-
knots. The “Results” section is devoted to the experimen-
tal evaluation of our method. Finally, we discuss about our
results in the “Discussion” section and we conclude and
give some perspectives in the “Conclusion” section.

Methods

Our work is based on integer programming which consists
in optimizing an objective function according to linear
constraints over a set of integer decision variables [23].
It allows to model very different problems. Integer pro-
gramming is usually used to obtain an optimal solution,
but here, the purpose is to obtain also several sub-optimal
solutions.

We are interested in optimizing several objective func-
tions, corresponding here to different models for RNA
secondary structure prediction. We thus have a bi-
objective integer program, and the set of optimal solutions
is called the Pareto set. As said before, regarding our bio-
logical context, we are interested in finding optimal and
sub-optimal solutions. In a multi-criteria setting, it means
to compute sub-optimal Pareto sets, namely the k-best
Pareto sets for k > 1. Hence, we present a new method
to generate those sets for a generic bi-objective integer
program (BOIP). We would like to stress out that this
is a totally new problem to our knowledge, this should
not be confused with the traditional problem of finding
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approximate Pareto sets. Indeed, in the latter approach,
one wants to find an approximation of the exact Pareto set,
whereas in our method we find the exact (sub-)optimal
Pareto sets.

The bi-objective integer programming

A multi-objective integer program (IP) is an IP with more
than one objective function. In the sequel, we consider the
case where there are only two objective functions, denoted
by fi and f2, and one wants to minimize them. In that case
we say that we have a BOIP. Given a BOIP, we denote by
X its set of feasible solutions, i.e., the set of solutions sat-
isfying all constraints. Let x and " in X’ be two solutions.
We say that x dominates x’, denoted by x > &/, if and only
if (x) < fi (*) and fo(x) < fo (+), where at least one
inequality is strict. Since, in general, there does not exist a
solution dominating all other solutions, we are looking for
a trade-off. A solution x € X is Pareto efficient if and only
if there does not exist a solution " € X such that ' > «x.
The Pareto set is P := {x € X : x is Pareto efficient}. It
is the set of solutions which are not dominated by other
solutions. The Pareto front is F := {(fl(x),fg (x)) tx € P}.
Figure 1a illustrates those definitions.

Many methods exist to solve multi-objective combina-
torial optimization problems and BOIP. There are meth-
ods for finding the exact Pareto front [24-28] or an
approximation of it [29, 30]. A first difference of our
approach with the majority of the above works is that we
are rather interested in finding the Pareto set instead of
the Pareto front, and in case there are several solutions
with the same values for each objective function, we want
to find them all. Another more fundamental difference
is that we are also interested in computing sub-optimal
Pareto sets, namely the k-best Pareto sets with k > 1.
For example, the second best Pareto set corresponds to
the best trade-off when the solutions belonging to the first
Pareto set have been removed. In other words, when the
first Pareto set is removed, the remaining non-dominated
solutions form the 2-best Pareto set. Figure 1b shows
several k-best Pareto sets.

Algorithm for finding the k-best Pareto sets

In this section, we present an original generic algorithm
we developed to compute the k-best Pareto sets for any
BOIP:

min fj (x)
min f (x)
subject to:
gr(x) <0 k=1,...,m
x = (X1,%2,...,%,)
x; € 7 1<i<n

The constraints are described here as linear functions gi
of x.
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Pareto front °

Non-dominated Solutions

f1

Dominated Solutions

Fig. 1 Pareto front, Pareto set and k-best Pareto set according to two objectives to minimized. a The set of non-dominated solutions is the Pareto
set, and their corresponding values according to the two criteria form the Pareto front. b Example of k-best Pareto sets with k = 1,2,3

f2

f1

For the clarity of the presentation let us assume first
that all the variables in the BOIP are binary ones. In that
case, given a set F of forbidden solutions, we denote by
Py (Amin> Mmax> F) the following IP:

min fj (x)

subject to:

fZ(x) > Amin
f2(x) =< Amax
DIFF(s) fors € F

&x) <0 k=1,...,m
X = (xl’x2;-~~;xn)
x; € Z 1<i<mnm

In this IP the first objective function f; to be minimized
stays the same. The second objective function f; is intro-
duced by two constraints which will maintain its value
between A, and Ay

For each solution s in F, a constraint DIFF(s), also
present in [31], is added. This constraint forbids to find
the solution in F again. The constraint is defined in the
following way. Let assume we have found a solution x* =
(x’{,xﬁ,...,le) € F of a binary IP. Let define B :=
{i|x;-k = 1} and N := {i|x;-" = O}. The DIFF(x*) constraint
is: Y ;ep(1 — %) + > _;cn % = 1. This constraint ensures
that the (Hamming) distance between any feasible solu-
tion s and the solution x* is at least one. Therefore, there
must be at least one variable x; which takes a different
value from x}.

For the more general case, i.e. for BOIP with integer
decision variables, this time, several binary and contin-
uous variables together with several constraints must be
added to the IP, leading to a mixed linear program [32].
For each solution x* = (x’f,xé, .. ,xj‘,) € F, we create the
n binary variables o; € {0,1} for 1 <i < n,and then + 1
continuous variables, W; > 0, (1 <i <n)and0 <0 <1,
together with the following constraints (M being a large
constant):

0=<W;—x +xf <M1 —ay),
0<W;,—x+x < Ma,
i Wi+0 =1

1<i

1<i

IA

A

Of course, these modifications do not change the main
algorithm, their aim is to forbid the solutions in F. In
the following, we denote again by P; (Ayin> Amax, F) the
resulting mixed linear program.

We denote by P; the following IP:

max fo(x)
subject to:
grx) <0 k=1,...,m
X = (xl,x21 e 1x}’l)
xi € 7 1<i<n

The general idea of our algorithm is to recursively per-
form a dichotomic search in the areas above and below
each new solution found. We denote by nb the number of
Pareto sets seeked. At the end of the algorithm, the set R
will contain all the solutions belonging to the k-th Pareto
sets, for 1 < k < ub. For each solution s found during
the execution of the algorithm, we have a label, denoted
by I(s), indicating the index of the set this solution belongs
to, i.e., [(s) = k iff the solution s belongs to the k-th
Pareto set.

Our algorithm, called FindKParetoSets works as follows.
First, we find a (leftmost) solution L, minimizing the fj cri-
terion. We set its label to 1, /(L) := 1, and this solution is
added to the set R. Notice that since there can exist sev-
eral solutions minimizing f; with different f; values, this
solution does not necessarily belong to the first Pareto
set. In that case, its correct label will be set during the
remaining execution of the algorithm. Then, we compute
the solution U maximizing the f; criterion. An f value of a
solution s is noted as s1, and in the same manner, s, defines
the f, value. In the following, U, will serve as an upper
bound for the recursive search. Finally the localPareto()
procedure is called and performs the recursive search, first
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below L, between —oco and Ly — ¢ according to the f; cri-
terion, and then above L, between L, and U>. Here ¢ is a
very small constant such that for any pair of solutions s, s’

one has either f5(s) = f5 (s') or |fa(s) — f2 (5') | > &.

Algorithm: FindKParetoSets (1b)

:R:={}

2 L := solve(P1(—00, +00, )
5 IL) =1

4 R:=RU {L}

5: U := solve(Py)

6: localPareto(—o0o, Ly — &)

7: localPareto(Ly, Us)

8: R:=R\{x € R,l(x) > nb}
9: Return R

The localPareto() procedure is described below. Each
search, corresponding to the computation of a portion of
a Pareto set, is done between two values, denoted by X,
and A4y, that are taken as two arguments. The set F rep-
resents a set of solutions previously found between A,
and X4, that we could find again by solving P;. To avoid
it, the solutions of F are forbidden as explained before.
If the IP P (Amin, Amax, F) has a solution s (lines 2-3), by
default its label is set to 1 (line 4). Then, the label of s must
be computed according to lines 5-6. If the label is inferior
or equal to nb + 1, the solution s is added to R. If nec-
essary, the labels of some previously found solutions of R
are updated (lines 10 to 11). Finally, the localPareto() pro-
cedure is called to search below s (between A, and s —¢)
and above s (between sy and A,,,,) if the label is inferior
to nb.

Procedure: localPareto(A i1, Amax)

L Fi={xe€R: Amin < %2 < Anax}

2: 8 := solve(P1(Mmin> Amaxs F))

3. if s # () then

4: l(S) =1

if £L:={xeR,s<x}#{then

I(s) := maxyer, I(x) + 1

if [(s) < nb + 1 then

R :=RU s}

if (3xe Rs.t.x; =s1 ANDx #5s) AND (A
x € Rs.t.x; =51 AND xy = s AND x # s) then
10 for x € Rs.tx; =51 ANDx < sdo
11: Ix):=1x)+1
122 localPareto(Ayin, S2 — &)
13:  ifI(s) < nb then
14: localPareto(sy, Myax)

R A A

Example We show an example of an execution of the
algorithm FindKParetoSets to find three Pareto sets. We
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solve the BOIP presented in the following section, with
the PKB101 RNA from the satellite tobacco mosaic virus.
Figure 2 shows the three Pareto sets obtained and summa-
rizes the recursive search.

The first step of our algorithm is to find the solution
denoted L, by solving the BOIP (line 2), and add it to
the set R (line 4). Then a maximum threshold U is
found by solving P, (line 5) to search above the first solu-
tion L. A search below the solution L is done (line 6)
and the solution s! is found. In the localPareto() proce-
dure, the solution s! obtains the label of the previous
solution L. A search below s! is done, but no solution is
found. The search above s! is done and s® is found. The
recursive search continues until no additional solution is
found.

Bi-objective integer programming for predicting RNA
secondary structures with pseudoknots

In this paper, we propose a method for predicting RNA
secondary structures with pseudoknots using the algo-
rithm presented based on a BOIP. Our method allows to
return several optimal and several sub-optimal solutions,
optimizing two objectives related to an MEA model and
an MFE model. The MEA model, to which we will refer
as Modl, is based on the model proposed in [10] and
uses the Dirks and Pierce set of thermodynamic parame-
ters [8]. The MFE model, to which we will refer as Mod?2,
is based on the model proposed in [6]. Mod1l and Mod2
can describe all kinds of pseudoknots. In the following,
we present first how an RNA structure with pseudoknots
can be modeled. Then we describe how we combine Mod1
and Mod2 into one BOIP.

Modeling RNA secondary structures with pseudoknots

In Modl and Mod2, the RNA secondary structures are
modeled in the following way. An RNA sequence s is com-
posed of # nucleotides or bases which can be A, U, G or
C. Each base can be paired according to the Watson-Crick
(A-U and G-C) or the Wobble (G-U) pairings. To take into
account the pseudoknots, it is assumed that a secondary
structure can be decomposed into m pseudoknot-free
substructures y!, y2,..., ", called levels. The levels are
disjoint sets meaning that a base pair belongs to exactly
one level. From experimental data, it is generally assumed
that two levels are sufficient to describe most known RNA
structures. Then, in the following, m = 2.

A base pair between the bases i and j in level p is repre-
sented by a binary variable yf; equalto 1, withi=1,...,n
andj =i+ 1,...,n. If there is no base pair between i and
) yZ is equal to zero.

The possible types of base pairs correspond to integer
values 1,...,6: A-U has the value 1, C-G the value 2, G-C
the value 3, G-U the value 4, U-G the value 5 and U-A the
value 6.
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Fig. 2 Example results of the FindKBestParetoSets algorithm. a Results of the determination of three Pareto sets with the algorithm for the PKB101
RNA from satellite tobacco mosaic virus. For each solution is displayed the identifier s'. b Recursive calls of the algorithm. For each call is displayed
the identifier of the current solution s', the search space (Amin, Amax) and the set F. A e represents no solution or a solution whose the label is superior
tonbornb + 1. The left branches are the searches below the current solution s and the right branches are the searches above the current solution s

The possible stacks of two base pairs (i, j) and (i—1,j+1)
in level p are defined with binary variables xglp , with k and

[ representing the possible types of base pairs. If xf.;lp is
equal to 1, then the bases i and j, and the bases i + 1 and
j— 1are paired, and in the case where xglp is equal to zero,

there is either one base pair or no base pair at all.

Predicting RNA secondary structures with pseudoknots by
combining two models
In the BOIP, we combine Modl and Mod2. The objec-
tive of Modl1 is to find the MEA structure with none
pseudoknot or with one or several pseudoknots of
any type.

The MEA structure is found by the computation of base
pair probabilities with the Dirks and Pierce model [8]. We
set as fi the approximation of the expected accuracy:

Z Pijy, 5

i<js.t.pi>0P

iy = > p°

1<p=<m

1)

where B? are constants for each level p, fixed to ¥ = 1/m,
pij are the base pair probabilities computed with the Dirks
and Pierce model and 67 is a threshold aiming to ignore
the lower base pair probabilities.

The objective of Mod2 is to seek the MFE structure. The
MEE function consists in the sum of the energies of each

stack xf«;lp of two base pairs:

6 6

=333 3 Y e

p=0 i=1 j=1 k=1 I=1

)

with e; the energy given in [6], depending on the types k
and / of the two base pairs.

For the need of the algorithm, the sign of the func-
tion fi(y) is changed to have two objective functions to
minimize.

The constraints of the BOIP enforce that any feasible
solution corresponds to a feasible folding configuration
of a secondary structure of RNA. They define basic rules
(Fig. 3) such as making impossible for a base i to be paired
with several bases, forbidding the presence of pseudo-
knots on the same level and forbidding isolated base pairs.
Also, adding pseudoknots in the structure is penalized
since they are rare, according to the known structures.
The DIFF constraints will be added for any solution in F.
This constraint adapted to our BOIP is:

m

YRS Y

p=1ijeB? p=1ijeNP

m
<) IBI-1 A=<Vp=mVseF)
p=1
3)
with B = [ijlyzp = 1] and NP = {ijly;;p = 0].
In our BOIP, the pseudoknot levels can be inverted,
causing the generation of different solutions (that have
not necessarily the same objective values) correspond-

ing to the same structure. To avoid this redundancy, the
following constraint is added:

DUy =D vi— Y v < IB+IBY-1 (4)
ijeB? ijeBl ijeN? ijeN1
This constraint corresponds to the previous constraint
but the levels of the sets B and N are inverted. Then,
the base pairs of the level 1 are forbidden in level 2 and
vice versa.
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a q
Yji Yij

D

Fig. 3 Different cases of forbidden base pairs in RNA secondary structures with pseudoknots. a The base i of level p cannot be paired with several
bases at the same time, from the same or different level; and the base pair between the bases i and j cannot exist on two different levels p and g at
the same time. b Two base pairs ijj and /'/' forming a pseudoknot cannot exist at the same level p

Results

The BOIP presented for predicting RNA secondary struc-
tures with pseudoknots is implemented using the CPLEX
Optimizer V12.6.3 solver [33]. Our algorithm is imple-
mented with ¢ = 0.001 and m = 2. The obtained tool,
called BiokoP, is available on our EvryRNA platform.

In the following, we first present the datasets we use
for the evaluation of BiokoP, then the experiments show-
ing the distribution of real structures found over the
generated solutions. The next section is devoted to a sta-
tistical analysis of structures predicted by BiokoP and by
other tools from the literature. We end by giving some
information on the execution time of BiokoP.

Datasets

We evaluate our approach on a dataset of pseudoknot-
ted RNAs we built from the PseudoBase++ database [20].
This dataset gathers 198 sequences whose lengths range
from 21 to 128 nucleotides.

PseudoBase++ classifies the sequences by the pseudo-
knot types. We recovered five types of pseudoknots: H
(H-type), HHH (kissing hairpin), HLout, HLin and LL.
The types, described in Fig. 4, are defined in function
of the topology of the pseudoknot. In our dataset, there
are 154 pseudoknotted RNAs of type H, 3 of type HHH,
26 of type HLout, 4 of type HLin and 11 of type LL.
All the RNAs of type H come from the dataset of 168
sequences built by Huang et al. [34] from PseudoBase++.
This dataset excludes redundant sequences. The remain-
ing RNAs were recovered on the database by requests
according to the type of pseudoknots.

We also built a second dataset of pseudoknot-free RNAs
from the RNA STRAND database [21]. It gathers 145 non-
redundant sequences whose lengths range from 10 to 97
nucleotides.

These datasets are available on the EvryRNA platform.

Distribution of real structures over the returned solutions

In this section we study the ability of BiokoP to find the
real structures. The purpose is to analyze where the real
structures are found, over the Pareto sets or in func-
tion of the number of solutions returned. This section is
also devoted to a comparison between BiokoP, Mod1 and
Mod2 in order to determine the contribution of BiokoP.

Distribution of real structures over the Pareto sets
We study the distribution of real structures returned by
BiokoP on our dataset of pseudoknotted RNAs over the
Pareto sets. The real structure is the structure that cor-
responds exactly to the referenced structure for a given
RNA.

To study the distribution of real structures, as the num-
ber of solutions of a Pareto set can not be predicted, note
that in order to have 30 solutions per RNA, the mean

5 5' 3
H HHH (kissing hairpin)
3

3

HLout HLin LL

Fig. 4 RNA pseudoknot types. RNA pseudoknot types from
Pseudobase++ [20] classification
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number of Pareto sets to compute is 5.2. The distribu-
tion of real structures found are displayed in Table 1.
Around the half of real structures found are in the first
Pareto set (45 over 83). These structures are the optimal
ones, showing the relevance of combining these MEA and
MFE models. The real structures corresponding to sub-
optimal solutions are distributed in the first sub-optimal
Pareto sets, mainly the second (15) and the third (13).
The remaining solutions are scattered in the remaining
Pareto sets. The position of these sub-optimal solutions
supports with the fact that the real structure is often a
sub-optimal solution. This suggests that the sub-optimal
solutions returned by BiokoP are diversified and that our
approach finding the k-best Pareto sets allows to find per-
tinent sub-optimal solutions. Finally, it appears that the
first Pareto sets are more useful for this combination of
models than the last Pareto sets which do not guarantee
to find the real structure. Indeed, the quality of solu-
tions decreases when the number of computed Pareto sets
increases. Hence, we recommend to the users to com-
pute three Pareto sets in mean to obtain a relevant set of
solutions.

Distribution of real structures in function of the number of
solutions returned

This section is devoted to the distribution of real struc-
tures found by BiokoP in function of the number of solu-
tions returned on our dataset of pseudoknotted RNAs,
and to the comparison with Mod1 and Mod2, in order to
show the pertinence of combining these two models on
one hand, and to return several solutions on another hand.
We extended Mod1 and Mod2 so that they return the k-
best solutions, using the constraint [31] presented in the
“Algorithm for finding the k-best Pareto sets” section. We
refer to these extensions as Mod1%° and Mod2%° (so stands
for sub-optimal). The results are reported in Fig. 5.

BiokoP is made to return sets of solutions and all the
solutions belonging to one Pareto set are not compara-
ble. Then, this experiment requires to rank the solutions
of the Pareto sets returned by BiokoP in order to com-
pare the solutions one against the others. The solutions of
each Pareto set are ranked in the following manner: the
solutions optimizing equally the two objectives, i.e., the
solutions closer to the diagonal, are better ranked.

The results on the dataset of pseudoknotted RNA show
that, as expected, BiokoP predicts more real structures
than Modl and Mod2 (corresponding respectively to
Mod1%° and Mod2%° for one solution returned). Indeed,
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BiokoP, Modl and Mod2 return the real structure for
respectively 32, 25 and 23 RNAs. We observe that, in these
sets of real structures returned by Modl and Mod2, 12
RNAs are identical. Those RNAs also show up in the set
of real structures returned by BiokoP. In the remaining
real structures found by BiokoP, 6 are neither found by
Mod1 nor by Mod2. This shows clearly the pertinence of
combining Mod1 and Mod2. Besides, we note that BiokoP
finds all the real structures found by Modl. Some real
structures found by Mod2 are not found by BiokoP when
one solution is returned but they are all found by BiokoP
in the first Pareto set. The real structures found by Mod1
and Mod2 are all returned by BiokoP as optimal solutions,
showing that our algorithm succeeds to take benefit from
both models.

The more there are solutions, the more BiokoP is likely
to find the real structure, and with a fast increase in prob-
ability. We observe that after about 20 solutions returned
(for about 2 or 3 Pareto sets), the number of real struc-
tures found seems to be stable, which supports the results
of the previous section. In case of Mod1*° and Mod2*°, the
number of real structures found quickly reaches a plateau
amounting to 7- 8 solutions returned. This is due to the
lack of diversity of the sub-optimal solutions. Indeed, the
sub-optimal solutions are essentially similar to the optimal
one: they are derived from the optimal solution by remov-
ing only very few base pairs. When the optimal solution is
close to the real structure, the real structure can be found
quickly as a sub-optimal solution, explaining the increase
of the curve for a small number of returned solutions.

Finally, this experiment shows that the optimal and sub-
optimal solutions returned by BiokoP are more likely to
contain the real structure compared to those of Mod1*°
and Mod2%°.

Table 1 Distribution of real structures found by BiokoP in function of Pareto sets

k-best Pareto set, k = 1 2 3 4

5 6 7 8 9 10 Total

Number of real structures 45 15 13 7

1 0 0 0 1 1 83
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Comparison of BiokoP with the literature

Considered software

To evaluate the performances of BiokoP, we compare it
with other methods predicting pseudoknotted RNA sec-
ondary structures that are able to return several solutions.
To our knowledge, only two methods are available in
the literature, namely pKiss [4] and McGenus [5]. The
principle of pKiss is to decompose the RNA sequence
into every possible sub-words and to compute the MFE
secondary structure of the decompositions. To reduce
the search space, pKiss is based on the canonical rules
which reduce the number of possible predicted pseudo-
knots (only certain canonical and kissing pseudoknots)
and the redundancy thanks to a non-ambiguous dynamic
programming algorithm. McGenus is based on a Monte
Carlo algorithm which search for a minimum score which
includes the energy and the genus of the secondary struc-
ture. The genus expresses the complexity of a pseudoknot.
McGenus performs a stochastic search that allows to find
various types of pseudoknots.

We also compare BiokoP with IPknot [10] and RNAsub-
opt from the ViennaRNA package [22]. RNAsubopt pre-
dicts pseudoknot-free RNA secondary structures using an
MEE algorithm to compute all the sub-optimal structures
in an energy range.

For the evaluation, we consider the first solution
returned by IPknot and the 30 first solutions returned by
BiokoP, pKiss, McGenus and RNAsubopt. IPknot (version
0.0.4) was executed with the Dirks and Pierce set of ther-
modynamic parameters and with the options -g 2 and -g 4.
pKiss (version 2.2.12) was executed with the default
parameters. We used the option -relativeDeviation to
obtain up to 30 solutions for each RNA. McGenus (version
7.0) was also executed with the default parameters, with
the option -nsuboptimal to obtain 30 solutions. We exe-
cuted RNAsubopt (version 2.3.3) with the option -e to
obtain 30 solutions and with the option -s to sort the
solutions by energy.

For pKiss, McGenus and RNAsubopt, the solutions are
ranked in the returned order, i.e., in the ascending order
of energies. For BiokoP, as the solutions belonging to the
same Pareto set are returned in an arbitrary order and
are not comparable, we adopt the same ranking as in the
previous section. We consider that the best solutions are
the ones that optimize equally the two objectives, and are
therefore closer to the diagonal.

Statistics used

To evaluate the quality of a predicted structure, the statis-
tics usually used are the sensitivity, the positive predictive
value (PPV) and the Fj-score. The sensitivity measures
the ability of finding positive base pairs, while the PPV
measures the ability of not finding false positive base
pairs. The Fj-score is the harmonic mean between the
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sensitivity and the PPV. The three measures are calculated
as follows:
TP TP
— PPV = —,
TP + FN TP + FP
Sensitivity x PPV
Sensitivity + PPV’

Sensitivity =

Fi-score = 2 x

where TP is the number of true positive base pairs, FN is
the number of false negative base pairs, FP is the number
of false positive base pairs, and TN is the number of true
negative base pairs. These statistics allow to measure the
quality of one solution regarding a structure of reference.
In our case, we study methods returning several solutions;
therefore, these statistics should be adapted to be able to
measure the quality of a set of # solutions regarding a
structure of reference. Here we propose to calculate these
measures as follows:

_ Y M) x (n—i+1)
n

M

where M, a measure corresponding for instance to the F;-
score of a set of solutions, is calculated in function of the
measure M(s;) corresponding to the F;-score of a solution
s;, weighted by the rank i of the solution. Of course, the
more the rank of a solution is low, the more the solution is
important, since the corresponding criteria are optimized.

Overall results

In this section are presented the results obtained on the
dataset of 198 pseudoknotted RNAs. Table 2 reports the
weighted means of sensitivities and PPVs in function of
the number of solutions returned for BiokoP, pKiss and
McGenus. We observe that BiokoP has better sensitivities
than pKiss and McGenus and that, when the number of
returned solutions increases, the gap between the sensi-
tivity of BiokoP and the one of the other tools increases.
Regarding the weighted means of PPVs, we observe that
BiokoP outperforms McGenus.

In Fig. 6 we present the weighted means of Fj-scores
obtained by each tool, in function of the number of solu-
tions returned. BiokoP has higher F;-scores than pKiss
and McGenus. The F;-scores of BiokoP are quite stable.
There is only a decrease of 10 points going from 1 to
30 returned solutions, whereas there is a decrease of 15
and 18 points for pKiss and McGenus. This suggests that
the quality of predicted structures of BiokoP, unlike pKiss
and McGenus, is stable when the quantity of returned
solutions increases.

For one solution returned, BiokoP gives similar results
to IPknot (IPknot gives a mean sensitivity of 80.6%, a mean
PPV of 75.1% and a mean F;-score of 77,0%).

Results over optimal solutions
The purpose of this section is to complete and to precise
the results given by the previous statistics. It is not obvious
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Table 2 Sensitivity and PPV results for BiokoP, pKiss and McGenus on pseudoknotted RNAs

NbSol BiokoP pKiss McGenus BiokoP pKiss McGenus
Sensitivity s.d. PPV s.d.

1 80.6 22.3 79.5 24.2 734 2606 75.0 255 75.1 266 74.1 286
2 80.6 223 77.6 235 67.1 26.7 73.2 255 74.8 26.2 69.7 31.6
3 80.1 224 758 236 63.8 305 716 257 74.2 204 673 327
4 79.5 228 744 238 62.2 308 70.5 26.0 735 206 66.2 333
5 79.0 23.1 73. 240 61.0 310 69.7 26.2 72.9 26.8 655 336
10 77.0 236 68.8 24.1 574 319 674 264 70.9 271 62.6 353
15 75.8 236 65.7 24.5 55.7 326 66.4 264 69.3 276 61.0 36.1
20 75.1 236 63.2 250 542 33.1 65.9 264 67.9 28.1 594 36.8
25 74.5 235 61.2 253 533 334 65.5 263 66.7 285 584 372
30 73.8 235 59.5 255 533 334 65.0 26.3 65.2 289 585 37.2

Weighted means of sensitivities and PPVs with standard deviations (s.d.) for BiokoP, pKiss and McGenus according to the number of solutions (NbSol), on a set of 198

pseudoknotted RNAs
A value in italic means this value is the best among the three tools

to compare the optimal solution returned either by pKiss,
McGenus or IPknot with only one solution obtained by an
arbitrary ranking of the solutions of the optimal Pareto set
given by BiokoP. Indeed, the solutions of a Pareto set are
not comparable. We thus focus here on the comparison
of the first solutions returned, i.e. the optimal solutions of
BiokoP (the first Pareto set) and the optimal (one) solution
returned by the other tools. Figure 7 reports the F;-score
results for the optimal solutions of BiokoP versus pKiss,
McGenus and IPknot, for each RNA of the dataset of
pseudoknotted RNAs. The RNAs are sorted according to
the ascending order of the maximum Fj-score of BiokoP.
For BiokoP, we report the maximum and minimum
Fi-scores of the set of solutions for each RNA. BiokoP
finds a better solution than pKiss for 84 RNAs (among
198) and than McGenus for 103 RNAs while the opti-
mal solutions found by pKiss and McGenus are better
than the optimal solutions of the set generated by BiokoP
for respectively 54 and 39 RNAs. The results show that
BiokoP returns 61 better solutions compared to IPknot,
while IPknot does not return better solutions compared
to BiokoP. Returning several optimal solutions allows
BiokoP to obtain the best solution more times than the
other tools.

00 |
I R BiokoP
P — R~ —— Bioko
- . !
E“’: = — = pKiss
5% ] McGenus
=2 + IPknot

I | I I | I no

o
a
o

15 20 25 30
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Fig. 6 F1-score results on pseudoknotted RNAs. Weighted means of
Fy-scores of the structures predicted with BiokoP, pKiss, McGenus and
IPknot, in function of the number of solutions (NbSol) on a dataset of
198 pseudoknotted RNAs

Finally, we observe that the gap between the minimum
and the maximum Fj-scores of BiokoP can be important.
This shows that BiokoP returns a diversified set of optimal
solutions.

Results by pseudoknot types

Figure 8 reports the F;-score results in function of pseu-
doknot types and of the number of solutions returned.
The results for the H-type pseudoknots are very similar
to the results of the entire dataset, which is not surprising
since the H-type is largely represented in it (154 among
198 RNAs). The HHH and HLout pseudoknot types are
better predicted by McGenus, with weighted means of
F;-scores around 84 and 79% respectively. However, for
the HLin and LL types, BiokoP outperforms pKiss and
McGenus with weighted means of F;-scores around 70%
(HLin) and 75% (LL), whereas the weighted means of F;-
scores of pKiss and McGenus are around 60 and 50%
respectively for the HLin type and around 70%, for both
tools, for the LL type. The results show that compared to
IPknot, BiokoP obtains better F;-scores for the HHH and
the LL pseudoknot types, and similar Fj-scores for the
other types when considering one solution returned.

The BOIP of BiokoP has been modeled to be able to
predict any kind of pseudoknots. This is confirmed by
the results obtained that are very homogeneous. Indeed,
the F;-scores of BiokoP are never lower than 70% for any
number of solutions returned. This is not the case for
pKiss and McGenus, for which we can observe that the
results depend greatly on the pseudoknot type. In partic-
ular, they obtain F;-scores around 50% for the HLin type.
Since the datasets of some pseudoknot types are small
(3 HHH, 26 HLout, 4 HLin, 11 LL and 154 H), further
experiments need to be done to confirm the results.

Finally, when one wants to predict a secondary struc-
ture of an RNA, there is generally no information about
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the pseudoknot type. Therefore, it is better to use BiokoP,
which allows to predict structures as close as possible to
the real ones, regardless of the pseudoknot type.

Results on pseudoknot-free RNAs

In order to determine if BiokoP is able to predict
pseudoknot-free structures of RNAs, we evaluated it on
our dataset of pseudoknot-free RNAs and compared the
obtained results with those obtained by pKiss, McGenus,
IPknot and also RNAsubopt which is a tool dedicated to
pseudoknot-free RNA prediction.

In Fig. 9, we present the weighted means of F;-scores
obtained by BiokoP, pKiss, McGenus, RNAsubopt and
IPknot on the pseudoknot-free RNAs, in function of the
number of returned solutions. BiokoP, pKiss and RNA-
subopt give comparable results, showing that BiokoP and
pKiss are both able to predict pseudoknot-free struc-
tures, unlike McGenus. We expected a bigger difference
with RNAsubopt since this tool is made to generate
only pseudoknot-free structures, but finally, it seems that
BiokoP and pKiss do not suffer from a bias due to their
purpose of returning pseudoknotted structures.

Illustration on some examples of RNAs

In order to give an overview of the predictions of BiokoP,
we tested it on two known RNAs, for 30 solutions
returned. We evaluated BiokoP with the pseudoknot
region PK4 (H type) [35] of the Legionella Pneumophila
tmRNA. The referenced structure of this RNA and the
best solution according to the Fj-score returned by
BiokoP, pKiss, McGenus, RNAsubopt and IPknot are pre-
sented in Fig. 10a. The views are obtained with forna [36],
the RNA visualization tool from the ViennaRNA Web
Service. We observe that the exact referenced structure
is found by BiokoP at rank 15, in the second Pareto set.
McGenus and pKiss find the global structure, but miss
in part or completely the pseudoknot. RNAsubopt finds
the same structure than pKiss. [Pknot predicts the exact
pseudoknot and the exact referenced structure except for
one different base pair. All the tools have a high F;-score
for this RNA, but BiokoP and IPknot are the only ones
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Fig. 9 F-score results on pseudoknot-free RNAs. Weighted means of
F1-scores of the structures predicted with BiokoP, pKiss, McGenus,
RNAsubopt and IPknot on pseudoknot-free RNAs, in function of the
number of solutions (NbSol)
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that succeed in predicting the exact pseudoknot. Fur-
thermore, BiokoP is the only one that predicts the exact
referenced structure.

We also study the results of BiokoP on a pseudoknot-
free hammerhead ribozyme [37] (Fig. 10b). This particular
structure, composed of three helices, is much studied
for the understanding of the structure-function relation
of RNAs. The best solution returned by BiokoP has a
Fi-score of 81.3% and is returned at rank 9, in the sec-
ond Pareto set. BiokoP finds the two first helices and some
base pairs of the third one, but predicts an extra pseu-
doknot of two base pairs. pKiss and McGenus find the
two first helices of the RNA. However, pKiss predicts an
hairpin that does not exist in the referenced structure
and McGenus does not find any base pair of the third
helix. RNAsubopt finds the two first helices and some
base pairs of the third one. The structure predicted by
IPknot is identical to the one predicted by BiokoP, but its
pseudoknot possesses an additional base pair. This exam-
ple supports the previous results on the pseudoknot-free
RNA dataset. As RNAsubopt predicts structures with-
out pseudoknots, its results are better than the ones
obtained by the other tools which can predict extra pseu-
doknots. However, the best solution of RNAsubopt is
predicted at rank 25 which is far compared to the one of
BiokoP.

Execution time

The complexity of solving optimally integer programs
is exponential with respect to the number of variables,
which depends mainly on the length of the sequence.
Moreover, we deal here with multi-objective program-
ming which increases the number of BOIPs to solve and
their number of variables. As estimation of the time of
BiokoP, the prediction of 30 secondary structures for an
RNA of 30 nucleotides on Debian OS with 24 Intel Xeon
CPU X5660 (2.8 GHz) and 64Go RAM took, in average,
22 s. For the pseudoknot region PK4 [35] of the Legionella
Pneumophila tmRNA (PKB70) of 55 nucleotides, BiokoP
took 5min30.

Discussion
We developed an original generic algorithm to solve
BOIPs and to return several optimal solutions (the exact
Pareto set) and several sub-optimal solutions (the sub-
optimal Pareto sets). We proposed a BOIP that combines
two models of RNA secondary structure prediction with
pseudoknots, namely the MEA and the MFE models. The
implementation of our algorithm with the proposed BOIP
has led to a tool called BiokoP (Bi-objective programming
pseudoknot Prediction).

Since our method is based on multi-objective opti-
mization, BiokoP returns several sets of solutions (the
k-best Pareto sets). Those Pareto sets are returned in an



Legendre et al. BMC Bioinformatics (2018) 19:13

Page 13 of 15

Referenced Structure
rank ; Fl-score

¥¥oy

o

K3

» v
PP

v v
®9a®

Referenced Structure  BiokoP prediction pKiss prediction  McGenus prediction  RNAsubopt prediction  IPknot prediction
rank ; F1-score 15 ; 100.0% 6; 78.6% 27 ; 90.3% 1; 78.6% 1;96.9%
a 2nd Pareto set
ﬂrno'v': ﬂf‘(‘a"o ﬂnoos': ﬁocn\‘b oﬂ(“\"c cee,
° < ° < ° < o < ° < @ 20 )
g(\-c\“ Ln-on ‘thc*n ‘t\-c\c 50.00 “c-n‘
oo oo oo o0 o0 9
4« 4 ¢ e 9 4 oe
v o @ | » o 5 » o g, !
%-oke %oke %00 %0-0 b 00 Jolord
oy e P 4 4 K|
¥ e 9/ e @ ® o o %
el [ o% e[| o% e % o % | &])2.
o0 o0 o0 o0 o0 G-c
cv ¢y cv cv c v u-A
PN o0 -0 -0 o0 G-c
ey cw e ey cv ula
o0 o0 84 o0 o0 &/CHe-g
ey e, LN oe L ®

o » c A

5
cae
b4
"
© g90.,
LN
b4
P
Cec

o o A A
® v
ceoe®

PK4 region of Legionella Pneumophila tmRNA

BiokoP prediction
9; 81.3%

2nd Pareto set
)

pKiss prediction
1;64.7%

AU

9;76.9%

sce
e

the RNA visualization tool forna from the ViennaRNA Web Service [36]

PR o
G v A G A
4 Gcc?"c A0 o < v 5 uA 30 G‘G-
8g ©8@ 66°C a Do 20 @ G uG 2 o8 oY%
C c-6 S au —OFEa °-6 a g ©-0-©-o-a o % % ag
* e © 40 LA = W) Gca © €666y s
[ 0 @ & PR 10 e, K
Ge . < -
a.y &, 4aaC G.c
a.u 20 4.‘,( AU.5o
Av
o4 Ay s
® 3 4." S
C’G
McGenus prediction RNAsubopt prediction IPknot prediction
25 ; 93.33% 1;78.8%

oa AUCR 30

Hammerhead ribozyme

Fig. 10 Evaluation of BiokoP on some examples of RNAs. Reference structures and best predictions of BiokoP, pKiss, McGenus, RNAsubopt and
IPknot for 30 solutions returned, of (a) the pseudoknot region PK4 (H type) [35] of the Legionella Pneumophila tmRNA (PKB70) and (b) a
pseudoknot-free hammerhead ribozyme (RFA_00393) [37]. For each structure is displayed the rank and the F1-score. The views were obtained with

optimal order. However, all the solutions belonging to
a Pareto set are not comparable and hence cannot be
meaningfully ordered within the set, whereas the tools
of the literature return solutions which are ordered opti-
mally. Hence, comparing the results of BiokoP and of
the tools of the literature raises some difficulties and, in
multi-objective optimization, defining pertinent perfor-
mance metrics for the Pareto sets is a subject of research
[38]. We have chosen to rank the solutions within each
Pareto sets assuming that a solution is better if it opti-
mizes equally the two objectives, i.e., if the solution is
close to the diagonal. This ranking allows us to show
the benefits of combining Modl and Mod2. Indeed,
the experiments show that for the first ranked solution
returned, BiokoP is more likely to return the real struc-
ture than Modl and Mod2 (Fig. 5). The experiments
also show that this combination allows to obtain homo-
geneous Fj-scores compared to the other tools regard-
less of the number of solutions returned, the type of

pseudoknots and the presence or not of pseudoknots
(Figs. 6, 8, and 9).

However, this ranking shows some limitations. It is illus-
trated by the results detailed by pseudoknot types, where
we observe that the solution giving the best F-score is not
always the first one (Fig. 8). To have a better idea of the
global quality of the overall first Pareto set, we decided to
compare it versus the optimal solution of the other tools,
by studying the best and the worst structures (according to
the Fi-score) of the first Pareto set. The results show that
in most cases, BiokoP finds more often better solutions
than the other tools (Fig. 7).

The numerous experiments we performed show:

e that the combination of Mod1 and Mod?2 is relevant:
BiokoP returns all the real structures found by Mod1
and Mod2 as optimal solutions and is able to find
more real structures (in optimal or in sub-optimal
Pareto sets) than the two models alone;
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e and that BiokoP, compared to the literature, achieves
the best compromise between the number of times
the best solution (with the highest F-score) is found
and the global quality of predictions.

Conclusion

In this paper, we provide an original approach for pre-
dicting RNA secondary structures with pseudoknots that
is based on the computation of several optimal and sev-
eral sub-optimal solutions with respect to two different
models. Our method is based on integer programming
approach, that presents the advantage to be more flexible
compared to the dynamic programming approach usu-
ally used in the RNA secondary structure prediction. In
order to combine the two models, we developed a bi-
objective integer program (BOIP), and proposed a generic
novel algorithm to compute the sets of optimal and sub-
optimal solutions for any BOIP. We applied it to the
prediction of RNA secondary structures with pseudo-
knots, obtaining the software BiokoP. The experimental
tests performed have confirmed the importance of consid-
ering sub-optimal solutions in addition to optimal ones.
We have shown that our method successfully combines
Mod1 and Mod2, taking benefit from the two models.

BiokoP was compared with other tools from the litera-
ture for RNA secondary structure prediction with pseu-
doknots that propose several solutions, namely pKiss [4]
and McGenus [5]. BiokoP was also compared to IPknot
[10]. IPknot predicts pseudoknotted structure, but no
sub-optimal solutions. Finally, BiokoP was compared to
RNAsubopt [22] which can predict only pseudoknot-free
structures, but with sub-optimal solutions. Considering a
set of 198 pseudoknotted secondary structures gathered
from Pseudobase++ [20], BiokoP gives better F;-scores
than pKiss and McGenus. We also show that BiokoP
returns more time the best solution (with the higher
F1-score) than pKiss, McGenus and IPknot, considering
the optimal solutions. Even if BiokoP is made to predict
pseudoknotted RNAs, the Fi-score results for the dataset
of pseudoknot-free RNAs are close to the results of RNA-
subopt. The results of BiokoP are widely homogeneous
regardless of the pseudoknot type or the presence or not of
pseudoknots. Indeed, the F;-scores are always higher than
70% and regardless of the number of solutions returned,
unlike pKiss and McGenus.

A drawback of our approach is the time complexity due
to the need to optimally solve several integer programs. As
stated before, this complexity is exponential, with respect
to the length of the sequence. A perspective to decrease
the execution time is to use parallelism. Indeed, due to
its recursive shape, the generic algorithm we propose to
solve BOIP is suitable to parallelization. Another idea
to decrease the complexity of the BOIP would be to add
constraints when some information on the structure are
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known: base pairs, presence or not of pseudoknots, type
of pseudoknots.

In this work, we combined two models inspired from
the literature. A perspective is to combine better mono-
criterion models in order to raise the global quality of the
solutions found. We would first try to model the com-
parative approach with integer programming to propose
a combination with one of the thermodynamic model.
This would take benefit from the additional information
brought by homologous sequences. Finally, another future
work will consist in developing multi-objective algorithms
in order to combine more than two models. Moving from
two objectives to three will require to rethink the current
algorithm in three dimensions. This would represent the
first step to develop a multi-objective generic algorithm
able to return sub-optimal Pareto sets for any IP with #
objective functions.
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