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Abstract

Background: It is known that functional RNAs often switch their functions by forming different secondary structures.
Popular tools for RNA secondary structures prediction, however, predict the single ‘best’ structures, and do not produce
alternative structures. There are bioinformatics tools to predict suboptimal structures, but it is difficult to detect which

alternative secondary structures are essential.

Results: We proposed a new computational method to detect essential alternative secondary structures from RNA
sequences by decomposing the base-pairing probability matrix. The decomposition is calculated by a newly
implemented software tool, RintW, which efficiently computes the base-pairing probability distributions over the
Hamming distance from arbitrary reference secondary structures. The proposed approach has been demonstrated on
ROSE element RNA thermometer sequence and Lysine RNA ribo-switch, showing that the proposed approach

captures conformational changes in secondary structures.

Conclusions: We have shown that alternative secondary structures are captured by decomposing base-paring
probabilities over Hamming distance. Source code is available from http:.//www.ncRNA.org/RintW.
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Background

Secondary structures of RNA are known to be thermo-
dynamically fluctuated and the number of possible sec-
ondary structures of RNA are huge. We can predict the
secondary structure by software tools, but on Boltzmann
distribution of the secondary structure the probability of
the ‘best’ secondary structure predicted is usually very
small [1]. For example, the probability of the canoni-
cal ‘clover leaf’ secondary structure of a tRNAs is often
less than one percent. One the other hand, the marginal
probabilities on each base of the secondary structural
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contexts, such as base-pairs, loops, bulges, multi loops, are
not necessarily very small and carry important structural
information [2]. Among them, the base-pairing proba-
bilities (BPPs) [3], which are often greater than eighty
percent, are convenient to observe the local stability of
the secondary structures. Furthermore, the estimators
based on maximum expected accuracy, such as the MEA
(Maximum Expected Accuracy) estimator [4] and the y-
centroid estimator [5], can be calculated by posterior
decoding of BPPs without using further information of the
RNA sequence [6].

Several functional RNAs, such as RNA thermometers
and ribo-switches, change their functions by forming dif-
ferent secondary structures. It is difficult, however, to
detect such structural changes. There are bioinformat-
ics tools to predict suboptimal structures [7], but it is
difficult to detect which alternative secondary structures
are essential.
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When the structural change occurs, the energy land-
scape, equivalently the probability distribution of the sec-
ondary structures, also changes, but we may expect that
the information of the alternative secondary structures
is included in the original probability distribution. For
example, the two alternative structures of an aptamer ver-
ified by structure-specific RNase experiments were sup-
ported by two competing potential stems in the BPPs [8].
In order to characterize the alternative secondary struc-
tures more clearly, the other types of marginal probabili-
ties, the distributions over Hamming distance are useful.
The general idea has been proposed by [9] as an algorithm
for exact calculation of distributions on integers applied
to sequence alignment. For RNA secondary structures,
algorithms and tools that calculate the probability dis-
tribution of the secondary structures over the Hamming
distance from the reference structure has been proposed
(RNAbor [10, 11], RintD [12]). If the distribution is con-
centrated near to the reference structure, the structure
is regarded as reliable (i.e. low credibility limit). If there
are multiple clusters of secondary structures, the distri-
bution should have multiple peaks (See “Results” section).
If the second reference structure is appropriately selected,
we can obtain informative 2D distribution over Ham-
ming distances from the two reference structures using
RNA2Dfold [7] or RintD [12] (See “Results”section).

On the secondary structure over Hamming distance, a
method to calculate approximate MEA estimators over
Hamming distance has been introduced [13]. We pro-
pose a method to calculate exact decomposition of BPPs
over each range of the Hamming distance and the exact
MEA-based estimators (MEA estimator and y-centroid
estimator) by posterior decoding of decomposed BPPs as
the representative secondary structure of the range of the
Hamming distance. The existence of the cluster is visual-
ized by the distribution over the Hamming distances from
the two reference structures.

In order to establish the method to decompose the BPPs
of a whole RNA sequence, we have developed RintW, a
new computational tool that efficiently compute the exact
base-pairing probability distribution over the Hamming
distance from the reference structure. RintW is an exten-
sion of the calculation of partition function over Ham-
ming distance in RintD [12]. RintD efficiently computes
the secondary structure probability distribution over the
Hamming distance from an arbitrary reference structure,
by applying polynomial approach and Discrete Fourier
Transform (DFT) to McCaskill’s algorithm [3]. In order
to apply their approach to the base-pairing probabilities
over Hamming distance, we derived outside algorithm
for outside partition function from McCaskill’s algorithm
of base-pairing probabilities [3]. RintW runs computa-
tional complexities of O (L4Hmax) in time and O (L3) in
space, where L is the sequence length and Hpax (< L) is
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the maximum values of the Hamming distance from an
arbitrary structure.

Methods

In this paper, we present a new computational method
to detect the essential alternative structures from RNA
sequences. Figure 1 shows an overview of the method.
Firstly, we calculate an estimate of the secondary structure
of the given RNA sequence, as the reference secondary
structure. Secondly, the probability distribution of the sec-
ondary structure over the Hamming distance from the
reference secondary structure is calculated by RintD [12]
(Fig. 1 left). If there are multiple peaks in the distribution,
which does not guarantee but implies that there are multi-
ple clusters of secondary structures, we detect the ranges
of Hamming distance for each potential cluster (Fig. 1 left,
A and B). Thirdly, by newly implemented RintW, the base-
paring probability matrix over each range of Hamming
distance is calculated (Fig. 1 middle). Finally, the represen-
tative secondary structure for each cluster, which will be
used as one of the reference structures for 2D analysis over
Hamming distances, is estimated by posterior decoding of
the corresponding base-pairing matrix (Fig. 1 right).

1D analysis over Hamming distance

Reference secondary structure selection

In the proposed method, the reference secondary struc-
ture is the structure estimated by CentroidFold [5]. Alter-
natively, of course, any reliable prediction by another tool,
such as the minimum free energy structure by Mfold [14]
can be used.

DP for secondary structure probability over Hamming
distance

The distribution of secondary structures over Hamming
distance from the reference strucure is calculated by
RintD [12], while there are several tools for similar calcu-
lation (RNAbor [10, 11], RNA2Dfold [7]).

The Hamming distance between two secondary struc-
tures of an RNA sequence of the length L is defined as the
Hamming distance of the upper triangle binary matrices
0;; as follows:
forl<i<j<I,

o [ 1; a base-pair (i, ) exists in the secondary structure
L] —

0; otherwise
(1)

The probability distribution over Hamming distance,
the marginal probability that the Hamming distance of the
secondary structure is d from the reference structure o, is
written as follows:

Z1,.(d,o)

, (2)
VAN

P(drU) =
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RNA sequence
CUUUCGGGUCCCCAUUGC
AGCCCCCGGAUGAG*****

distribution

Calculate existence
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Fig. 1 An overview of capturing the alternative secondary structures. The distribution of the secondary structures over the Hamming distance from
the reference structure is calculated (left). The base-pairing probability matrix is calculated for each peak of the distribution (middle). The y-centroid
estimater of the secondary structure is calculated from each base-pairing probability matrix (right)

where Z; 1 is the partition function of all the secondary
structures, and Z;;(d, o) is the partition function over
Hamming distance d from the reference structure o,
which is the sum of all the Boltzmann factors of secondary
structures whose Hamming distance from the reference
structure o is d. The partition function Z; is calcu-
lated by McCaskill’s algorithm [3]. The partition function
over Hamming distance, Z; 1 (d, o), can be calculated by
a dynamic programming (DP) adding Hamming distance
as an additional dimension of DP matrices to McCaskill’s
algorithm. For practical implementation, however, the
computational cost of this DP is too high. In the effi-
cient calculation of RintD, this DP was mapped to a DP
on polynomials and was converted to Discrete Fourier
Transformation (DFT).

The DP on polynomials in RintD [12] is shown in
Algorithm 1. In this algorithm, DP matrices, Z;, Zl-l,j, foj,
Z;,’;, Zz’}l, are polynomials, whose terms store the sum
of Boltzmann factors of subsequence [i,j] as the coef-
ficients and the Hamming distance from the reference
structure o as the power of the dummy variable x. Z; ; cor-
responds to the general case, Zilyj has exactly one outmost
base pair whose 5" base is i, foj is the partition function
conditioned by (i, /) base-pairing, Z’; and ZZ’}I correspond
to the multi loops. The functions f; to f5 are the free energy
of unpaired bases depending on the structural contexts
and the lengths of the subsequences.

The functions gZ to gZ are the gains of the Hamming
distance for the transitions from the term in the right

Algorithm 1 DP on polynomials of the partition function
over Hamming distance [12]

The DP variables, Zs, are polynomials of x.

Zs and the gain functions gZ to gz are the functions of the
reference structure o.

Initialization:

fori<i<lL

Z;i = 1.0
1 b 1
Zii =2 = ZZ{ = Zl-,W;_l = ZZ‘- =0.0

Recursion:
fori<i<j<L

j-1
Zoion Zoio s
Zij=a% (G Z Zin Z}I,H,j"& (iyj,h)
h=i
4 b &5 (ijh
1 _ (&)h)
Zij= ) Zys
h=i+1
Zb; = e DT yef i
j=2 j-1
. . Z s .
+ Z Zzﬁlle*ﬁ(l;h'e:l)/kags (@i,h,L,))
h=it1 t=h ®3)

j—1
1 =) /KT, g%(ijh
+ Z Zﬁl,hqzlrf,l,;]e S3@) /KT g6 (k)

h=i+2
j—1 . Z i
ij — +Z?}1—lxg8 (ij,h) h,j

h=i

j

ml _ b —fa(h+1,j)/KT , g% (ij,h)

Zi,j — Z Zi,he fa NIKT 85 (i)
h=i+1
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hand side of the equation to the left hand side Z’s, which
mostly correspond to the number of the base-pairs in
the reference structure where base-pair should not exist
in the specific structural contexts. Using the following
definitions

hooJ
gO(irjrh) = Z Z Op,q>

p=i g=h+1
(4)
=1
gg(ly]) = Z Z Op,q>

p=iq=p+1

the gain functions are described as follows:

g6 )) = g i),
&5 Girj ) = go(i,jy ),
&5 Gjih) = goGjy i+ 1) + g5 (h + 1)),
&G =g G f) +1— 20,
gEGijih 0) = gf (i) — g (h £) + 1 — 20y,

§EGij ) = g§(ij) — g5 (i +1,h — 1)

— g (hj—1) +1—20p,,
FGjih) = go G h— 1) + golirj, b,
g5 (ijohy = goliyj, i — 1),

Z(d, o), the partition function over the Hamming dis-
tance, is obtained as the coefficients of the polynomials as
follows:

dmax

Zy =Y Zdon, (5)
d:dmin

where dmax is the maximum Hamming distance from the
reference structure, which is no greater than the length
of the sequence, and dpi, is the minimum, which is
usually 0.

Accelerated calculation by discrete fourier transformation
Algorithm 1 includes the multiplication of the polyno-
mials, which is computationally expensive. According
to [9], distributed processing by DFT is available for
dynamic programing of distribution on integer function.
This acceleration has been implemented in RintD [12] for
the partition function.
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The DP on polynomials in Algorithm 1 can be converted
to DP on complex numbers by substituting

x = exp [27‘(;’%] , (6)

where A = dmnax — dmin + 1, then the DP matrices of
the partition function over Hamming distance becomes
matrices of complex numbers:

d
- max (rd
Zij(o) = d;{ Z;j(d, o) exp |:2711A] . (7)

In the DFT approach, the partition function over Ham-
ming distance is rewritten as follows:

dmax

Z Z(s,0)844

$=dmin

Z(d, o) =

dmax dmax exp Qniu
— Z Z(s,0) Z [AA]

$=dmin r=dmin
dmax dmax
1 —rd rs
=X Z exp [ZHiT} Z Z(s,0) exp [ZﬂiX]
r=dmin s=dmin
dmax
1 —rd] ~
=X Z exp |:27”T} Z1,1(0).
r=dmin

(8)

In (8), ZLL (o) can be computed as a complex number by
Algorithm 1, substituting x = exp [27i(r/(A))] as shown
in (7), and the entire (8) can be computed by DFT. Note
that the above DP and DFT are computable in parallel.

Range detection

If the distribution over Hamming distance is concentrated
around the reference structure, the structure is reliable
(i.e. low credibility limit). If the distribution of Hamming
distance has multiple peaks (as in Fig. 1 left), we detect
the range of Hamming distance for each peak. It should
be noted that a peak is generally not a guaranteed struc-
tural cluster but a potential candidate of a cluster, because
the structures within a range of the Hamming distance
from the reference structure may have mutual Hamming
distance up to the double of the maximum Hamming
distance of the range. On the contrary, a cluster whose
members have small mutual Hamming distances is always
observed as a peak in the distribution over Hamming
distance. The first peak, however, tends to be a real clus-
ter if the maximum Hamming distance of the range is
reasonably small.
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Decomposition of base-pairing probability

DP for base-paring probabilities over Hamming distance

The base-pairing probability matrix over Hamming dis-
tance, Pg. (d,0), which is the marginal probability that the
secondary structure has Hamming distance d from the
reference structure ¢ and that the i-th base and the j-th
base form a base-pair in the secondary structure, can be
calculated by a DP algorithm adding Hamming distance
as an additional dimension to the DP algorithm for base-
pairing probability [3]. Because direct calculation of this
DP is computationally impractical, we have developed a
polynomial-DFT approach similar to RintD.

The original DP algorithm for base-pairing probabili-
ties [3], however, included divisions of DP matrices, which
is inappropriate for the polynomial-DFT approach. In
order to avoid this problem, we rewrote the base-pairing
probability over Hamming distance, as follows

Zjd - W@

Z(d,o) ©)

pg(d,a) = Z

t

Zf’j(d —t) and Z(d, o) are obtained by Algorithm 1. The

Zibj(d — t) is the inside partition function over Hamming
distance, which is defined as the sum of all the Boltzmann
factors of the structures of the subsequence [i,j] when
(i,)) is a base-pair and the Hamming distance of subse-
quence [i,j] is d — t. Z(d, o) is the partition function of
the whole RNA sequence over Hamming distance, which
is defined as the sum of all the Boltzmann factors of the
structures of the whole sequence having Hamming dis-
tance d. VV;’ (t,0) is the outside partition function over
Hamming distance, which is defined as the sum of all the
Boltzmann factors of the structures outside of the (i, )
base-pair when the Hamming distance outside of [i, ] is
t. The algorithm for outside partition function is given in
the next subsection.

The base-pairing probability matrix pb [7min, "max] on
the range [rmin, max) of Hamming distance, is obtained by
integrating each Boltzmann factor in (9) over the range of
Hamming distance as follows:

b b
) 2 delrminmar) 2ot 2@ = DW; @)
P"[rmin ma ] =
i rmins Fmax > termmmn 2 0)

(10)

Outside partition function over Hamming distance

In order to calculate the base-pairing probability over
Hamming distance by (9), we apply the polynomial-DFT
approach to the outside partition function over Hamming
distance. The dynamic programming on polynomials of
the outside partition function is described in Algorithm 2.
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This algorithm corresponds to the outside algorithm of
the stochastic context free grammar (SCFG), and itera-
tions are computed from long (i,j) to short (i,j), while
McCaskill's algorithm of the partition function corre-
sponds to the inside algorithm of SCFG and runs from
short (i, ) to long (i, j).

Algorithm 2 DP on polynomials of the outside partition
function over Hamming distance

The DP variables, Zs and W's are polynomials of x.
Zs, Ws, and the gain functions g; to g5 are the functions
of the reference structure o.

Initialization:
wh — 1.0 if (1, L) can form a base-pair
LL= 1 0.0 otherwise
Recursion:

forl<i<j<L

AV
Wlb, = Z1i-1Zj41,%5 @) (11)
+ Wb e—fz(h,t,],i)/kag2 (h,ij,0)
t>)

o e f1GO/KT 523" (hirj,b)
A=
— _ ; W ;e
_|_§ Wl]f,ie f3/kT +Z e f4(h’l)/kT§f4 (i)
h<i h,ij,l
) +ZZM+1,i—1Zﬁ1,e71"g5( W)
(13)

In Algorithm 2, (11) represents the case that (i, j) base-
pair is not included in any other base-pair, (12) represents
the case of (i, j) base-pair being included in another base-
pair (4, £), while no base-pair in the subsequence (4, i) or
(¢, ). In (13), (i,) base-pair is included in another base-
pair (%, £), while at least one base-pair only in the subse-
quence (/,7) in the first line, at least one base-pair only in
the subsequence (j, £) in the second line, and at least one
base-pair in both of the subsequences (/,i) and (j,¢) in
the third line. This outside algorithm requires the par-
tition functions Z and Z™ of Algorithm 1. Z;; is the
partition function of subsequence [i, j], and Zl"l“ is the
partition function of subsequence [i, j] that is a part
of multi loop and that includes at least one base-pair.
The functions f> and f; are the same as in Algorithm 1,
the free energy of unpaired bases depending on the
structural contexts.

The functions g}v to g;w are the gain function of Ham-
ming distance, for the transitions from the term in the
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right hand side of the equation to the left hand side W,
which mostly correspond to the number of the paired
bases in the reference structure where no base pair may
exist in the specific structural contexts. The functions gIW
to g are defined using g& in (4) as follows, and illustrated
in Fig. 2.

&' G =g (LL) —grij) —gr(Li—1)
~&G+1,0),
(i, €) = gh(h, ) — g2 (i,j) + 1 — 204,
& (ij,0) =gy (hij, £) — gg(h+1,i — 1),
(i), ) =g (hij, €) — geGi+1,£ — 1),
& (hij, 0) =gy (hij, £) — gg(h + 1,i — 1)
—gG+1,6—1).

Wi? (d, 0), the outside partition function over Hamming
distance, which is the sum of all the Boltzmann factors
outside of the (i,j) base-pair, whose Hamming distance
outside of (i,j) from the reference structure o is d, is
obtained as the coefficients of the polynomials as

Wh(o) =Y Wh(d, o). (14)
d

Accelerated calculation by discrete fourier transformation
Algorithm 2 also includes the multiplication of the poly-
nomials, in the third term of (13) . We applied DFT
approach to the outside partition function over Hamming
distance. Substituting same complex number to x as in (6),
we obtain

dmax
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The outside partition function over Hamming distance
is rewritten as

dmax

Y whs)sy

s=dmin

Wl (d) =

.r(s—d)
dmax dmax exp |:27Tl4A ]

Yo owhe Y <

s=dmin r=dmin
1 dmax _rd dmax rs
=X Z exp [ZﬂiT] Z Wb(s) exp [Znig]
r=dmin S=dmin
d,
1 max _ d -
=< ; exp [zmTr] Wi.(0).
r=0min

(16)

In (16), WLL (o) can be computed by Algorithm 2, sub-
stituting x = exp [2mi(r/(A))]. The entire (16) can be
computed by DFT. Note that the above dynamic program-
ing and DFT are computable in parallel.

Secondary structure predictions using decomposed
base-pairing probabilities

Once we obtain the partition functions over Hamming
distance, Z% and W?, we can calculate the base-pairing
probabilities (BPPs) P?(d) on each Hamming distance d
by Eq. (9), and then BPPs, Pf’/- [min> "max] for each peak
by Eq. (10). As the representative secondary structures of
each peaks, the y-centroid estimator is computed from
each corresponding BPP by the posterior decoding [4].

Results

Application to Lysine riboswitch

We applied our method to an RNA called the Lysine
riboswitch. The Lysine riboswitch RNA is 5’-UTR region
of lysC and is known to be regulated by concentration
of lysine [15]. The sequence was taken from lysC of B.

b b rd .
Wi,j(a) = Z Wi,j(d,a) exp 2mZ . (15)  Subtilis (J03294.1:2297-2537). The secondary structure
d=dmin predicted by CentroidFold (with y = 1) was chosen as
&) ) g% (h,i,j, D)

Fig. 2 Schematic illustration of gain functions for the powers of polynomials in Algorithm 2
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a reference structure. First we analyzed the distribution
of the structures over Hamming distance from the refer-
ence structure o, represented as P(d, o) in (2). Figure 3a
represents the plot of P(d), where multiple peaks were
observed in the distribution. We split the range of the
Hamming distance at d = d’ such that P(d' — 1) > P(d’)
and P(d’) < P(d' + 1). Furthermore, only the region
P(d) > exp(Q/RT) was considered, where Q = —10
kcal/mol, R is the gas constant, and T 310 K (37
°C). As a result, ranges of [ 7min, 'max] Were determined
to be [9, 56], [56, 82], and [82, 95]. The base-pairing
probability matrices were then calculated according to
the procedures described in “Methods” section. The y-
centroid estimator (y = 1) were then reconstructed by
posterior decoding of the base-pairing probability matri-
ces as the representative structures (alternative structures
hereafter).

Page 91 of 104

Figure 3b and c represent the secondary structure of
the reference structure, and those of the alternative struc-
tures, respectively. As expected from the large Hamming
distance change, the alternative structure obtained from
the Hamming distance range [ 82, 95] had a considerable
structural change from the reference structure (here-
after we call this structure alt3). Furthermore, it can be
seen that two experimentally important sequences (red
and skyblue circles) of the RNA, form an antitermina-
tor stem. Experimentally, it has been considered that 3’
pair of the antiterminator stem (colored skyblue in Fig. 3b
also forms a terminator hairpin (skyblue and blue cir-
cles) and its transition is modulated by the concentration
of lysine. Disrupting either of the antiterminator stem,
or the terminator hairpin formation by mutations leads
to the loss of the riboswitch function [15]. We further
applied the RintD [12] algorithm to both the wild-type
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Fig. 3 a The distribution of Lysine riboswitch secondary structures projected to the Hamming distance from the reference structure. Both the

the CentroidFold predicted structure

120
Hamming distance from

probabilities and their logarithm are plotted. b The secondary structure representations of alternative structures. € The alternative structures of the
the Hamming distance range [9, 56] (left), [ 56, 82] (middle) and [82,95] (right, “alt3"). Terminator and antiterminator sequences are marked with
circles (see the main text.) Figures were generated by RNAplot in the ViennaRNA package [7]. d The 2D distribution of Lysine riboswitch secondary
structures projected to the Hamming distances from the structure predicted by CentroidFold and the alt3 structures, calculated by using RintD [12].
The probabilities were converted to the free energy (i.e. —RT log P) and were plotted. (left) The case with the wild-type RNA sequence. (right) The
case with the M1 mutant. Secondary structures that have low Hamming distances to the alt3 structure are more stable with the M1 mutant than
those with the wild-type (marked with an arrow). Free energies greater than 20 kcal/mol are plotted in white. Note the checkered pattern appears
due to difficulties in achieving some Hamming distance constraints
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and a mutant MI that has modified sequence at the
5’-pair of the terminator hairpin, with mutations U234A
and G235C. These mutations have been known to dis-
rupt the pairing of the terminator hairpin. We use the
structure predicted by CentroidFold, and alt3 as the ref-
erence structures for the RintD-2D [12]. Figure 3d shows
the mutations to the RNA sequence increase the ratio of
the alternative structure found in the wild-type sequence.
It is thus inferred that a structural transition between
the structure predicted by CentroidFold and alt3 reflects
the functionally relevant structural change of the Lysine
riboswitch.

We note that in the case of Fig. 3 the probability that
a randomly sampled sequence falls into the Hamming-
distance range of [ 82,95] is 1.43 x 10~°. These structures
have a low total probability when RNA is not interacting to
other molecules, but this weak peak may imply a potential
structural change under the interaction with the ligand.
We also note that such a low-probability structural cluster
is hard to find using existing methods, such as the random
sampling of the secondary structures.

Application to ROSE element thermometer

The ROSE element thermometer is a functional RNA
encoded in 5-UTR of a mRNA, which changes its struc-
ture according to the temperature to regulate the trans-
lation of the downstream mRNA. The ROSE element
thermometer prohibits the binding of ribosomes to the
Shine-Dalgano (SD) sequence in 30 °C, but the structure
change in 45 °C enables ribosomes to bind SD sequence to
promote the translation of the mRNA.
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Figure 4 shows the secondary structure probability
distribution over Hamming distance of the ROSE element
thermometer, where three major peaks for potential struc-
tural clusters are observed. We classified the three poten-
tial structural clusters A, B and C by Hamming distances,
[0,10], [11,34] and [35,40]. The abundance of the clus-
ters in their probabilities along the changing temperature
is shown in Fig. 5.

We then calculate the base-pairing probabilities over
Hamming distance by RintW, and y-centroid estima-
tors (y = 1) for the three clusters. The esimated
y-centroid structures are shown in Fig. 6. Using the y-
centroid estimators of the first and the third peak as the
reference structures, the secondary structure probability
distribution over Hamming distances (2D) were calcu-
lated under three different temperatures (Fig. 7), which
shows the change of the probability landscape depend-
ing on the temperature. The change of probabilities of the
three clusters depending on the temperature is shown in
Fig. 5. It can be observed that cluster A (Hamming dis-
tance d € [0,10]) is dominant in low temperature and
that cluster C (d € [35,40])become stronger in high
temperature.

Discussion

It is known that the functions of RNAs are closely corre-
lated to their secondary structures, but limited reliability
of secondary structure predictions have been preventing
effective functional analyses. There are many tools for sec-
ondary structure predictions, but any point estimate of
secondary structure has very small probability.
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Fig. 4 Distribution over Hamming distance (1D) of ROSE element thermometer. The reference structure was taken from the y-centroid estimator
(y = 1) with the temperature of 30 °C
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If the probabilities are concentrated in a cluster, it is pos-
sible to estimate an appropriate representative structure
in the cluster. The Boltzmann distribution, however, often
has multiple clusters of the concentration. Such concen-
trations may reflect of the essential alternative structures
associated to switching functions, which are observed
in several functional RNAs such as ribo-switches and
thermometers.

There is no convenient tool to capture such essential
alternative structures, though some tools can predict sub-
optimal structures [7]. In this paper, we demonstrated
that potential clusters of essential alternative secondary
structures can be found by 1D analysis over Hamming
distance. After detecting the candidates of clusters and
defining the range of Hamming distance for each, the
decomposed base-pairing probability matrix is computed
by RintW. By using the representative structure calcu-
lated by posterior decoding of the base-pairing probability

matrix, the 2D probability distributions (Figs. 7 and 3
bottom) are obtained by RintD [12]. If necessary, we can
re-define the structural cluster based on the 2D distri-
bution to re-calculate the decomposition of base-pairing
probabilities.

In case of the ROSE element thermometer, the detec-
tion of the essential structural cluster from Fig. 4 was
straightforward. The detection of the clusters, however,
is not always easy. In the case of the Lysine riboswitch
(Fig. 3), it was difficult to detect the peaks from sim-
ple 1D probability distribution, and log probability was
informative. Such low probability region may have been
ignored previously to overlook functionally relevant struc-
tures. It will be our future work to develop a method to
find functionally important structural clusters by detailed
analysis of the distribution, and also by better distance
measure of the secondary structures than the Hamming
distance.
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Fig. 7 Distribution over Hamming distance (2D) of ROSE element thermometer, under the temperatures, 30 °C (left), (b) 37 °C (middle) and 45 °C
(right). The first reference structure was obtained using the y-centroid estimator (y = 1) with the Hamming distance [0, 10] (Structure A, in Fig. 6).
The second reference structure is obtained similarly from the Hamming distance [35, 40] (Structure C, in Fig. 6)

Conclusion

In this paper, we presented a new method to detect
the essential alternative secondary structures from RNA
sequences by decomposing the base-pairing probabil-
ity matrix. In order to calculate the decomposition, we
have developed RintW, which efficiently calculates the
inside/outside partition functions over Hamming dis-
tance and the base-pairing probabilities. Those calcula-
tions utilized dynamic programming mapped to poly-
nomials and application of discrete Fourier transforma-
tion. By applying the method to the Lysine riboswitch
and ROSE element RNA thermometer, potential alterna-
tive structural clusters, which may reflect their change
in conformation, were observed. In the case of the
ROSE element RNA thermometer, it was shown that
changing temperature affected abundance of the clus-
ters in their probabilities. Those results have shown
that our method have a strong potential to ana-
lyze functional RNAs which have essential alternative
structures.

Acknowledgements

The authors greatly thank to the contributors of Vienna RNA package, whose
library was necessary in the developed software tool, RintW. The authors thank
to Risa Kawaguchi, who suggested possibility of dynamic programing of
base-pairing probabilities over Hamming distance. The authors also thank to
the members of Artificial Intelligence Research Center, AIST, and the members
of Hisanori Kiryu's laboratory for useful discussions.

Funding

This work was supported in part by JSPS KAKENHI Grant Numbers JP25240044
and JP16H06279 to KA., JP16K17778 to S.S., and JP16K16143 to J.I. The funding
for the publication of this article was provided by KAKENHI Grant Number
16H02484.

Availability of data and materials
Source code is available from http://www.ncRNA.org/RintW.

About this supplement

This article has been published as part of BMC Bioinformatics Volume 19
Supplement 1, 2018: Proceedings of the 28th International Conference on
Genome Informatics: bioinformatics. The full contents of the supplement are
available online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-19-supplement-1.

Authors’ contributions

TH implemented outside partition function and analyzed RNAs in
computational experiments. SS evaluated computational experiment of Lysine
Riboswich and wrote the manuscript of this part. Jl evaluated and prepared the
RNA sequences to be analyzed. RM implemented inside partition function and
helped TH for the implementation of outside partition function. KA organized
the research, derived the equations of outside partition functions, and wrote
the manuscript. All the authors have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

! Department of Computational Biology and Medical Sciences, Graduate
School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, 277-8561
Kashiwa, Japan. 2 Artificial Intelligence Research Center (AIRC), National
Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi,
Koto-ku, 136-0064 Tokyo, Japan. 3Ur\ique Co. Ltd,, 6-6-20 Daita, Setagaya-ku,
155-0033 Tokyo, Japan.

Published: 19 February 2018

References

1. DingY, Chan CY, Lawrence CE. RNA secondary structure prediction by
centroids in a Boltzmann weighted ensemble. RNA. 2005;11(8):1157-66.

2. FukunagaT, OzakiH, Terai G, AsaiK, Iwasaki W, Kiryu H. CapR: revealing
structural specificities of RNA-binding protein target recognition using
CLIP-seq data. Genome Biol. 2014;15(1):16.

3. McCaskill JS. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers. 1990,29(6-7):
1105-19.

4. Do CB, Woods DA, Batzoglou S. CONTRAfold: RNA secondary structure
prediction without physics-based models. Bioinformatics. 2006;22(14):
90-8.

5. Hamada M, Kiryu H, Sato K, Mituyama T, Asai K. Prediction of RNA secondary
structure using generalized centroid estimators. Bioinformatics. 2009;25(4):
465-73.

6. Hamada M, Kiryu H, Iwasaki W, Asai K. Generalized centroid estimators in
bioinformatics. PLoS ONE. 2011;6(2):16450.



http://www.ncRNA.org/RintW
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-1
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-1

Hagio et al. BMC Bioinformatics 2018, 19(Suppl 1):38

Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C,
Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms Mol Biol.
2011,6:26.

Adachi H, Ishiguro A, Hamada M, Sakota E, Asai K, Nakamura Y.
Antagonistic RNA aptamer specific to a heterodimeric form of human
interleukin-17A/F. Biochimie. 2011,93(7):1081-8.

Newberg LA, Lawrence CE. Exact calculation of distributions on integers,
with application to sequence alignment. J Comput Biol. 2009;16(1):1-18.
Freyhult E, Moulton V, Clote P. Boltzmann probability of RNA structural

neighbors and riboswitch detection. Bioinformatics. 2007;23(16):2054-62.

Freyhult E, Moulton V, Clote P. RNAbor: a web server for RNA structural
neighbors. Nucleic Acids Res. 2007;35(Web Server issue):305-9.

Mori R, Hamada M, Asai K. Efficient calculation of exact probability
distributions of integer features on RNA secondary structures. BMC
Genomics. 2014;15 Suppl 10:6.

Clote P, Lou F, Lorenz WA. Maximum expected accuracy structural
neighbors of an RNA secondary structure. BMC Bioinformatics. 2012;13
Suppl 5:6.

Zuker M. Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res. 2003;31(13):3406-15.

Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. An mRNA
structure in bacteria that controls gene expression by binding lysine.
Genes Dev. 2003;17(21):2688-97.

Page 95 of 104

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

® Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

¢ Convenient online submission

® Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	1D analysis over Hamming distance
	Reference secondary structure selection
	DP for secondary structure probability over Hamming distance
	Accelerated calculation by discrete fourier transformation
	Range detection

	Decomposition of base-pairing probability
	DP for base-paring probabilities over Hamming distance
	Outside partition function over Hamming distance
	Accelerated calculation by discrete fourier transformation

	Secondary structure predictions using decomposed base-pairing probabilities

	Results
	Application to Lysine riboswitch
	Application to ROSE element thermometer

	Discussion
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

