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Abstract

Background: DNA damage causes aging, cancer, and other serious diseases. The comet assay can detect multiple
types of DNA lesions with high sensitivity, and it has been widely applied. Although comet assay platforms have
improved the limited throughput and reproducibility of traditional assays in recent times, analyzing large quantities of
comet data often requires a tremendous human effort. To overcome this challenge, we proposed HiComet, a
computational tool that can rapidly recognize and characterize a large number of comets, using little user intervention.

Results: We tested HiComet with real data from 35 high-throughput comet assay experiments, with over 700 comets
in total. The proposed method provided unprecedented levels of performance as an automated comet recognition
tool in terms of robustness (measured by precision and recall) and throughput.

Conclusions: HiComet is an automated tool for high-throughput comet-assay analysis and could significantly
facilitate characterization of individual comets by accelerating its most rate-limiting step. An online implementation of
HiComet is freely available at https://github.com/taehoonlee/HiComet/.
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Background
DNA damage is known to be a major cause of cancer
and many aging-related diseases [1]. The comet assay, also
known as the single-cell gel electrophoresis, allows us to
directly visualize DNA damage at the individual cell level
[2]. Compared to other assays for DNA damage assess-
ment, the comet assay is advantageous in terms of cost,
sensitivity, and the ability to show multiple DNA lesions
simultaneously [3]; it has been widely used in a variety of
applications, including screening for breast cancer [4] and
risk prediction for bladder cancer [5].

In essence, the comet assay has the following steps
[2, 3]. Cells treated with a DNA damaging agent (e.g.,
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irradiation) are lysed and loaded onto an agarose gel. An
electric field is applied to pull the negatively charged DNA
from the nucleus. The DNA is stained with a fluorescent
dye, and the resulting images appear as ‘comets’ (Fig. 1).
Damaged DNA fragments migrate farther than normal
ones; the relaxed loops and fragments form the tail of the
comet, whereas the head comprises tightly packed chro-
matin (Fig. 2). As the dose of the DNA damaging agent
increases, the comet head grows dimmer and the tail
grows longer and brighter.

Traditional comet assays often have low throughput,
limited reproducibility, and time-consuming and error-
prone analysis steps. To overcome these issues, new comet
assay platforms have been proposed [3, 6–8]. Although
these platforms have various new aspects, the basic prin-
ciple behind the analysis has remained unchanged: iden-
tification and characterization of individual comets. Due
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Fig. 1 Comet assay: a A high-throughput comet assay produces an output image with multiple comets. b Comets are classified into different types
according to their shape [1]. c HiComet can automatically identify and differentiate between overlapped comets

to the overlap of comets and debris, most of the exist-
ing analysis programs require laborious manual iden-
tification of comets from the fluorescent images. For
high-throughput experiments that give a large number of
comets, this comet recognition step forms a major bottle-
neck for the whole analysis pipeline, and there is a clear
need for automation.

Pioneering attempts to automate high-throughput
comet analysis have had limited success. A method to
perform automated imaging and analysis has been pro-
posed [3], but it is limited to microwell-array based
comet assays that have highly regular structures with
predetermined comet locations [3]. A commercial pro-
gram called CometScore (TriTek Corp., Sumerduck, VA)
can handle comet images in arbitrary configurations;
however, it is only semi-automated, and the bound-
ary of comets need to be specified for its automated
characterization.

In this paper, we proposed HiComet, a computational
tool to facilitate the analysis of high-throughput comet-
assay data. Given a noisy image with a number of

arbitrarily placed comets, HiComet can recognize and
characterize normal and damaged comets in a fully auto-
mated manner, handling debris and overlaps between
comets. Identifying individual comets in the input image
is associated with the problem of image segmentation [9],
but existing image segmentation techniques tend to be
unsatisfactory when applied to this problem. HiComet
utilizes a suite of new algorithms tailored for recognizing
and characterizing comets in a rapid and robust manner.

Understanding comet images
Figure 2 shows a typical comet image and the parame-
ters for characterizing a comet. Each comet image shows
the DNA damage in a single cell and consists of two
major parts, namely the head and tail. The intensity and
arrangement of the pixels convey important information.
As damage to the DNA increases, the head becomes
dimmer and the tail grows longer and brighter [10]. For
instance, the three images in Fig. 1b show comets repre-
senting the cells in normal, necrosis, and apoptosis states,
respectively, from left to right.
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Fig. 2 Definition of parameters that characterize a comet. Abbreviations: CPH, center position of head; CMT, center of mass of tail; HT, head
threshold; r, head radius

By considering intensity as mass, we can convert def-
initions from classical physics (such as center of mass
and moment of inertia) into parameters that characterize
comets. The illustration in the bottom pane of Fig. 2 intro-
duces the key parameters of a comet image. The x axis
corresponds to the horizontal location of pixels, and the y
axis indicates the intensity across vertical direction.

The outline of a comet head is modeled on a circle.
The center position of head (CPH) refers to the location of
the head center in the x axis, and is defined as the peak
position in the intensity curve. A user-specified param-
eter, called the head threshold (HT), specifies a fraction
of the maximum intensity, and is used to define the head
size. Thus, we define the radius r of the head as the dis-
tance between the CPH and the location with integrated
intensity corresponding to HT [11].

The tail stretches from the right end of the head to the
location where the intensity reaches zero, and the distance
between these two points defines the tail length. We can
compute the center of mass of tail (CMT) on the x axis,
and the tail distance is defined as the difference between
the CMT and the CPH.

It is customary to assume that the total amount of DNA
in a comet is proportional to the sum of intensity values of
all the pixels representing the comet [11]. That is,

DNA =
∑

x∈comet
I(x) (1)

TDNA = 1
DNA

∑

x∈tail
I(x) (2)

where DNA and TDNA represent the amount of DNA in
the cell (represented by the entire comet) and in the tail,
respectively, and I(x) the intensity of pixels at x.

Assessing DNA damage from tail shape
Multiple methods have been proposed to quantify the
degree of DNA damage from the tail image. The sim-
plest one is to consider the amount of DNA in the tail
and the tail length together, which defines the (tail) extent
moment [12]:

extent moment = TDNA × tail length (3)
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Note that higher the extent moment, higher the DNA
damage. One limitation of using the extent moment is the
difficulty in differentiating comets with identical TDNA
and tail length, but of different shapes.

To overcome this limitation, Olive et al. [10] had pro-
posed the (tail) Olive moment, which is defined as follows:

Olive moment = TDNA × tail distance (4)

which involves the CMT in the calculation by using the
tail distance instead of the tail length.

Furthermore, we can consider the distribution of pixels
in the tail by using the moment of inertia of the tail [11],
which is defined as

moment of intertia = 1
DNA

∑

x∈tail
I(x) × (CPH − x)2

(5)

where the last term represents the squared distance
between the CPH and each pixel in the tail.

Image segementation
The problem of image segmentation concerns the recogni-
tion and extraction of objects embedded in a background
image. In this study, image segmentation techniques play
a key role in the fully automated recognition and charac-
terization of comets, as will be elaborated.

Figure 3 shows the taxonomy of existing image segmen-
tation techniques [9]. Broadly, there are two approaches
to the image segmentation problem, namely the spatially
blind approach and the spatially guided approach. The
approach is chosen based on the need for additional
information (such as the gradient of regions and edges in
the image).

In this study, we employed both types of image
segmentation approaches in turn: the spatially blind
method for initial comet identification and the spatially
guided technique for further processing the overlap-
ping comet images. We aimed to fully automate the
comet image processing, and spatially blind methods are
better suited for the initial comet identification. Based
on the information obtained from it, we performed
out spatially guided processing of overlapping comet
images.

In the domain of spatially blind methods, we utilized
a histogram-thresholding technique for comet identifica-
tion, as described in “Methods” section. Clustering-based
techniques would be an ideal alternative due to the sim-
plicity and ease of implementation, but it is often difficult
to determine the right number of clusters to yield satisfac-
tory results. We compared the performance of the tested
alternatives in “Results and discussion” section.

For the spatially guided approach, we employed the
watershed method [13], an elegant segmentation tool
based on morphological shapes. In this method, a gray-
level image is considered a topographic relief, and the
intensity of a pixel corresponds to the elevation at the
pixel point. The contour of an object in the image is called
the watershed and can be determined as the limits of the
catchment basins of water drops flowing on the topo-
graphic relief. Our approach is elaborated in “Proposed
HiComet methodology” section.

Methods
Figure 4 shows the overall proposed methodology for
HiComet, which consists of four major steps: prepro-
cessing, binarization, filtering, and characterization.

Fig. 3 Taxonomy of image segmentation methods [9]
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Fig. 4 Overview of proposed methodology for HiComet

The input is an image (in 8-bit RGB format) contain-
ing multiple comets obtained from a high-throughput
comet-assay experiment with no limitations on comet
location or quantity. HiComet does not assume a specific
configuration of comet locations, which is an important
advantage over existing software tools. Throughout
the four-step pipeline, HiComet characterizes each
comet, and extracts their parameters such as intensity
profiles and tail moments. The output from HiComet
comprises the images of individual comets and their
characterization data.

The four steps of HiComet are elaborated in this section.

Step 1: Preprocessing
This step involves a smoothing procedure, including
median filtering or moving-average filtering. A moving
window is created, and every pixel in the window is
replaced with the median or average values within the
window. This blurring operation reduces noise, thus facil-
itating downstream processing. In particular, the blur-
ring operation was found to improve the accuracy of the
thresholding for the binarization and to decrease erro-
neous dissection of the head and tail.

Step 2: Binarization
This step distinguishes and separates objects from the
background. The pixel intensity of the comet assay
images corresponds to the density of the cell fragments.
So, we used a simple thresholding method. One of
the well-known thresholding methods is Otsu’s method.
The algorithm performs minimization of the within-
class variance σ 2

W , or alternatively, maximization of the
between-class variance σ 2

B , defined by the following
equations [14]:

σ 2
W = ω0σ

2
0 + ω1σ

2
1 ,

σ 2
B = ω0ω1(μ1 − μ2)

2,

where ωi, μi, and σi denote the probability of occurrence,
the mean intensity, and the variance of intensity values
for class i, respectively. Although Otsu’s method has been
used for high contrast images [15], it was not suitable for
comet assay images due to the variance of intensities in
the comet pixels.

As shown in Fig. 5a, comet pixels have a wide inten-
sity range. Therefore, Otsu’s method could not detect
faint areas, which are mostly abnormal cells that should
ideally be detected (see Fig. 5d). To overcome this prob-
lem of under-segmentation, we generated a gray level
histogram and sought the first valley point, as indicated
in Fig. 5b. Gray level histograms of comet assay images
always have the first peak at background intensity. While
Otsu’s method always results in a high threshold because
it minimizes the variance of intensities for comets, the
first valley is placed somewhere between the background
and Otsu’s threshold. Thus, relying on the first valley of a
histogram gives the effect of using an adaptive threshold
to distinguish comet and background pixels, as illustrated
in Fig. 5b.

Because detecting the first valley might cause over-
segmentation (see Fig. 5c), the filtering described in the
next subsection will focus on removing false positives, to
ensure elaborate contours for individual comets. After this
preliminary segmentation, HiComet performs grouping
of adjacent pixels based on 8-pixel connectivity and labels
the identified comet candidates. This step completes the
first round of comet identification.

Step 3: Filtering and overlap correction
From the comets identified in the previous step, HiComet
discards the “incomplete” ones from subsequent analyses.
The aim of the previous step was to detect all possi-
ble comet areas, although false comet areas may also be
included. In this step, HiComet first removes the comets
lying on the boundaries of the input image, because most
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Fig. 5 Binarization example: a original image b intensity histogram of grayscale image c proposed binarization, and d Otsu’s binarization

of them have invalid shapes. HiComet then identifies
overly small groups of pixels, namely those with num-
ber of pixels lesser than a threshold (e.g., 0.1% of the
total pixels in the input image). Such small groups are
not removed immediately, but are merged into the clos-
est comets. According to our results, these small groups
influence the shapes of certain types of comets (e.g., the
apoptosis type; Fig. 1b).

After the filtering step, we detected overlapping comets
and corrected them. Figure 6 shows the proposed over-
lap correction process. About five overlap examples are
shown in Fig. 6a; we had obtained the initial masks
depicted in Fig. 6b in the previous step. To identify the
number of morphological shapes in these masks, we per-
formed the watershed transform, followed by the distance
transform. The watershed operator can detect multiple

Fig. 6 Overlap correction process (best viewed in color): a original image, b initial mask, c distance transform of b, d wavelet transform of
c, e watershed transform of d, and f merging and filtering



Lee et al. BMC Bioinformatics 2018, 19(Suppl 1):44 Page 55 of 104

Fig. 7 Fourier descriptors on 9 different shapes. Cells are generally elliptical, in which low-order frequencies are dominant

overlapping shapes in the ideal cases of smooth contour.
However, in reality, the overlapping comets have noisy
borders, and the individual comets among them have
irregular shapes.

In order to address the robustness of the watershed,
we applied the wavelet transform after the distance trans-
form. The distance transform works by generating a topo-
graphic relief (see Fig. 6c). Each pixel has an altitude,
which is calculated as the distance to the nearest bound-
ary pixel in a binary image. The topographic relief may
have many shallow holes, which cause over-segmentation
during the watershed transform. Therefore, we utilized
the wavelet transform as a smoothing filter for the topo-
graphic map, as shown in Fig. 6d.

We then obtained candidates of individual comets in the
original binary image using the watershed transform (see

Fig. 6e). However, over-partitioned chunks may still exist.
This problem can be solved easily by merging horizontally
divided areas into one segment, because the horizon-
tal divisions arise from irregular contours of one shape.
Figure 6f shows the results after a series of processes, but
before the final filtering step.

After the horizontal merging, the validity of each chunk
must be verified. We assumed that all the cells were ellip-
tical, and exploited the Fourier shape descriptor [16] to
decide the roundness of each cell. Figure 7 shows the
characteristics of the Fourier descriptor with 9 differ-
ent shapes. An object on the frequency domain with the
Fourier transform of 2D coordinates of contour points was
visible. Low-order frequencies are more dominant, as cells
were assumed to be elliptical. Based on this observation,
we established two criteria to decide the validity of each

Fig. 8 Characterization of comets. The x-axis and y-axis represent the width/height ratio and the tail extent moment, respectively. This plot
characterizes 300 comets sampled from the 35 test images (Table 1), each of which appears as a blue dot; some dots are accompanied by comet
images for visual inspection
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chunk. First, we checked if the absolute sum of ampli-
tudes of the two lowest frequencies was greater than 70%
of the absolute sum of all the frequencies. Second, we dis-
carded a chunk if its area over the area of the initial mask
was lower than 3%. Thus, we obtained the partitioned
segments shown in Fig. 6f.

Step 4: Characterization and classification
The final step is to characterize each comet to find its
parameters, including size, heads, tails, and tail moments.
The tail moment in particular plays a key role in assess-
ing the degree of DNA damage of a cell. HiComet
reports three types of tail moments: the extent and Olive

Table 1 Details of the 35 test images used

Img ID N† TP FP FN Precision Recall F1-score AUC

1 19 19 1 0 0.95 1.00 0.97 0.97

2 27 27 3 0 0.90 1.00 0.95 0.78

3 22 19 1 3 0.95 0.86 0.90 0.82

4 18 14 3 4 0.82 0.78 0.80 0.75

5 24 23 0 1 1.00 0.96 0.98 0.85

6 14 14 0 0 1.00 1.00 1.00 0.93

7 18 16 2 2 0.89 0.89 0.89 0.72

8 10 10 0 0 1.00 1.00 1.00 1.00

9 11 10 2 1 0.83 0.91 0.87 0.72

10 15 15 1 0 0.94 1.00 0.97 0.84

11 12 12 1 0 0.92 1.00 0.96 0.96

12 40 36 4 4 0.90 0.90 0.90 0.90

13 45 38 5 7 0.88 0.84 0.86 0.83

14 8 8 0 0 1.00 1.00 1.00 0.88

15 14 11 2 3 0.85 0.79 0.81 0.82

16 13 12 1 1 0.92 0.92 0.92 0.92

17 17 16 1 1 0.94 0.94 0.94 0.83

18 21 17 0 4 1.00 0.81 0.89 0.79

19 24 20 2 4 0.91 0.83 0.87 0.77

20 21 16 1 5 0.94 0.76 0.84 0.86

21 42 41 2 1 0.95 0.98 0.96 0.94

22 46 37 5 9 0.88 0.80 0.84 0.78

23 44 39 6 5 0.87 0.89 0.88 0.84

24 56 54 1 2 0.98 0.96 0.97 0.88

25 12 11 0 1 1.00 0.92 0.96 0.92

26 15 15 1 0 0.94 1.00 0.97 0.84

27 9 9 2 0 0.82 1.00 0.90 0.73

28 10 10 0 0 1.00 1.00 1.00 0.70

29 13 13 0 0 1.00 1.00 1.00 0.77

30 11 10 0 1 1.00 0.91 0.95 0.95

31 8 7 0 1 1.00 0.88 0.93 0.81

32 9 9 0 0 1.00 1.00 1.00 1.00

33 13 13 0 0 1.00 1.00 1.00 1.00

34 8 6 1 2 0.86 0.75 0.80 0.79

35 13 12 3 1 0.80 0.92 0.86 0.77

Total 702

Average 20.06 0.93 0.92 0.92 0.85

N† denotes the number of comets
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Fig. 9 Comparison of binarization performances in terms of a precision, b recall, and c runtime

moments, and the moment of inertia, as mentioned in
“Background” section. Figure 8 shows an example of
comet characterization, with the distribution of some
300 comets in terms of the extent moment and the
width/height ratio.

After the characterization, we extracted the histogram
of oriented gradients (HOG) [17] features from each cell
image. HOG is a feature descriptor used in computer
vision and image processing for object detection. The
technique counts the number of occurrences of gradi-
ent orientation in localized portions of an image. We
compared 4 classifiers with the HOG features, and the
experimental results are described in the next section.

Test data preparation
To evaluate the performance of HiComet, we tested it with
35 golden data sets verified by domain experts. Each data
set was based on images from a micro comet-assay sys-
tem (PICASSo, currently under development, NanoEnTek
Inc., Korea). The system consists of a gel-electrophoresis
microchamber and parallel multi-microchannels, which
enables the loading of a low-melting point agarose
(LMA) gel mixed with single cells. In these experi-
ments, Jurkat cells were exposed to a toxic material (20
mM hydrogen peroxide) for 10 min and loaded into the
multi-microchannels. After electrophoresis and nucleic
acid staining with SYBR green, fluorescent images were
captured with a microscope (EVOS, AMG Inc., USA).
Three domain experts visually identified the comets from
each of the 35 images, reporting 8–56 comets per image

(20.03 on average and 702 in total). The throughput for
processing these test images was over 1000 comets per
minute. Details of the sample images are listed in Table 1.

Results and discussion
Effective image segmentation
We evaluated the binarization for the 35 test images with a
region-based measure. The segmentation method labeled
each pixel of the image with a binary value, identifying
whether it was a comet pixel or not. We regarded the
binarization of a comet assay image as a binary vector,
and calculated true positives (TPs), false positives (FPs),
true negatives (TNs), and false negatives (FNs). TP (TN)
refers to a comet (background) pixel that is correctly bina-
rized as a comet (background). FP is a background pixel
that is incorrectly binarized as a comet. For each image,
we calculated precisions and recalls, with the following
equation:

precision = TP/(TP + FP),
recall = TP/(TP + FN).

We compared the proposed binarization with three
alternatives: Otsu’s method [14], K-means [18], and
GraphCut [19]. Figure 9 shows the precision, recall, and
runtime of these four methods on all the test images. On
average, HiComet resulted in 15.8% lower precision values
than GraphCut (0.646 versus 0.798). However, HiComet
outperformed the three alternatives in terms of recall,
yielding up to 21.3% higher average recall value than
GraphCut.

Table 2 Classification performances

Feature set # of features
Training accuracy Test accuracy

SVM NN AdaBoost CART SVM NN AdaBoost CART

HOG 8 × 8 from 360 0.921 0.947 0.818 0.968 0.865 0.833 0.778 0.726
left-half

HOG 8×8 from 361 0.935 0.956 0.867 0.963 0.877 0.869 0.836 0.752
left-half & boxratio

HOG 8×8 900 0.985 0.984 0.833 0.972 0.873 0.864 0.773 0.749

HOG 8×8 & boxratio 901 0.989 0.987 0.867 0.971 0.904 0.872 0.823 0.786
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In the binarization, we aimed to perform preliminary
segmentation for the following enhancement procedure.
By minimizing FNs, which are incorrectly segmented
actual positives, we can preserve the true comet areas in
the first round and concentrate on minimizing of FPs in
the next filtering step. The proposed thresholding not only
identified actual comet pixels successfully (0.979 recall on
average) but also achieved this in just 0.1 s. Because the
boundary of the comets were smeared and blurry due to
the DNA fragments, the three alternatives that focused

on detecting objects with crisp boundaries missed many
fragmented pixels around the main body. This is under-
standable, given that these methods were designed for
general images, in which clean-cut image segmentation is
required.

Fully automated identification of comets
By comparing the number of TPs, FPs, and FNs in each
test image analyzed using by HiComet and the reference
identification procedures. In order to count the correctly

Fig. 10 Correlation between normalized tail moments calculated by two tools: HiComet and CometScore (TriTek Corp., Sumerduck, VA). Eighty-six
comets were randomly sampled from the 35 test images used. a Olive moment; b extent moment
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detected cells, we used a centroid-based measure instead
of the region-based measure described in the previous
subsection. A cell was considered TP if its centroid was
located within a range of 15 pixels (= 12μm) from the
centroid of a ground truth cell. Based on these numbers,
we calculated the precisions, recalls, and F1-scores for
each image, as listed in Table 1. The F1-score is defined as
the harmonic mean of a precision and a recall.

Through the filtering and overlap correction steps
(Step 3), HiComet raised the average precision and recall
values from 0.74 and 0.73 to 0.93 and 0.92, respectively.
For GraphCut, the average precision and recall were 0.75
and 0.66, despite applying the correction procedure. The
four methods described in the previous subsection were
ranked according to the centroid-based F1-score, and
the result showed that the adaptive thresholding method
was the best (0.92), followed by Otsu’s method (0.77),
K-means (0.76), and GraphCut (0.71). Even if we uti-
lized the three alternatives without the filtering, we could
obtain up to 0.6 average F1-scores. For comet assay images
with cloudy object boundaries, we believe that the pro-
posed thresholding and correction schemes should be
used together to detect all comets, including blurred and
noisy ones.

Quantification and classification of DNA damage states
Based on the HOG feature descriptor, we utilized four
classifiers for discriminating between three types: nor-
mal, necrosis, and apoptosis. The classifiers we tested
were support vector machine (SVM) [20], neural net-
works (NN) [21], AdaBoost [22], and the classification
and regression tree (CART) [23]. Details of the individual
classifiers are described as follows.

For SVM, we trained three binary classifiers (normal vs.
necrosis, normal vs. apoptosis, and necrosis vs. apopto-
sis) and aggregated them into a decision tree: a traditional
approach for multiclass SVM. We tried four well-known
kernels (linear, polynomial, sigmoid, and radial basis func-
tion), among which the linear kernel showed the best
performance. For NN, we constructed only input and

output layers, composed of three nodes with softmax
regression. For AdaBoost, we selected a decision tree as a
template classifier and exploited 200 trees. For CART, the
maximum pruning level was set to 10.

We assumed that apoptosis always has a nucleus in
the left-half area (see Fig. 11b), and therefore collected
two HOG features with overlapping 8 × 8 grids from
all the resized (50 × 50) and left-half images (25 × 50).
In order to discriminate between the horizontally long
types (e.g., necrosis; see Fig. 11d), the box-ratio, which
is defined as the width divided by height of a cell image,
was used. Table 2 shows the classification performance for
the four classifiers and the four feature sets. All the num-
bers depicted are averages from 10-fold cross-validation.
The CART showed overfitted predictive performances;
the linear SVM resulted in the highest test accuracy
(0.904) with all the features, among the 16 possible
combinations.

After the classification, HiComet could identify around
90% of non-overlapped cells in one comet assay image. In
order to evaluate DNA damages correctly, we calculated
the heterogeneity of response [24–26] (e.g., the distribution
of % DNA in the tail). When the true distribution of %
DNA in the tail is normal, the discarded 10% cells would
cause only 1.7% decrease in the confidence level with the
same confidence interval (e.g., 95% confidence interval
using 50 comets = 93.7% confidence interval using 41
comets). Thus, HiComet could provide a satisfactory per-
formance with a sufficient number of comets in one image
(e.g., 25 comets [24]).

Characterization of comet parameters
Once a comet is recognized, it should be characterized
by measuring its key parameters such as the tail moment.
We compared the tail moments calculated by HiComet
with those calculated by an existing program called
CometScore (TriTek Corp., Sumerduck, VA). Figure 10
shows the correlation between the Olive moment and
the extent moment calculated with these methods. For
both the moments, the correlation was positive. The

Fig. 11 Comets and their heads. Green images represent comets, on which red circles indicate the location of the head, as manually determined by
domain experts. The four images represent different states, as follows: a normal, b necrosis, and c and d apoptosis. For a and b, the head diameters
are similar to the comet heights. In contrast, the head diameter is smaller than the comet heights in c and d. CometScore (TriTek Corp., Sumerduck,
VA) does not consider this fact and tends to overestimate the head diameter, resulting in an underestimation of the tail moment. More details of
c and d are listed in Table 3
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Table 3 Details of the comet images shown in Fig. 11c and d

Method
Comet Comet Head Tail Tail TDNA Extent Olive

length (px) height (px) diameter (px) length (px) dist. (%) moment (%) moment (%)

Fig. 11c HiComet 84 46 5 78 48 99.53 77.64 47.78

CometScore 84 49 49 35 46 74.84 26.19 34.94

Fig. 11d HiComet 82 67 13 58 28 95.60 55.46 26.77

CometScore 100 74 74 26 33 65.00 16.92 21.07

correlation for the Olive moment (0.8446) was higher than
that for the extent moment (0.6026).

The discrepancy was mainly due to the difference in the
definition of the comet head. CometScore assumes that
the diameter of the comet head is identical to the height
of the comet. This assumption is reasonable for certain
cases (e.g., normal and necrosis; see Fig. 11), but fails to
model the comet shape in other cases (e.g., apoptosis;
see Fig. 11). Consequently, CometScore tends to overesti-
mate the diameter of the head in case of apoptosis comets,
resulting in underestimation of the tail moment. This is
reflected in the correlation plots in Fig. 10, where the Olive
or extent moment values calculated by HiComet were
higher than those calculated by CometScore. The differ-
ence was more noticeable for the extent moment than for
the Olive moment. This was likely because of the differ-
ence in the definitions of the two moments. As defined in
Eq. (3), the extent moment is the product of TDNA (the
fraction of total DNA contained in the tail) and the tail
length (the distance between the head boundary and the
end of the tail). If the head size is overestimated, the cal-
culated tail size becomes lower than the actual value. This
lowers both the TDNA and the tail length values, resulting
in a lower extent moment value as well.

In comparison, the Olive moment is defined as the
product of TDNA and the tail distance (the distance
from the CPH to the CMT). Thus, for the Olive moment,
overestimating the head size lowers the TDNA value,
but often increases the tail distance due to the shift in
the CMT towards the end of the tail. These two affect
the Olive moment calculation in opposite directions.
Consequently, the underestimation of the Olive moment
by CometScore tends to be less significant than that of
the extent moment, and the Olive moment values esti-
mated by CometScore show higher correlation with those
estimated by HiComet than the extent moment values
(r = 0.8446 vs. r = 0.6026 in Fig. 10a). This observation
also confirmed that the Olive moment was a more robust
parameter than the extent moment.

Conclusion
We demonstrated HiComet, an automated tool for high-
throughput comet-assay analysis. The key features of
HiComet were described. First, HiComet automatically

recognizes individual comets from the input image
without making any assumptions on the number of
comets or their location. This is critical for reducing
the time taken for analyzing high-throughput assays
with many comets. Second, HiComet can detect over-
lapping comets and isolate them. Without this feature,
researchers would have to discard overlapping comets,
even though the comets involved may be eligible for
analysis. Given that overlaps occur frequently in typical
high-throughput comet assays, this functionality would
be useful for maintaining sufficient comet counts for
analysis by salvaging parts of overlapping comets. Third,
HiComet can characterize each of the recognized comets
and report their key parameters such as tail moments
without making overly simplified assumptions about
comet shapes, as some existing tools do. Given the
effectiveness of HiComet, it could greatly facilitate high-
throughput comet-assay analysis by accelerating its most
rate-limiting steps.
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