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Abstract

Background: Hot spots are interface residues that contribute most binding affinity to protein-protein interaction. A
compact and relevant feature subset is important for building machine learning methods to predict hot spots on
protein-protein interfaces. Although different methods have been used to detect the relevant feature subset from a
variety of features related to interface residues, it is still a challenge to detect the optimal feature subset for building the
final model.

Results: In this study, three different feature selection methods were compared to propose a new hybrid feature selection
strategy. This new strategy was proved to effectively reduce the feature space when we were building the prediction
models for identifying hotspot residues. It was tested on eighty-two features, both conventional and newly proposed.
According to the strategy, combining the feature subsets selected by decision tree and mRMR (maximum Relevance
Minimum Redundancy) individually, we were able to build a model with 6 features by using a PSFS (Pseudo Sequential
Forward Selection) process. Compared with other state-of-art methods for the independent test set, our model had shown
better or comparable predictive performances (with F-measure 0.622 and recall 0.821). Analysis of the 6 features confirmed
that our newly proposed feature CNSV_REL1 was important for our model. The analysis also showed that the
complementarity between features should be considered as an important aspect when conducting the feature selection.

Conclusion: In this study, most important of all, a new strategy for feature selection was proposed and proved to be
effective in selecting the optimal feature subset for building prediction models, which can be used to predict
hot spot residues on protein-protein interfaces. Moreover, two aspects, the generalization of the single feature
and the complementarity between features, were proved to be of great importance and should be considered
in feature selection methods. Finally, our newly proposed feature CNSV_REL1 had been proved an alternative
and effective feature in predicting hot spots by our study. Our model is available for users through a webserver:
http://zhulab.ahu.edu.cn/iPPHOT/.
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Background
Proteins play pivotal roles in almost all biological processes.
They do not act as isolated units; instead, they often per-
form their functions by forming protein-protein com-
plexes. Protein-protein interaction is the foundation for
many different cellular processes, such as signal transduc-
tion, cellular motion, and regulatory mechanisms [1, 2].

More significantly, proteins are often components of a
large protein-protein interaction(PPI)networks, so that the
erroneous or disrupted protein-protein interaction can
cause diseases [3]. Different aspects of protein-protein in-
terfaces (such as sequences and structures) have been ana-
lyzed to explore the rules governing the interaction [1, 2,
4–9]; however, to our best knowledge, the general rules to
characterize the interfaces have not been fully extrapolated
yet due to the intrinsic complexity of the interfaces.
It implies vital clues for understanding protein-protein

interactions to identify residues that are energetically
more important for the binding, and it has been proved
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that the contributions of interface residues to binding
are not homogeneous. Actually, the majority of the bind-
ing energy can be accounted for by a small part of the
interface residues, which are so called hot-spots (HS)
[10–12]. The definition of HS is based on alanine scan-
ning mutagenesis [13]: an interface residue is mutated to
alanine, and the binding free energy difference (ΔΔGbind-

ing) between forming the wild type and the mutant com-
plex is calculated. If the ΔΔGbinding ≥ 2.0kcal/mol, the
residue is defined as HS, otherwise the residue is defined
as non hot-spot (NS).
Different methods, both experimental and computa-

tional, have been developed for identifying HS. As an ex-
tensively used experimental method, alanine scanning
mutagenesis [13] can detect HS directly and effectively;
however, the experimental methods are not only expen-
sive but also time-consuming. Instead, computational
methods [14–26] predict HS in silico with higher effi-
ciency and lower cost. Computational methods are gen-
erally based on empirical function or on knowledge.
Knowledge-based methods, especially the machine
learning based methods [21, 24–26], can predict HS with
a wide range of features of residues and are more effect-
ive than those fully atomic models [14, 15].
Many different kinds of features of interface residues have

been used to build machine learning models [21, 24–26],
such as residue index, solvent accessible surface area, resi-
due conservation, atom density, and so on. The conserva-
tion of residues has been used as a feature in several
published methods [19, 24, 26–28], but its effect remains
controversial.
Different kinds of features proposed make a large fea-

ture space for building models to differentiate HS from
NS. Feature selection becomes a key step in building an
effective classification model. Feature selection is an im-
portant topic in data mining, especially in high-
dimensional applications, by which a compact and ef-
fective feature subspace can be determined. So that we
can avoid over-fitting, improve model performance and
provide faster and more cost-effective models. There are
mainly two kinds of features selection algorithms: the fil-
ter approach and the wrapper approach [29]. The filter
approach first selects informative features, then builds
the models by classification algorithm. The wrapper ap-
proaches either modify classification algorithm to choose
important features as well as conduct training/testing or
combine classification algorithm with other optimization
tools to perform feature selection. Different kinds of fea-
ture selection methods have already been used to build
machine learning models for predicting HS, such as
mRMR [30], decision tree [31], F-score [32] and so on.
However, it is still challenging to select an optimal fea-
ture subset to construct the classification models. The
filter approaches often use a specific metric, such as

mutual information, to rank all the features. Although
computationally efficient, the filter approaches often do
not fully consider the dependences, such as redundancy
and complementarity, between features. For example, in
APIS [24], Xia et al. used F-score to select relevant fea-
tures, by which their models were based on single fea-
tures. While the wrapper approaches easily select a
subset of features that overestimate the correlation
between features and the labels, which makes the
final model over-fitted. For example, in MINERVA
[21], Cho et al. used decision tree to select features,
by which their model used 12 features that might
over-fit their model.
In this work, we proposed a hybrid feature selection

strategy by combining three different kinds of feature se-
lection methods. According to the strategy, by combining
both filter and wrapper approaches, we were able to build
a new model to predict HS on protein-protein interface
based on the 6 features selected from 82 features.

Methods
Data sets
Training data set
Our training data set is the same as that used by Xia
et al. [24]. The data set includes 154 interface residues
with observed alanine scanning energy differences, catego-
rized into hot spots (HS) and non-hot spots (NS). In this
study, the interface residues are defined as those residues
whose buried solvent accessible surface areas are larger
than 0.0 Å2 when binding. The original data were obtained
from ASEdb [33] and the published data of Kortemme
and Baker [14]. The redundancy of the training data was
calibrated by eliminating the protein chains with the se-
quence identity cutoff 35% and the SSAP (Secondary
Structure Alignment Program) score cutoff 80 using the
CATH query system. Because we intended to build our
models by considering the evolutionary conservation
score related features as part of the features, those protein
chains that do not have final searching result on the Con-
Surf server [34] were also removed. By these processes, we
obtained 15 protein complexes that contain interface resi-
dues with alanine scanning data. The 15 protein com-
plexes are listed in the Table 1. An interface residue is
defined as hotspot residue if its mutation to alanine pro-
duces a ΔΔG ≥ 2.0 kcal mol−1. An interface residue is de-
fined as non hot spot residue if its mutation to alanine
produces a ΔΔG < 0.4 kcal mol−1, as described by
Tuncbag et al. [19]. Tuncbag et al. selected these two
cutoff values based on the distributions of alanine
scanning data for both interface residues and other
surface residues as Gao et al. have done in their
paper [35]. In the meantime, the remaining interface
residues whose binding free energy differences (ΔΔG)
are between 0.4 kcal/mol and 2.0 kcal/mol were
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removed from our final training data. According to
the definition, we obtained 154 interface residues that
comprised 62 hot-spot residues and 92 non-hot spot
residues, as listed in the Additional file 1: Table S1.
The training data set is used both for cross-validation
and training the different models.

Medium test set
Although the interface residues whose mutation to alanine
produce ΔΔG between 0.4 kcal/mol and 2.0 kcal/mol have
been removed from the training data set. We kept them
as a medium test set. The test set contains 98 residues
with observed ΔΔG (Additional file 1: Table S2). This data
set is used only for testing the performance of different
models.

Independent test set
To evaluate and compare the performance of our model
and other hot spots prediction methods, an independent
test set was derived from the BID database [36]. By be-
ing manually checked in the SCOP database [37] in
which the protein families are defined by using sequence
identity 30%, the proteins in the independent test set are
non-homologous to the ones in the training set. If hom-
ologous pairs are included, the recognition sites differ
between the two proteins. In the BID database, the rela-
tive effects of alanine mutation are denoted by “strong”,
“intermediate”, “weak” and “insignificant”. In our study,
the residues marked “strong” were selected as hot spot
residues, and the other residues were considered as non-
hot spot residues. In addition, the protein chains that do

not have final searching result on the ConSurf server
were excluded from our research. Finally, we obtained
95 residues from 16 complexes, 28 of which were hot
spot residues and 67 of which were non-hot spot resi-
dues (See Additional file 1: Table S3). The independent
test set is used only for testing the performance of differ-
ent models.

Features representation
In order to predict hot spot residues effectively, we gen-
erated a total of 82 features including sequence-based or
structure-based features to test feature selection
methods and build our model. These features contain 10
physicochemical properties of 20 types of standard amino
acids, B factor, 36 features of the structural information of
our selected proteins in the unbound and bound states, 5
features related to the evolutional conservation of residues
and 30 features related to solvent accessible surface area
differences between the unbound and bound states. All
features are listed in Additional file 2: Table S4. Note that
the first 47 features and the 78th feature in the table have
been used in Xia et al.’s work [24]. These features include
the ten features of physicochemical properties of 20 amino
acids, B factor, the 36 features calculated with PSAIA pro-
gram [38], and the conservation score generated by Con-
Surf [34]. The remaining 34 features are new features
proposed in this study.

Ten features of physicochemical properties of 20 amino acids
The physicochemical properties of residues determine its
interactions with the others. Several studies [32, 39–41]
have indicated that 10 physicochemical properties were
closely related to the interface properties of proteins.
These 10 properties consisted of the number of atoms, the
number of electrostatic charge, the number of potential
hydrogen bonds, hydrophobicity, hydrophilicity, propen-
sity, isoelectric points, mass, the expected number of con-
tacts within 14 Å sphere and electron-ion interaction
potential. The 10 properties were used as features in this
study. The property values are only associated with the
types of amino acid residues, and not allied to any struc-
tural information. The numerical values of the 10 features
are showed in (See Additional file 2: Table S5).

B factor (temperature factor)
B factor is a measure of flexible activities in proteins,
which reveals the mobility of the crystalline state of atoms.
In previous studies [8], it was demonstrated that the inter-
face residues of proteins were inclined to be rigidity (that
is inferiorly mobile) and the surface residues of proteins
were flexible (that is superiorly mobile). Here, we used the
temperature factor of Cα atom to represent the flexibility
of each residue. The temperature factor was calculated ac-
cording to the following equation:

Table 1 The 15 complexes used in the training data set

PDB First molecule Second molecule

1a4y Angiogenin Ribonuclease Inhibitor

1a22 Human growth hormone Human growth honnone
binding protein

1ahw Immunoglobulin Fab 5G9 Tissue factor

1brs Bamase Barstar

1bxi Colicin E9 Immunity Im9 Colicin E9 DNase

1cbw BPTI Trypsin inhibitor Chymotrypsin

1dan Blood coagulation factor VI1A Tissue factor

1dvf Idiotopic antibody FV D1.3 Anti-idiotopic antibody
FV E5.2

1 fc2 Fc fragment Fragment B of protein A

1fcc Fc (IGG1) Protein G

1gc1 Envelope protein GP120 CD4

1jrh Antibody A6 Interferon-gamma receptor

1vfb Mouse monoclonal
antibody D1.3

Hen egg lysozyme

2ptc BPTI Trypsin

3hfm Hen Egg Lysozyme lg FAB fragment HyHEL-10

Qiao et al. BMC Bioinformatics  (2018) 19:14 Page 3 of 16



NBr ¼ Br−B
� �

=σ Bð Þ ð1Þ
Among the above equation, Br represents the

temperature factor of the Cα atom in the γ residue, B
and σ(B) represent the mean and standard deviation of
the temperature factor in the protein chain where the γ
residue locates, respectively.

Thirty-six features based on the structural information of
proteins
By using PSAIA [38] program, we calculated 36 structural
features including solvent accessible surface area (SASA)
[42], relative accessible surface area (RASA) [38], depth
index (DI) of residues [43] and protrusion index (PI) of
residues [44]. For SASA and RASA, we calculated 5 differ-
ent values of residues: total, backbone, side-chain, polar
and non-polar. For DI and PI, we calculated 4 different at-
tribute values of residues: total mean, side-chain mean,
highest and lowest. Simultaneously, we calculated the
quantitative values of these structural attributes in both
the unbound and bound states.
In all, we got 36 structural features, as described by

Additional file 2: Table S4.

Five features related to the evolutionary conservation of
residues
The evolutionary conservation of residues has been ex-
tensively used in studying the structures and functions
of proteins. In Xia et al.’s work [24], they thought the
conservation of residues were not helpful to predict hot
spots. To further test the effect of residue conservation,
we represented conservation in 5 different forms. By
using the ConSurf server [34], we obtained two files
(consurf.grades and msa_aa_variety_percentage.csv) for
each protein chain in our data sets. We got the conser-
vation score of each residue from the file consurf.grades,
and calculated 4 other features based on the file
msa_aa_variety_percentage.csv. In the file, it shows a
table details the residues variety in percentage for each
position in the query sequence. Each column shows the
percentage (probability) of that amino acid found in the
position in the MSA (multiple sequence alignment). So,
we defined two kinds of relative conservation as follow:

CNSV REL1 ¼ P̂ra

P̂A
ð2Þ

CNSV REL2 ¼ P̂rm

P̂A
ð3Þ

where, P̂x ¼ Px þ 1, Px is the percentage of residue type
x on the certain sequence position, we do the correction
by plus 1 to make sure the percentage not equals to 0.

PA is the percentage of the residue type “alanine” on the
certain sequence position. Label ‘rm’ means the residue
type with the maximum percentage, and ‘ra’ means the
actual residue type on that sequence position. We also
calculated the logarithm values of CNSV_REL1 and
CNSV_REL2 as another two features named as
logCNSV_REL1 and logCNSV_REL2, because we are not
sure which representation of conservation would be
more effective to differentiate hotspot residues and non-
hotspot residues.

Thirty features related to solvent accessible area differences
between the unbound and bound states
Solvent accessible surface areas (SASA) of residues have
been used to predict hotspot residues in several previous
studies [19, 21, 23–26]. The buried SASA is the SASA
difference between the unbound and bound states. In
molecular mechanics force field, the buried SASA have
been considered related to desolvation energy. We sup-
pose that different powers of buried solvent accessible
surface area may correlate with different binding energy
terms and thus further related to hot spots in protein-
protein interfaces. We calculated 3 kinds of buried
SASA and 3 kinds of buried relative SASA (RSASA) that
included total SASA, polar SASA, non-polar SASA, total
RSASA, polar RSASA and non-polar RSASA. In
addition, we calculated different powers (1/2, 1, 3/2, 2
and 5/2) of the 6 different kinds of buried SASA, re-
spectively. Overall, we gained 30 features for SASA.

Feature selection
For the dataset with small size in this study, the gener-
ated 82 features can be considered high-dimensional fea-
ture space. It is necessary to conduct the feature
selection to extract the effective feature subspace. In our
study, we first compared 3 different feature selection
methods: F-score [32], mRMR [30] and decision tree
[31], the former two are filter approaches, and the latter
one is a wrapper approach. Then, we proposed a hybrid
feature selection strategy to select a feature subset for
building the final model.

Decision tree
The famous decision tree algorithm was proposed by
Quinlan [31]. A decision tree is a series of Boolean tests
for the input pattern, and then decided the categories of
the pattern. For each test, one best feature will be se-
lected based on information gain or Gini index or others
to divide the current data set. This process is repeated
recursively until certain conditions are satisfied. In the
present study, we used the Treefit function in MATLAB
to select a subset of all features. The relevancy of differ-
ent features is based on the distances between corre-
sponding nodes and the root node.
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F-score
F-score [32] is a simple technique that measures the dis-
criminatory ability of two sets of real numbers. Given a
data set with n− negative examples and n+ positive ex-
amples, the F-score of feature i can be calculated by the
following formula:

F ið Þ ¼
�x −ð Þ
i −�x þð Þ

i

��� ���
σ −ð Þ
i þ σ þð Þ

i

ð4Þ

Where, �x −ð Þ
i and �x þð Þ

i represent the averages of the ith
feature of negative and positive examples, respectively, and

σ −ð Þ
i and σ þð Þ

i are the corresponding standard deviation.
According to the equation, the larger the F-score is, the
more powerful discrimination the feature is.

mRMR(maximum relevance minimum redundancy)
The mRMR is a feature selection approach first developed
by Peng et al. [30], the method ranks features not only tak-
ing the relevance between features and labels into ac-
count, but also considering the redundancy among
features. The relevance and redundancy in mRMR is
quantified by the mutual information (MI). The MI evalu-
ates the relationship between two vectors, which is defined
by the following formula:

I x; yð Þ ¼ ∬p x; yð Þ log p x; yð Þ
p xð Þp yð Þ dxdy ð5Þ

where x and y are vectors, and p(x, y) is the joint prob-
abilistic density, p(x), p(y) are the marginal probabilistic
densities.
Considering the Ωs as the subset of selected features,

and Ωr as the subset of remaining ones. If fj is a feature
in Ωr, fi is a feature in Ωs and l is the labels for all the in-
stances, then the mRMR approach tries to select one
new feature from Ωr by the following formula:

max f j∈Ωr I f j; l
� �

−
1
Ωsj j

X
f i∈Ωs

I f j; ; f i
� �� �

ð6Þ

In the formula, the former term is the relevance be-
tween feature fj and labels l. The latter term is the re-
dundancy between feature fj and the features in Ωs,
which is the average of the MI between feature fj and
the features in Ωs. The method recursively repeats this
process until all features are selected, and the better fea-
ture is selected earlier.

Hybrid comprehensive feature selection method
We compared the features selected by Decision tree, F-
score, and mRMR, indicating that there were common
features and different features (Fig. 1). We also com-
pared the predictive results based on the features

selected by the three methods (Fig. 2). Although the
models based on the features selected by decision tree
gave better predictive performance, the features selected
by decision tree and other methods could complement
each other according to the principles of the methods.
The correlation coefficients of the features (Fig. 3) se-
lected by different methods also show the complemen-
tarity. We combined the features selected by the
decision tree and mRMR as a feature subset. Then we
used a pseudo sequential forward selection (PSFS)
method to determine the optimal feature combination
from the feature subset. We denoted it as pseudo SFS
(PSFS) for the first feature is specified as CNSV_REL1, be-
cause the predictive accuracy on the independent test set
increased substantially when the feature is added (Fig. 2b).
In addition, we selected the top three feature combina-
tions of each round for the next round. Figure 4 shows
the flowchart of our hybrid feature selection process.

Model construction
Support vector machine (SVM)
Support vector machine (SVM) was first proposed by
Vapnik [45] and has been one of the most popular classifi-
cation techniques in bioinformatics applications. It has
been used for differentiating HS and NS in several previ-
ous works [21, 24–26]. In present study, we used the pro-
gram LIBSVM [46] to build our models based on selected
features. Different kernel functions can be used in SVM
training, the radial basis function was selected in this
study. For the radial basis function referring to two pa-
rameters G and C, we tried different G values (from 0 to
2) and different C values (from 0 to 40) to get the best
parameter combination. In previous works [21, 23–26],
different cross-validation strategies, such as leave-one-
protein-out cross validation, 10 folds cross validation,
and standard leave-one-out cross validation, have
been used to avoid over-fitting and evaluate the pre-
dictive accuracy for the training data set. However, it
has been showed that the cross validation results by
different strategies were similar according to our pre-
vious work [25], so we used the standard leave-one-
out cross validation in this study.

Model evaluation parameters
To evaluate the performance of the classification
models, we calculated 5 different parameters: specificity,
recall, precision, accuracy and F-measure. The 5 param-
eters are defined as follows:

Specificity ¼ TN
TN þ FP

ð7Þ

Recall ¼ TP
TP þ FN

ð8Þ
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Precision ¼ TP
TP þ FP

ð9Þ

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð10Þ

F−measure ¼ 2TP
2TP þ FP þ FN

ð11Þ

where, TP, FP, TN and FN represent the numbers of true
positive (predicted hot spot residues are actual hot

spots), false positive (predicted hot spot residues are ac-
tual non hot spots), true negative (predicted non hot
spot residues are actual non hot spots) and false negative
(predicted non hot spot residues are actual hot spots).

Results and discussion
Comparison of different feature selection methods
As mentioned above, we first compared three different
kinds of feature selection methods: decision tree, F-
score, and mRMR. Because 11 features were selected by

Fig. 1 The common and different features selected by three different methods. a The features selected by Decision tree and F-score; (b) The features
selected by F-score and mRMR. c The features selected by mRMR and Decision tree

Fig. 2 The F-measures based on different number of features selected by different methods. a F-measures on the cross validation tests; b F-measures
on the independent test set
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decision tree, we selected the top 11 features ranked by
F-score and mRMR as showed in Table 2. Figure 1a
shows that two features (BsRASA, BsmDI) are the
shared ones, which were selected by both decision tree
and F-score. Figure 1b shows that four features
(BtRASA, BpRASA, BsASA, BminPI) are common be-
tween the features selected by F-score and mRMR. Fig-
ure 1c shows that features (DtASA1/2, CNSV) are
common between the features selected by decision tree
and mRMR. It was indicated that decision tree identified

more specific features that were not selected by the
other two methods. Moreover, it is worth noting that the
novel feature of the relative conservation (CNSV_REL1)
proposed here was selected by decision tree.
Then we compared the predictive performance of the

models built based on the various features selected by
these three feature selection methods. Figure 2a shows
the F-measures of the cross-validation for the best
models built based on top 2, top 3, …, and top 11 fea-
tures selected by different methods. For each feature

Fig. 3 The correlation coefficient between features selected by Decision tree, mRMR, F-score for training data set. a Features selected by mRMR
and Decision tree; b Features selected by F-score and Decision tree

Fig. 4 The flowchart of the hybrid feature selection strategy
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selection methods, the increasing number of features
does not guarantee the better classification perfor-
mances, since they may have higher possibility of being
correlated or redundancy, or result in over-fitting. Com-
paring the F-measures obtained by different feature se-
lection methods, it is shown that the model performance
based on the features selected by decision tree was bet-
ter than that of the other two methods, with the highest
F-measure of 0.784 by decision tree, in comparison with
F-measures of 0.742 and 0.726 by F-score and mRMR,
respectively.
In addition, we also compared the model perfor-

mances of the three feature selection methods on the in-
dependent test set. Figure 2b shows the F-measures of
the best models built based on top 2, top3, …, and top
11 features selected by different methods. The models
based on features selected by decision tree have the
highest F-measure of 0.588, which is better than the
highest F-measures of the other two feature selection
methods (0.494 and 0.484 for F-score and mRMR, re-
spectively). From the curve for decision tree, it is ob-
served that the 7th feature of the selected features
substantially increased the classification performance,
which is CNSV_REL1 that is a unique feature introduced
in this work.

Model based on hybrid comprehensive feature selection
By comparing the features selected by the above three dif-
ferent methods, we inferred that there exists complemen-
tarity among the selected features of different selection
methods. Figure 3a shows the correlation coefficients be-
tween the features selected by mRMR and decision tree. It
shows that the correlation coefficients between the fea-
tures selected only by mRMR and correlation coefficients
between the features selected only by decision tree are

generally higher than the correlation coefficients between
the features selected by the two different methods (dashed
square in Fig. 3a). Figure 3b shows the correlation coeffi-
cients between the features selected by F-score and deci-
sion tree. It shows that the correlation coefficients
between the features selected only by F-score and correl-
ation coefficients between the features selected only by de-
cision tree are generally higher than the correlation
coefficients between the features selected by the two dif-
ferent methods (dashed square in Fig. 3b). It is also indi-
cated that the several features selected by F-score were
highly correlated. In addition, the correlation coefficients
between features selected by mRMR and decision tree
were generally lower than the features selected by F-score
and decision tree.
Therefore, we combined the features selected by deci-

sion tree and mRMR as a feature subset. The feature sub-
set is shown in Table 3. Then we used a PSFS method to
identify the best feature combination by using
CNSV_REL1 as the initial feature. Table 4 shows the se-
lected features by our classifier (one feature was added at
a time or round) and the corresponding cross-validation
performance in each round. The results show that the pre-
dictive performances are convergent at the 5th round. The
best F-measure is 0.800. In round 5, two feature combina-
tions show the best predictive performances, which are

Table 2 The top 11 features selected by three different
methods

No. Decision treea F-score mRMR

1 BsRASA(37) BsRASA(37) BtRASA(35)

2 UsASA (14) BtRASA(35) DtASA1/2(48)

3 DpRASA1/2(52) BpRASA (38) B factor (11)

4 BsmDI (41) BsASA (32) CNSV (78)

5 CNSV (78) BsmPI (45) Hdrpi (5)

6 UpRASA (20) BtASA (30) BminPI (47)

7 CNSV_REL1 (79) BtmPI (44) DnASA5/2(74)

8 DtASA1/2(48) BminPI (47) BpRASA (38)

9 UpASA (15) BpASA (33) BtmDI (40)

10 UtmDI (22) BnRASA (39) BsASA (32)

11 Hdrpo (4) BsmDI (41) DtASA3/2((60)
aThe numbers in the parentheses columns 2–4 are the feature number in the
(See Additional file 2: Table S4)

Table 3 The feature subset combined the features selected by
decision tree and mRMR

Feature abbreviation Feature full name

BsRASA Bound side-chain relative accessible surface area

UsASA Unbound side-chain accessible surface area

DpRASA1/2 RASAunb polarð Þ−RASAbnd polarð Þð Þ12
BsmDI Bound side-chain mean depth index

Conservation Conservation

UpRASA Unbound polar relative accessible surface area

CNSV_REL1 CNSV REL1 ¼ P̂ ra

P̂ A

DtASA1/2 ASAunb totalð Þ−ASAbnd totalð Þð Þ12
UpASA Unbound polar accessible surface area

UtmDI Unbound total mean depth index

Hdrpo Hydrophobicity

BtRASA Bound total relative accessible surface area

B factor Temperature factor

Hdrpi Hydrophilicity

BminPI Bound minimal protrusion index

DnASA5/2 ASAunb non−polarð Þ−ASAbnd non−polarð Þð Þ52
BpRASA Bound polar relative accessible surface area

BtmDI Bound total mean depth index

BsASA Bound side-chain accessible surface area

DtASA3/2 ASAunb totalð Þ−ASAbnd totalð Þð Þ32
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feature combination including BsRASA, CNSV_REL1,
DtASA1/2, UpASA, BtRASA, and B factor and feature
combination including BsRASA, CNSV_REL1, DtASA1/2,
UpASA, BtRASA, and BtmDI. The feature BtmDI is the
bound total mean depth index. B factor can be calculated
directly from PDB file, but the bound total mean depth
index was calculated by program PSAIA. Therefore, we
constructed our final model based on the former feature
combination. Based on these 6 features, our model
achieved 0.800, 0.831, 0.839, and 0.765 for F-measure, ac-
curacy, recall and precision respectively for cross valid-
ation on training data set (Table 4). The model was built
with parameters G = 0.001 and C = 4.0. On the independ-
ent test set, our model achieved 0.622, 0.705, 0.821, and
0.500 for F-measure, accuracy, recall, and precision, re-
spectively (Fig. 5). Since F-measure is a harmonic average
of precision and recall, we also plot the P-R curve for our
model. As showed in Fig. 6, we plot the curves both for
cross validation results on the training data set and the
test results on the independent test set. It shows distinct
differences between the two curves. The reason is
“whether the example with the largest output value is
positive or negative greatly changes the PR curve (ap-
proaching (0,1) if positive and (0,0) if negative)” [47].
In addition, the empirical P-R curves are highly im-
precise estimate of the true curve, especially in the
case of a small sample size and the class imbalance
in favor of negative examples [48]. So we also plot
the ROC curves here as an alternative of P-R curves.
As showed in Additional file 2: figure S1, the areas

under the ROC curves are 0.853 and 0.764 for cross-
validation and independent test, respectively.
To further prove the effect of our hybrid feature selection

method, we compared the performance of our model with
the model built based on features selected only by sequen-
tial forward selection (SFS) method. We performed a SFS
on the entire set of 82 features. Additional file 2: Table S6
shows the features selected in different rounds. The final
model, named SFSmodel, was built based on feature com-
bination including BbRASA, BpRASA, BnRASA, DpASA,
DnASA3/2. Although Table S6 shows the F-measure of
SFSmodel for cross validation is 0.832 that is higher than
the F-measure of our model for cross validation (0.800), the
F-measure of SFSmodel on the independent test set is
0.438 (showed in Fig. 5) that is substantially lower than the
F-measure of our model (0.622). This proved that our hy-
brid feature selection method is more effective than SFS in
our study.
According to the results stated in this section and the

former section, we shown that the model based on the
features selected by our hybrid feature selection strategy
outperformed the models based on the other four fea-
ture selection methods.

Comparison with other methods on the independent data
set
To further evaluate the performance of our model, we
compared the predictive results of our model with sev-
eral other hot spot prediction methods such as MIN-
ERVA2 [21], APIS [24], KFC2 [25]. In MINERVA2, the

Table 4 Features selected and the corresponding cross-validation performance in PSFS process

Round Features identified Accuracy Recall Precision F-measure

1 CNSV_REL1, BsRASA 0.766 0.790 0.681 0.731

CNSV_REL1, BpRASA 0.779 0.710 0.733 0.721

CNSV_REL1, BtRASA 0.753 0.694 0.694 0.694

2 CNSV_REL1, BsRASA, UsASA 0.818 0.774 0.774 0.774

CNSV_REL1, BtRASA, UpASA 0.799 0.790 0.731 0.760

CNSV_REL1, BsRASA, UpASA 0.799 0.774 0.739 0.756

3 CNSV_REL1, BsRASA, UpASA, BtRASA 0.818 0.807 0.758 0.781

CNSV_REL1, BtRASA, UpASA, DtASA1/2 0.812 0.807 0.746 0.775

CNSV_REL1, BsRASA, UpASA, BpRASA 0.812 0.807 0.746 0.775

4 CNSV_REL1, BtRASA, UpASA, DtASA1/2, BsRASA 0.825 0.838 0.754 0.794

CNSV_REL1, BsRASA, UpASA, BtRASA, DpRASA1/2 0.818 0.823 0.750 0.785

CNSV_REL1, BsRASA, UpASA, BpRASA, DtASA1/2 0.825 0.823 0.761 0.791

5 CNSV_REL1, BtRASA, UpASA, DtASA1/2, BsRASA, BtmDI 0.831 0.839 0.765 0.800

CNSV_REL1, BtRASA, UpASA, DtASA1/2, BsRASA, B factor 0.831 0.839 0.765 0.800

CNSV_REL1, BsRASA, UpASA, BpRASA, DtASA1/2, BtmDI 0.825 0.823 0.761 0.791

6 CNSV_REL1, BtRASA, UpASA, DtASA1/2, BsRASA, B factor, BtmDI 0.831 0.839 0.765 0.800

CNSV_REL1, BtRASA, UpASA, DtASA1/2, BsRASA, BtmDI, Hdrpi 0.831 0.839 0.765 0.800

CNSV_REL1, BtRASA, UpASA, DtASA1/2, BsRASA, B factor, BminPI 0.831 0.839 0.765 0.800
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authors presented 54 features including atom contacts,
density, hydrophobicity, surface area burial, residue con-
servation and so on. They used decision tree to select
the relevant feature subset and built their models using
SVM. In APIS, the authors presented 62 features includ-
ing physicochemical features of residues, protein struc-
ture features generated by PSAIA, pairwise residue
potential, residue evolutionary rate and temperature fac-
tor. They used the F-score to select the relevant features
and built their models also using SVM. Their final
model APIS is a combined model based on protrusion
index and solvent accessibility. In KFC2, the authors
presented 47 different features including solvent accessi-
bility, atomic density, plasticity features and so on. They
considered the feature combinations of different feature

numbers and did a thoroughly search to obtain the final
feature subset. Then they built their models by using
SVM. In our study, we presented 82 different features
including some new proposed features such as the rela-
tive residue conservation (CNSV_REL1, CNSV_REL2,
logCNSV_REL1 and logCNSV_REL2) and the different
powers of the buried solvent accessible surface area. As
the feature selection is important for building the
models, we proposed a hybrid feature selection process
to select the effective feature subset by combined
mRMR, decision tree and PSFS. As showed in Fig. 5, our
method has the highest recall (0.821) among all the
methods, and the F-measure (0.622) of our method is
comparable to KFC2a that shows the highest value
(0.638) among all the methods. A high recall means the
method can identify most of the interface hotspots,
which is meaningful for experimental scientists. In
addition, F-measure is a robust evaluation measure for
both positive and negative instances especially for the
imbalanced data sets such as our training data set and
the independent test set. The F-measure of our method
is higher than other methods and comparable to the
method KFC2a with the highest value.
Although our model does not show superior values for

the rest three parameters (accuracy, specificity, and pre-
cision), the three parameters are not independent. In this
study, the dataset is imbalanced for having more nega-
tive examples, so high specificity often means high ac-
curacy. Specificity is used to evaluate the predictive
accuracy of negative examples, however, precision is re-
lated to specificity. According to the less positive exam-
ples in our dataset, high precision often means low false
positives, which means the high specificity. On the other
hand, recall is only used to evaluate the predictive accur-
acy of positive examples. So, we considered recall and
precision as two basic criteria for evaluating the perfor-
mances of different models. High recall means that a
model returned most of the relevant examples, while

Fig. 5 Comparison of models used for prediction of the hot spots in terms of the five parameters for the independent test set. a Predictive
evaluation in terms of Precision-Recall and F-measure; b Predictive evaluation in terms of Accuracy-Specificity

Fig. 6 The P-R curves for cross-validation results of the training data
set and the predictive results of the independent test set
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high precision means that a model returned more rele-
vant examples than irrelevant ones. Since it is hard for a
classification method to have both high precision and re-
call, we can divide those methods into two types: high
recall methods and high precision methods. Our model
shows the highest recall among all the methods com-
pared in Fig. 5. It provides a choice for users to select
the model based on their goals. For the overall perform-
ance, it is better to use an integrated parameter such as
F-measure to do the evaluation.
Besides, in biological study, researchers often want to

understand the mechanism of protein-protein binding.
Hotspot residues can provide corresponding clues, and
the more hotspots are identified, the more accurately
the mechanism will be understood. Our model shows
the highest recall which means the highest coverage of
the hotspot residues.
In MINERVA2 and APIS, both of the authors thought

the residue conservation is not good for identifying hot
spots, however, our results indicated that the relative
residue conservation could be an effective feature for
predicting hot spot residues. In addition, the authors of
MINERVA2 used decision tree to select the effective
subset. Decision tree carries out a greedy search process
to choose feature to discriminate examples, it possibly
introduces more features, some of which are irrelevant.
The authors of APIS used F-score to select the relevant
feature subset. The correlation between features and la-
bels are considered in F-score, however, the correlation
between the features is not considered. We proposed the
hybrid feature selection process by combining both filter
and wrapper technique. By using mRMR, and decision
tree, we selected a feature subset that contains both rele-
vant and complementary features according to the algo-
rithms of the two methods. Simultaneously, the size of
the subset is only one fourth of the original features.
Then we used a PSFS process to identify the optimal fea-
ture subset. The general sequential forward selection
(SFS) algorithm easily gets in a local optimum, however,
our PSFS process assigns three choices for the next
round. So it has more chance to reach the global
optimum.
Noticed that both Cho et al. [21] and Xia et al. [24]

have tried to build their models based on the normalized
features, we also built a model, named NORModel,
based on normalized features by using our hybrid fea-
ture selection method. We normalized our 82 features
by the Z-transform. Additional file 2: Table S7 shows the
normalized features selected by decision tree, mRMR
and F-score, which are the same as features selected in
Table 2. Additional file 2: figure S2A shows the F-
measures of the cross-validation for the best models
built based on top 2, top 3, …, and top 11 normalized
features selected by the three feature selection methods.

Additional file 2: figure S2B shows the performances on
the independent test set based on the best models built
based on top 2, top3, …, and top 11 normalized features.
Similarly, we observed our new feature CNSV_REL1 (the
7th feature of decision tree) could improve the perform-
ance on independent test set although not as obviously as
in Fig. 2. Then we used our PSFS method to select the op-
timal feature combination. Table S8 shows the features se-
lected in different rounds. The final model, named
NORModel, was built based on 7 features including
CNSV_REL1, UpASA, UtmDI, BtRASA, B factor,
BpRASA, BtmDI. Although Additional file 2: Table S8
shows the F-measure of NORModel for cross validation is
0.825 that is higher than the F-measure of our model for
cross validation (0.800), the F-measure of NORModel for
independent test set is 0.563 (showed in Fig. 5), that is
substantially lower than the F-measure of our model
(0.622). Our study indicates that the model built on nor-
malized features does not necessarily have better perfor-
mances than the model built on non-normalized features.
In addition, we analyzed if our model can complement

other methods. Overall, our model has the most overlap
(80% common prediction) with KFC2a and the least
overlap (65.3% common prediction) with MINERVA2.
By combining our model with MINERVA2, we got a F-
measure of 0.6316 on the independent test set, which is
a little bit higher than our model (0.622). The way we
combined two models is if any one of the two models
predicts a residue as hotspot, the combined model pre-
dicts the residue as hotspot, otherwise the residue is pre-
dicted as non-hotspot. The predictive performance by
combining any two methods are showed in Table S9. It
turned out five of the ten combine models showed slight
improvement compared with the single models accord-
ing to F-measure.

Predictive performance on the medium test set
For the medium test set that contain 98 residues with
ΔΔG between 0.4 kcal/mol and 2.0 kcal/mol, our model
predicted 32 of them as hot spot residues, 66 as non hot
spot residues. Specifically, our model predicted 14 of 40
residues with ΔΔG≥1.2 kcal/mol as hot spot residues. By
comparing with other methods, only KFC2a predicted
17 of 40 residues with ΔΔG≥1.2 kcal/mol as hot spot
residues, which is higher than our model. Note that
some of the residues (See Additional file 1: Table S2)
had been used to train the KFC2a and KFC2b models.

Predictive performance for different types of residues and
different types of interfaces
To evaluate if our model is biased to predict certain
types of residues or certain types of interfaces better
than other types, we further analyzed the performance
of our model for different types of residues and different
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types of interfaces. According to the physicochemical
characteristics of the residues, the twenty types of resi-
dues can be categorized into charged residues, polar res-
idues, and aromatic residues. Table 5 shows the
predictive performances of our model on different types
of residues, it turned out our model showed slight better
performance on aromatic and non-polar residues than
other types of residues according to F-measure. By the
two-sample t-test, we calculated the p-values between
charged and non-charged residues, polar and non-polar
residues, and aromatic and non-aromatic residues, which
are 0.400, 0.119, and 0.0158, respectively. This result in-
dicates the performance difference of our model be-
tween aromatic and non-aromatic residues is statistically
significant. The interface information was collected from
SCOPPI database [49]. SCOPPI is a structural classifica-
tion database of protein-protein interfaces, and their in-
terfaces derived from PDB [50] structure files. The
interfaces information referred to the interfaces in our
independent test set was shown in Additional file 2:
Table S10. Three interfaces, from 1CDL, 1DVA, and
1JPP, were not recorded in SCOPPI database. We first
checked the performances of our model on interfaces re-
corded in SCOPPI and the interfaces not recorded in
SCOPPI. As showed in Additional file 2: Table S11, our
model showed better performance for residues in the in-
terfaces recorded in SCOPPI than those not in SCOPPI
database according to F-measure. However, the differ-
ence is not statistically significant for the p-value is
0.269. After we checked the three interfaces not re-
corded in SCOPPI, we found these three interfaces are
between proteins and peptides. Another information we
used to divide the interfaces is the interface size. The
interface size is calculated as the difference of solvent ac-
cessible surface area (ΔSASA) between the proteins in
bound and unbound states. According to the definition
of SCOPPI database, if ΔSASA≥2000Å2, the interface is
categorized into large size, if 1400Å2≤ΔSASA<2000Å2,
the interface is categorized into medium size, otherwise

the interface is categorized into small size. As showed in
Additional file 2: Table S11, it turned out our model
showed better performance for medium and large inter-
faces than small interfaces. However, the p-values be-
tween residues in small and medium size interfaces, in
small and large size interfaces, and in medium and large
size interfaces are 0.161, 0.213, and 0.735, respectively,
which indicates the differences are not statistically
significant.

Post analysis of the selected features of the final model
To evaluate the importance of the features selected by the
final model, we did a post analysis of the selected features.
Firstly, we investigated the predictive power of individual
features. As showed in Fig. 7a, the feature CNSV_REL1
shows the best generalization of all the selected features ac-
cording to the F-measure, for which the F-measures on
cross validation and the independent test set are 0.504 and
0.462, respectively. However, the F-measure differences are
between 0.229 and 0.287, which means models based on
other features have a worse generalization compared to fea-
ture CNSV_REL1. In the feature selection section (Fig. 2b),
we noticed the F-measure increased substantially when fea-
ture CNSV_REL1 was added. This means the high
generalization of single feature is of benefit to the final
model with combined features. This implies that we should
make sure at least one feature with high generalization be
selected when we do the feature selection.
In addition, we did a post analysis by removing one of

the selected features and checking the performance of
the models built based on the remaining features. As
showed in Table 6, when we removed the feature
BsRASA, CNSV_REL1, DtASA1/2, UpASA, BtRASA, re-
spectively, the predictive accuracies decreased as ex-
pected. Especially, the predictive accuracies decreased
substantially when CNSV_REL1 and UpASA were re-
moved. According to the analysis above, it was not sur-
prising that the classification performance dropped
down when the CNSV_REL1 was removed. It was

Table 5 Statistical performance of our model for predicting hotspot of the independent test set by types of amino acids

Types of residues Accuracy Specificity Recall Precision F-measure

All residues (28 HS/ 67 NS) 0.705 0.657 0.821 0.500 0.621

Charged residuesa (13 HS/ 28 NS) 0.732 0.750 0.692 0.563 0.621

Non Charged residues 0.685 0.590 0.933 0.467 0.622

Polar residuesb (14 HS/41 NS) 0.709 0.707 0.714 0.455 0.556

Non polar residues 0.700 0.577 0.929 0.542 0.685

Aromatic residuesc (11 HS/12 NS) 0.652 0.417 0.818 0.563 0.667

Non aromatic residues 0.736 0.709 0.824 0.467 0.596
aCharged residues: D,E,K,R,H
bpolar residues: D,E,K,R,H,S,T,N,Q
caromatic residues: F, H,W,Y
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surprising that the performance dramatically dropped
down when UpASA was removed. As showed in Fig. 7,
UpASA by itself shows the worst predictive performance
among all the selected features. So, we supposed the fea-
ture could supplement the other features when the
model was built. As showed in Fig. 1, this feature was
not selected by F-score because this method only con-
siders the relationship between the feature and the la-
bels. The feature was also not selected by mRMR,
because this method considers the correlations between
the features and the labels and the redundancy between
features, but not mainly the complementarity. On the
contrary, the decision tree can partially reflect the com-
plementarity of the features to some extent.
In addition, we did a two-sample T-test to test if there are

significant differences of the six selected features between
hotspot residues and non-hot spot residues in the training
data set. We obtained P-values of 5.44 × 10−12, 3.23 × 10−2,
4.83 × 10−9, 0.612, 4.36 × 10−11, 6.14 × 10−7 for features
BsRASA, CNSV_REL1, DtASA1/2, UpASA, BtRASA, B-
factor, respectively. The result also shows UpASA is not a
good feature by itself, but it can complement other features
for differentiating hotspots from non-hotspots.
Besides, to further test the effect of our newly pro-

posed features, we have built a model based only on the
old 48 features reported in Xia et al.’s paper [24] by
using our hybrid feature selection method. The model

was named F48model. We first used three feature selec-
tion methods, F-score, mRMR, and decision tree, to select
features from the 48 features. The results are showed in
Additional file 2: Table S12. Then, we built models by
using top 2, top 3, …, top10 selected features, and tested
on the independent test set. The results are showed in
Additional file 2: figure S3. However, no feature that can
substantially improve the ability of the generalization was
observed according to Additional file 2: figure S3B. So we
performed our PSFS process without an initial feature, the
features selected in each round of PSFS were listed in
Additional file 2: Table S13. Finally, the F48model was
built based on 6 features including BsRASA, UsASA,
UnASA, B factor, DtASA1/2, UtmDI. The F-measure for
the cross-validation is 0.836 that is higher than our model
(0.800), however, the F-measure for the independent test
set of F48model is 0.431 that is substantially less than our
model (0.622) as showed in Fig. 5. This results proved the
effect of our new proposed features.

Case studies
To visualized show the hotspot residues on the protein-
protein interfaces, we plotted two cases by using PyMol.
The first one is the complex of nidogen-1 G2 and perle-
can IG3, for which the PDB ID is 1GL4. As showed in
Fig. 8a, 5 hotspot residues at the interface had been re-
corded in the independent test set. Our model identified

Fig. 7 Comparison of models built based on different single features in terms of the five parameters for the independent test set. a Predictive
evaluation in terms of Precision-Recall and F-measure; b Predictive evaluation in terms of Accuracy-Specificity

Table 6 Predictive results of the models built by removing one of the selected features

Feature removed Accuracya Specificity Recall Precision F-measure

BsRASA 0.818/0.684 0.815/0.657 0.807/0.750 0.746/0.477 0.775/0.583

CNSV_REL1 0.786/0.632 0.783/0.582 0.790/0.750 0.710/0.429 0.748/0.545

DtASA1/2 0.818/0.684 0.826/0.642 0.807/0.786 0.758/0.478 0.781/0.595

UpASA 0.786/0.632 0.815/0.627 0.742/0.643 0.730/0.419 0.736/0.507

BtRASA 0.805/0.705 0.837/0.672 0.758/0.786 0.758/0.500 0.758/0.611

B factor 0.825/0.705 0.815/0.658 0.839/0.821 0.754/0.500 0.794/0.622
aFor columns 2–6, the values above the slashes are for cross validation, and the values under the slashes are for the independent test set
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4 of the 5 hot spot residues as hotspots, in comparison
with other methods, MINERVA2, APIS, KFC2A and
KFC2B predicted 2, 3, 3, 3 of the 5 hot spot residues as
hotspots, respectively. The second case is the complex
of β-catenin and adenomatous polyposis coli protein, for
which the PDB ID is 1JPP. As showed in Fig. 8b, 2 hot-
spot residues at the interface had been recorded in the
independent test set. Our model identified all of them,
while other methods missed all of them.

Conclusion
Hot spot residues prediction at the protein-protein inter-
face can be helpful for experimental scientists to identify
actual hot spot residues. In the last decade, a few
knowledge-based computational methods had been pro-
posed. Many different kinds of features have been used
to build the models in these methods, and feature selec-
tion was an existing bothering problem when building
those models. In this work, we compared three different
feature selection methods including F-score, mRMR,
and Decision tree. Generally, the features selected by
Decision tree shows better predictability compared with
those selected by the other two methods. We analyzed
the correlation between features selected by mRMR and
Decision tree respectively, and our results showed that
the correlation coefficients between different features se-
lected by the two methods were relatively small, which
indicated that possible complementarity existed between
the features selected by the two methods. According to
these results, we proposed a hybrid strategy of feature
selection. Firstly, we combined the features selected by
both mRMR and decision tree, and then used a pseudo
sequential forward selection (PSFS) process to select the
best feature combination. By this strategy, first, we re-
duced the feature dimension. Second, we believed our

feature selection process could integrate the virtues of
both filter and wrapper feature selection approaches to
select the features not only relevant by itself but also
complementary to each other. Thus, the model built
based on the feature subset selected by our strategy
might show good ability for generalization. Based on the
features selected by the hybrid feature selection strategy,
we build a hot spots prediction model that showed a F-
measure 0.622 and a recall 0.821 for the independent
test set, which is better or comparable to the state-of-art
hot spot prediction methods.
In addition, we did a post-analysis for the final feature

combination. Firstly, we investigated the predictive per-
formances for each of the selected features. Our newly
added feature, CNSV_REL1, was found to have the best
ability for generalization (F-measure 0.504 and 0.462 for
cross validation and the independent test set). Then, we
removed one of the selected features and checked the
models built with the remaining features. After removing
two features, CNSV_REL1 and UpASA, the predictive
accuracy of the model was substantially decreased. We
noticed that the feature UpASA had the lowest ability
for generalization by itself, which indicates that the com-
plementarity between features is important for the final
model. To conclude, both generalization of the single
feature and the complementarity between features are
important and should be considered in feature selection
methods.

Additional files

Additional file 1: Datasets for Protein-protein interface hot spots prediction
based on a hybrid feature selection strategy. This file provides more detailed
data for the data sets. Table S1. The interface residues with observed ΔΔG
values of the training data set. Table S2. The interface residues with observed

Fig. 8 Interface hot spot residues of nidogen-1 G2 and perlecan IG3, and β-catenin and adenomatous polyposis coli protein. a The complex of
nidogen-1 G2 and perlecan IG3 (PDB ID: 1GL4), for which 4 out of the 5 hot spot residues were identified by our model; b The complex of β-
catenin and adenomatous polyposis coli protein (PDB ID: 1JPP), for which all of the 2 hot spot residues were identified by our model. Green
sphere: true positive hot spot residues; Gray sphere: false negative hot spot residues
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ΔΔG values of the medium test set. Table S3. Data set of interface residues
and hot spot predictions for the independent test set. (XLS 72 kb)

Additional file 2: Supplementary Information for Protein-protein interface
hot spots prediction based on a hybrid feature selection strategy. This file
provides all the features generated in this study, and other tables for analysis
and discussion. Table S4. All 82 features generated in the study. Table S5.
The numerical values of 10 different kinds of properties of the 20 amino
acids. Table S6. Features selected from 82 features and the corresponding
cross validation performance in SFS process. Table S7. The top 11
normalized features selected by decision tree, F-score and mRMR.
Table S8. Features selected and the corresponding cross-validation
performance in PSFS process for normalized features. Table S9. Consensus
results based on combining any two of the five models (MINERVA2, APIS,
KFC2a, KFC2b, Our model). Table S10. Interface information referred to the
interfaces in the independent test set. Table S11. Statistical performance of
our model for predicting hotspot of the independent test set by the types
of protein-protein interfaces. Table S12. The top 10 features selected by
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features reported in Xia et al.’s paper. Figure S1. The ROC curves for cross-
validation results of the training data set and the predictive results of the
independent test set. Figure S2. The F-measures based on different number
of normalized features selected by different methods. A. F-measures on the
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measures on the independent test set. (PDF 10501 kb)
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