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Abstract

Background: The subcellular localization of a protein is an important aspect of its function. However, the
experimental annotation of locations is not even complete for well-studied model organisms. Text mining might aid
database curators to add experimental annotations from the scientific literature. Existing extraction methods have
difficulties to distinguish relationships between proteins and cellular locations co-mentioned in the same sentence.

Results: LocText was created as a new method to extract protein locations from abstracts and full texts. LocText
learned patterns from syntax parse trees and was trained and evaluated on a newly improved LocTextCorpus.
Combined with an automatic named-entity recognizer, LocText achieved high precision (P = 86% ± 4). After
completing development, we mined the latest research publications for three organisms: human (Homo sapiens),
budding yeast (Saccharomyces cerevisiae), and thale cress (Arabidopsis thaliana). Examining 60 novel, text-mined
annotations, we found that 65% (human), 85% (yeast), and 80% (cress) were correct. Of all validated annotations, 40%
were completely novel, i.e. did neither appear in the annotations nor the text descriptions of Swiss-Prot.

Conclusions: LocText provides a cost-effective, semi-automated workflow to assist database curators in identifying
novel protein localization annotations. The annotations suggested through text-mining would be verified by experts
to guarantee high-quality standards of manually-curated databases such as Swiss-Prot.
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Background
The subcellular location of a protein is an important
aspect of its function because the spatial environment
constrains the range of operations and processes. For
instance, all processing of DNA happens in the nucleus
or the mitochondria. In fact, subcellular localization is so
important that the Gene Ontology (GO) [1], the standard
vocabulary for protein functional annotation, described
it by one of its three hierarchies (Cellular Component).
Many proteins function in different locations. Typically,
one of those constitutes the native location, i.e. the one in
which the protein functions most importantly.
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Despite extensive annotation efforts, experimental GO
annotations in databases are not nearly complete [2].
Automatic methods may close the annotation gap, i.e. the
difference between experimental knowledge and database
annotations.
Numerous methods predict location from homology-

based inference or sequence-based patterns (sorting sig-
nals). These include: WoLF PSORT [3], SignalP [4],
CELLO [5], YLoc [6], PSORTb [7], and LocTree3 [8].
Text mining-based methods can also “predict” (extract)
localization, with the added benefit of linking annota-
tions to the original sources. Curators can compare those
resources to validate the suggested annotations and add
annotations to high-quality resources such as Swiss-Prot
[9] or those for model organisms, e.g. FlyBase [10]. An
alternative to finding annotations in the free literature is
mining controlled texts, such as descriptions and anno-
tation tags in databases [11–13]. Despite numerous past

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2021-9&domain=pdf
http://orcid.org/0000-0001-9588-984X
mailto: loctext@rostlab.org
mailto: lars.juhl.jensen@cpr.ku.dk
mailto: rost@rostlab.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Cejuela et al. BMC Bioinformatics  (2018) 19:15 Page 2 of 11

efforts, however, very few text mining systems succeeded
in assisting GO curation [14]. A notable exception is Text-
presso [15], which was integrated into the GO cellular
component annotation pipeline of WormBase [16] and
sped up annotation tenfold over manual curation [17].
Similar computer-assisted curation pipelines have since
been implemented for other model organisms [18], but
no generic solution for the usage of text mining tools to
experts is extensively used yet [19, 20].
Literature-based text mining methods begin with

named-entity recognition (NER), namely the recognition
of names of entities, such as proteins or cellular com-
partments, mentioned within the text. These entities then
have to be normalized, i.e. disambiguated by mapping the
names to exact identifiers in controlled vocabularies (e.g.
proteins mapped to UniProtKB [21] and cell compart-
ments to GO). The next task is the relation extraction
(RE) in which relationships between the entities have
to be deduced from the semantic context. As an exam-
ple, in the sentence “CAT2 is localized to the tonoplast
in transformed Arabidopsis protoplasts”, PMID (PubMed
Identifier) 15377779, the relationship of “CAT2” (UniPro-
tKB: P52569) localized to “tonoplast” (GO:0009705) must
be established. Most existing GO annotation methods
either coarsely associate all pairs of entities that are
co-mentioned in a same sentence or otherwise aggre-
gate the statistics of one or more levels of co-mention
(such as the same sentence, paragraph, section, or docu-
ment). Examples of this include the CoPub Mapper [22],
EBIMed [23], and the COMPARTMENTS database [24].
Textpresso used manually defined regular expressions.
Fewmethods machine-learned the semantics of text, even
if only learning bags of words (i.e. disregarding gram-
mar) [25, 26]. Newer methods modeled the syntax of text
too (i.e. considering grammar) though were not validated
yet in practice for database curation [27–30]. The most
recent method of this type [31] probed the discovery of
novel protein localizations in unseen publications. How-
ever, the method performed poorly in extracting unique
relations, i.e. to find out that the same localization relation
is described in a publication multiple times but using dif-
ferent synonymous (e.g. due to abbreviations or different
spellings). Related to this, the method did not normalize
tagged entities; thus, the relations could not be mapped to
databases.
To the best of our knowledge, the new method,

LocText, is the first method to implement a fully-
automated pipeline with NER, RE, normalized entities,
and linked original sources (necessary for database cura-
tion) that machine-learnt the semantics and syntax of
scientific text. The system was assessed to achieve high
accuracy in a controlled corpus (intrinsic evaluation), and
to retrieve novel annotations from the literature in a real
task (extrinsic evaluation).

Results
Most relations found in same or consecutive sentences
The controlled LocTextCorpus had annotated 66% of all
protein-location unique relations (i.e. collapsing repeti-
tions, “Methods” section) in the same sentence (D0, where
Dn means that the relation covers entities n sentences
apart) and 15% in consecutive sentences (D1; Fig. 1).
When the GO hierarchy was also considered to col-
lapse redundant relations, D0 (same sentence) increased
to 74% (e.g. “lateral plasma membrane”, GO:0016328,
overshadowed the less detailed “plasma membrane”,
GO:0005886). Consequently, a method that extracted
only same-sentence relationships could maximally reach
a recall of 74%; at 100% precision, the maximal F-score
of such a method would be 85%. Methods that extracted
both D0 (same-sentence) and D1 (consecutive sentences)
would have a maximal recall of 89% (max. F = 94%). Con-
sideringmore distant sentences would rapidly increase the
pairs of entities to classify and, with this, likely reduce
a method’s precision and substantially increase process-
ing time. LocTextCorpus had annotated relationships up to
sentence distances of nine (D9). However, after collapsing
repeated relations, the maximum distance was six (D6).

Intrinsic evaluation: relation extraction (RE) and
named-entity extraction (NER) succeeded
LocText (RE) and STRING Tagger (NER) (Methods) inde-
pendently performed well on the LocTextCorpus: LocText
(RE only) reached P = 93% at R = 68% (F = 79% ± 3;
Table 1). A high precision was achieved while closely
reaching the maximum possible recall for considering
only same-sentences relations (D0; max. R = 74%). The
Baseline (usingmanually-annotated entities;Methods) also
performed well (P = 75% at R = 74%; F = 74% ± 3). A
comparative Precision-Recall (PR) curve analysis is shown
in Additional file 1: Figure S3. The STRING Tagger bench-
marked on overlapping normalized entities obtained an
aggregated F = 81% ± 1, for the entities Protein (F =
79% ± 2), Location (F = 80% ± 3), and Organism (F =
94% ± 1; Table 1). The precision for the entities Location
(P = 90%) and Organism (P = 96%) was much higher
than for Protein (P = 80%).
The full LocText relation extraction pipeline (NER + RE)

achieved high precision (P = 86%) at the cost of low recall
(R = 43%; F = 57% ± 4, Fig. 2). The Baseline (using
tagged entities) remained low in precision (P = 51%) and
recall (R = 50%; F = 51% ± 3). Recall might be so low
because the errors in RE and NER cumulate: mistakes in
identifying the protein, the location, or their relation lead
to wrong annotations.

Extrinsic evaluation: high accuracy enables database curation
Encouraged by the high precision of LocText, it was
applied to extract protein localization GO annotations
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Fig. 1Most related protein and localizations closed to each other. Repetitions of relationships were collapsed at the document level after
normalizing the entities: proteins to UniProtKB and localizations to GO. In the LocTextCorpus, the majority of unique relations were annotated
between entities occurring in the same sentence (distance 0 = D0; 66% of all relations) or in adjacent sentences (dist. 1 = D1; 15%). Combined,
D0+D1 accounted for 81% of the relations. Removing repetitions when considering the GO hierarchy (children identifiers are more exact than their
parents), D0+D1 accounted for 89% of all unique relationships

from recent PubMed abstracts (NewDiscoveries_human,
NewDiscoveries_yeast, and NewDiscoveries_cress; “Meth-
ods” section). LocText extracted ∼24k unique GO
annotations, ∼11k of which (46%) were not found in
Swiss-Prot. Some annotations were found in several
abstracts. The reliability of the LocText annotations
increased when found more often. For instance, 10% of
the human annotations were found in three or more
abstracts (corresponding numbers for yeast: 14%, and
thale cress: 6%).
For each organism, the first 20 annotations observed in

exactly three abstracts were reviewed. Of the 20 GO anno-
tations for human, 13 (65%) were novel (Table 2; exam-
ples of mined novel GO annotations in Additional file 1:

Table 1 LocText (RE only) and STRING Tagger (NER); intrinsic
evaluation

Method and evaluation P R F ±StdErr

STRING Tagger Total 84% 78% 81% ± 1

STRING Tagger on Protein 80% 78% 79% ± 2

STRING Tagger on Location 90% 71% 80% ± 3

STRING Tagger on Organism 96% 92% 94% ± 1

LocText, with manual entities 93% 68% 79% ± 3

Baseline, with manual entities 75% 74% 74% ± 3

Performances of the NER and RE components independently evaluated on the
LocTextCorpus; P=precision, R=recall, F ±StdErr=F-measure with standard error

Table S2); three of these weremore detailed versions of the
Swiss-Prot annotations (i.e. child terms in the GO hierar-
chy). 10 of the 20 had no related annotation in Swiss-Prot
(50%). For yeast and cress the novelty fraction was even
higher: 85% for yeast (60% without related annotation)
and 80% for thale cress (55% without related annotation).
The total number of correct novel GO annotations was 46

Fig. 2 LocText full pipeline (NER + RE); intrinsic evaluation. Using the
STRING Tagger-extracted (“predicted”) entities, both LocText and
Baseline had low and comparable F-measure (F=57%± 4 and
F=51%± 3, resp.), however LocText was optimized for precision
(P=86%)
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Table 2 LocText found novel GO annotations in latest
publications; extrinsic evaluation

Org. # C C&NR C&NT C&NR,NT

Human 20 13 (65%) 10 (50%) 9 (45%) 7 (35%)

Yest 20 17 (85%) 12 (60%) 6 (30%) 4 (20%)

Cress 20 16 (80%) 11 (55%) 9 (45%) 7 (35%)

Total 60 46 (77%) 33 (55%) 24 (40%) 18 (30%)

LocTextmined protein location relations not tagged in Swiss-Prot in latest
publications: 2012-2017 for (columnOrg.=organism) human and 1990-2017 for yeast
and cress. (#) 60 novel text-mined annotations (20 for each organism) were manually
verified: (C=correct) 77% were correct; 55% were correct and had no relation (NR) in
Swiss-Prot; 40% were correct and were not in text (NT ) descriptions of Swiss-Prot;
30% were correct and neither had a relation nor appeared in text descriptions

of 60 (77%) of which 33 (55%) had no related Swiss-Prot
annotation.
Upon closer inspection of Swiss-Prot, we found that

some of the allegedly novel predictions could have been
found in Swiss-Prot text descriptions or other annotations
(e.g. biological processes). Still, 9 of the 20 (45%) human
annotations were not found (considering also texts) in
Swiss-Prot (35% without related annotation in Swiss-Prot
considering the GO hierarchy). At that point, we could
have gone back and dug deeper, but we could not auto-
mate the identification of “find in Swiss-Prot” because the
relations were not found through the standard Swiss-Prot
tags. The corresponding numbers for yeast and cress were
30% (20% without related annotation) and 45% (35% with-
out related annotation), respectively. The total number of
verified completely novel GO annotations not in Swiss-
Prot remained as high as 24 out of 60 (40%), of these 18
(30% of 60) had no relation in Swiss-Prot.
23% of the verified predictions were wrong. Half of

these errors originated from incorrect proteins, typically
due to short and ambiguous abbreviations in the name.
For example, “NLS” was wrongly normalized to pro-
tein O43175, yet in all texts they referred to “nuclear
localization signals”. “FIP3” was wrongly recognized as
“NF-kappa-B essential modulator” (Q9Y6K9) while in
the three abstracts in which it was found, it referred
to “Rab11 family-interacting protein 3” (O75154). The
same abbreviation is used for both proteins making this a
perfect example how text mining can be beaten by inno-
vative naming. Another 14% of the errors were due to a
wrong named-entity localization prediction. For example,
in PMID 22101002, the P41180 was correctly identified
with the abbreviation CaR, and yet a same abbreviation in
the text was also wrongly predicted to be the localization
“contractile actomyosin ring”.
The remaining 36% of the errors were due to a wrong

relationship extraction. For example, the relation that the
protein Cx43 (connexin 43, or “gap junction alpha-1 pro-
tein” P17302) is/acts in microtubules could not be fully

ascertained from the sentence: “Although it is known that
Cx43 hemichannels are transported along microtubules
to the plasma membrane, the role of actin in Cx43 for-
ward trafficking is unknown” (PMID 22328533). Another
wrongly predicted relationship was OsACBP2 (Q9STP8)
to cytosol where the seemingly text proof explicitly
negated the relationship: “Interestingly, three small rice
ACBP (OsACBP1, OsACBP2 and OsACBP3) are present
in the cytosol in comparison to one (AtACBP6) in Ara-
bidopsis” (PMID 26662549). Other wrongly extracted
relationships did not show any comprehensible language
patterns and were likely predicted for just finding the
protein and location co-mentioned.

Discussion
Achieving high precision might be the most important
feature for an automatic method assisting in database
curation. Highly-accurate databases such as Swiss-Prot
or those of model organisms need to expert-verify all
annotations. Focusing on few reliable predictions, expert
curators minimize the resources (time) needed to con-
firm predictions. The manual verification of the 60 GO
annotations extracted with LocText from recent PubMed
abstracts took three person-hours (20 annotations per
hour; 60 abstracts per hour). Seventy seven percent of
the LocText predicted annotations were correct, i.e. an
unexperienced expert (we) could easily add ∼120 new
annotations on an average 9-5 day to the UniProtKB
repository.
The LocText method was very fast: it took 45 min to

process ∼ 37k PubMed abstracts on a single laptop (Mac-
Book Pro 13-inch, 2013, 2 cores). These ∼ 37k abstracts
spanned a wide range of the most recent (from 2012 to
2017) research on human proteins localizations. Twenty
one percent of the running time was spent to extract
the named entities (STRING Tagger), 26% on text parsing
(spaCy), and 52% on pure relationship extraction (Loc-
Text). If parallelized, LocText could process the entire
PubMed in near real time.
We discarded relations spanning over more than two

sentences (distance≥1), as the marginal improvements in
recall and F-measure did not justify the significant drops
in precision. Nevertheless, extracting relations between
two neighbor sentences (D1) might increase recall in the
future (from 66 to 81% unique relations disregarding the
GO hierarchy and 74 to 89% considering the hierarchy).
One important question often neglected in the text

mining literature is how well the performance estimates
live up to the reality of users, for instance of database
curators. Much controversy has followed the recent obser-
vations that many if not most published results even
in highly-regarded journals (Science and Nature) are
not reproducible or false [32–34]. As a curiosity, a GO
annotation predicted by LocText (deemed wrong upon
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manual inspection) was found in three journals that
were retracted (PMIDs 22504585 and 22504585; the third
23357054 duplicated 22504585). The articles, written by
the same authors, were rejected after publication as
“expert reviewers agreed that the interpretation of the
results was not correct” (PMID 22986443). This work
has added particular safe-guards against over-estimating
performance (additional data set not used for develop-
ment), and for gauging performance from the perspective
of the user (extrinsic vs. intrinsic evaluation). With all
these efforts, it seems clear that novel GO annotations
suggested by LocText have the potential to significantly
reduce annotation time (as compared to curators manu-
ally searching for new publications and reading those) yet
still require further expert verification.

Conclusions
Here, we presented LocText, a new text mining method
optimized to assist database curators for the annotation of
protein subcellular localizations. LocText extracts protein-
in-location relationships from texts (e.g. PubMed) using
syntax information encoded in parse trees. Common lan-
guage patterns to describe a localization relationship (e.g.
“co-localized in”) were learned unsupervised and thus
the methodology could extrapolate to other annotation
domains.
LocText was benchmarked on an improved version of

LocTextCorpus [35] and compared against a Baseline that
relates all proteins and locations co-mentioned in a same
sentence. Benchmarking only the relation extraction com-
ponent, i.e. with manually annotated entities, LocText and
Baseline appeared to perform comparably. However, Loc-
Text achieved much higher precision (P(LocText) = 93%
vs. P(Baseline) = 75%). The full pipeline combining the
STRING Tagger (NER) with LocText (RE) reached a low
F-measure (F = 57%± 4) and a low recall (R = 43%).
However, it was optimized for the high precision
(P(LocText) = 86% vs. P(Baseline) = 51%).
LocText found novel GO annotations in the latest

literature for three organisms: human, yeast, and thale
cress. 77% of the examined predictions were correct
localizations of proteins and were not annotated in
Swiss-Prot. More novel annotations could successfully
be extracted for yeast and cress (∼80%) than for human
(∼65%). Novel annotations that were not traceable from
Swiss-Prot (either from annotation tags or from text
descriptions) were analyzed separately. Using this defini-
tion for novel annotations, 40% of all findings were novel.
Unexperienced curators (we) validated 20 predicted
GO annotations in 1 person-hour. Assisted by the new
LocText method, curators could enrich UniProtKB with
∼120 novel annotations on a single job day. Advantaging
existing automatic methods (Baseline with accuracy
of 40%-50%), LocText could cut curation time in half.

Compared to solely manual curation (still common in
biological databases), the new method can reduce efforts
and resources greatly.
All code, data, and results were open sourced from

the start and are available at http://tagtog.net/-corpora/
LocText. The new written code added relationship extrac-
tion functionality to the nalaf framework of natural lan-
guage processing [36].

Methods
Named-entity recognition (NER)
The complete LocText pipeline consisted of a NER com-
ponent stacked with a pure RE component (Fig. 3). The
RE component was the focus of this work, and its imple-
mentation is explained in the following subsections. For
NER we reused the existing dictionary-based STRING
Tagger, which is described in detail in earlier publica-
tions [24, 37]. We employed STRING Tagger to extract the
entities from the text: proteins (more generally, gene or
gene products), subcellular localizations, and organisms.
Next, we needed to map these to databases, namely to
UniProtKB accession numbers, to GO Cellular Compo-
nent identifiers, and to NCBI Taxonomy identifiers (note:

Fig. 3 LocText pipeline. The input are text documents (e.g. PubMed).
First, the STRING Tagger recognizes named entities (NER): proteins
(green in the example; linked to UniProtKB), cellular localizations (pink;
linked to GO), and organisms (yellow; linked to NCBI Taxonomy). Then,
the relation extractor (RE) of LocText resolves which proteins and
localizations are related (as in “localized in”). The output is a list of
text-mined relationships (GO annotations) linked to the original text
sources (e.g. PMIDs)

http://tagtog.net/-corpora/LocText
http://tagtog.net/-corpora/LocText
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this map is referred to as normalization in the text min-
ing community). The method extracts text mentions and
the normalized identifiers of entities; it maps proteins
to STRING identifiers. We mapped these to UniProtKB
accession numbers and ran the Python-wrapped tagger
through an in-house Docker-based web server.
The STRING Tagger allows the selective usage of

organism-dependent dictionaries for protein names.
We ran the tagger against the LocTextCorpus (see, “Text
corpora” section) having selected the dictionaries of
human (NCBI Taxonomy: 9606), yeast (NCBI 4932),
and thale cress (NCBI 3702). On the sets of doc-
uments NewDiscoveries_human, NewDiscoveries_yeast,
andNewDiscoveries_cress (Text corpora), we selected only
the corresponding organism. We did not consider this
selective choice of articles and dictionaries to bias results
as this is standard for the curation of model organisms
[10, 18, 36]. As another option of the STRING Tagger,
we also annotated the proteins of other organisms if the
protein and organism names were written close to each
other in text. For reference, we ran the tagger against
LocTextCorpus with exact parameters (options): ids=-22,-
3,9606,4932,3702 autodetect=true. We did not modify the
tagger in any way except for removing “Golgi” from the
list of stopwords (blacklist of names not to annotate) as it
likely referred to “Golgi apparatus” in publications known
to mention cellular components. We filtered the results by
GO identifier to only allow those that were (part of ) cell
organelles, membranes, or extracellular region. We also
explicitly filtered out all tagged cellular components that
constituted a “macromolecular complex” (GO:0032991)
as in most cases they were enzyme protein complexes,
which we did not study (they overlap with the molecu-
lar function and biological process hierarchies of the GO
ontology). We evaluated the STRING Tagger in isolation
for NER (“Results” section).

Relation extraction (RE)
We reduced the problem of relationship extraction to a
binary classification: for pairs of entities Prot/Loc (pro-
tein/location), decide if they are related (true or false).
Several strategies for the generation of candidate pairs are
possible, e.g. the enumeration of all combinations from
all {Prot/Loc} mentioned in a document. During training,
“repeated relation pairs” are used, i.e. the exact text off-
sets of entities are considered, as opposed to the entity
normalizations only (Evaluation). The pairs marked as
relations in an annotated corpus (LocTextCorpus) are pos-
itive instances and other pairs are negative instances. For
our new method, we generated only pairs of entities co-
occurring in the same sentence. This strategy generated
663 instances (351 positive, 312 negative). Instances were
represented as a sentence-based sequence of words along
with syntax information (see, Feature selection). We also

designed ways to generate and learn from pairs of entities
mentioned in consecutive sentences (e.g. the proteinmen-
tioned in one sentence and the location in the next). How-
ever, we discarded this in the end (“Discussion” section).
We modeled the instances with support vector machines
(SVMs; [38]). We used the scikit-learn implementation
with a linear kernel [39, 40]. Neither the tree kernel [41]
implemented in SVM-light [42, 43], nor the radial basis
function kernel performed better. Other models such
as random forests or naive Bayes methods (with either
Gaussian, Multinomial, or Bernoulli distributions) also
did not perform better in our hands; logistic regression
also performed worse, however, within standard error
of the best SVM model. For syntactic parsing, we used
the python library spaCy (https://spacy.io). For word tok-
enization, we used our own implementation of the tmVar’s
tokenizer [36, 44]. This splits contiguous letters and num-
bers (e.g. “P53” is tokenized as “P” and “53”).

Feature selection
An instance (positive or negative) is defined as a pro-
tein location pair (Prot/Loc) that carries contextual infor-
mation (the exact text offsets of entities are used). We
contemplated features from five different sources: corpus-
based, document-based, sentence-based, syntax-based,
and domain-specific. The first four were domain agnostic.
Tens of thousands of features would be generated (com-
pared to 663, the number of instances). Many features,
however, were highly correlated. Thus, we applied feature
selection. First, we did leave-one-out feature selection,
both through manual and automatic inspection (on the
validation set, i.e. when cross-training). In the end, by far
the most effective feature selection strategy was the Lasso
L1 regularization [45]. We ran the scikit-learn LinearSVC
implementation with penalty= L1 and C= 2 (SVM trade-
off hyperparameter). The sparsity property of the L1 norm
effectively reduced the number of features to ∼ 300 (ratio
of 2 = num. instances / num. features). We applied inde-
pendent feature selection whether we used the manually
annotated entities or the entities identified by STRING
Tagger. Both yielded almost equal features. Ultimately, we
only used the following five feature types.
Entity counts in the sentence (domain agnostic, 2 fea-

tures): individual entity counts (for protein, location, and
organisms too) and the total sum. Counts were scaled to
floats [0, 1] dividing them by the largest number found in
the training data (independently for each feature). If the
test data had a larger number than previously found while
training, its scaled float would be bigger than 1 (e.g. if the
largest number in training was 10, a count of 11 in testing
would be scaled to 1.1).
Is protein a marker (domain specific, 1 feature): for

example, green fluorescent protein (GFP), or red flu-
orescent protein (RFP). This might be a problem of

https://spacy.io
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the LocTextCorpus guidelines. Nonetheless, disregard-
ing protein markers seems a reasonable step to curate
databases.
Is the relation found in Swiss-Prot (domain specific,

1 feature): we leveraged the existing annotations from
Swiss-Prot.
N-grams between entities in linear dependency (domain

agonistic, 57% of ∼ 300 features): the n-grams (n = 1, 2, or
3) of tokens in the linear sentence between the pair of enti-
ties Prot and Loc. The tokens were mapped in two ways:
1) word lemmas in lower case masking numbers as the
special NUM symbol and masking tokens of mentioned
entities as their class identifier (i.e. PROTEIN, LOCA-
TION, or ORGANISM); 2) words part of speech (POS).
In a 2- or 3-gram, the entity on the left was masked as
SOURCE and the end entity on the right as TARGET.
N-grams of syntactic dependency tree (domain agnostic,

42% of ∼ 300 features): the shortest path in the depen-
dency parse tree connecting Prot and Loc was computed
(Additional file 1: Figure S1). The connecting tokens were
mapped in three ways: 1) word lemmas with same mask-
ing as before; 2) part of speech, same masking; 3) syntac-
tic dependencies edges (e.g. preposition or direct object).
Again, we masked the pair of entities in the path as
SOURCE and TARGET. The direction of the edges in the
dependency tree (going up to the sentence root or down
from it) was not outputted after feature selection.
The representation of the sentences as dependency

graphs was inspired by Björne’s method for event extrac-
tion in BioNLP’09 [46]. The n-gram features, both linear-
and dependency-tree-based, that were ultimately chosen
after unsupervised feature selection yielded comprehen-
sible language patterns (Additional file 1: Table S1). In
the Supplementary Online Material (SOM), we listed all
the features that were finally selected (Additional file 1:
Figure S2).

Evaluation
High performance of a method in a controlled setting
(intrinsic evaluation) does not directly translate into high
performance in a real task (extrinsic evaluation) [47].
To address this, we evaluated the new LocText method
in both scenarios, namely, in a well-controlled corpus
using standard performance measures and in the real set-
ting of extracting novel protein localizations from the
literature. Either way, and always with database cura-
tion in mind, we asked: given a scientific text (e.g.
PubMed article), what protein location relationships does
it attest to? For instance, a publication may reveal “Pro-
tein S” (UniProtKB: P07225) to function in the “plasma
membrane” (GO:0005886). To extract this relation, it is
indifferent under which names the protein and loca-
tion are mentioned. For instance, P07225 can also be
named “Vitamin K-dependent protein S” or “PROS1” or

abbreviated “PS” and GO:0005886 can also be called “cell
membrane” or "cytoplasmic membrane” or abbreviated
“PM”. Further, it does notmatter if the relation is expressed
with different but semantically equivalent phrases (e.g.
“PROS1 was localized in PM” or “PM is the final des-
tination of PROS1”). Regardless of synonymous names
and different wordings, repeated attestations of the rela-
tion within the same document are all the same. In other
words, we evaluated relationship extraction at the docu-
ment level and for normalized entities.
In intrinsic evaluation, the annotated relations of a

corpus were grouped by document and represented as
a unique set of normalized entity pairs of the form
(Prot=protein, Loc=location), e.g. (P07225, GO:0005886).
A tested known relationship (Prottest, Loctest) was con-
sidered as correctly extracted (true positive = tp), if at
least one text-mined relation (Protpred, Locpred) matched
it, with both Prot and Loc correctly normalized: 1) Prottest
and Protpred must be equal or have a percentage sequence
identity 90% (to account for cases where likely a same
protein entries can have multiple identifiers in UniPro-
tKB/TrEMBL [48]); and 2) Loctest and Locpred must be
equal or Locpred must be a leave or child of Loctest (to
account for the tree-based GO hierarchy). For example,
a tested (P07225, GO:0005886) relation and a predicted
(P07225, GO:0016328) relation correctly match: the pro-
teins are the same and GO:0016328 (“lateral plasma
membrane”) is a part of and thus more detailed than
GO:0005886 (“plasma membrane”). Any other predicted
relationship was wrong (false positive = fp), and any
missed known relationship was also punished (false neg-
ative = fn). We then computed the standard performance
measures for precision

(
P = tp

tp+fp

)
, recall

(
R = tp

tp+fn

)
,

and F-measure
(
F = 2 ∗ P∗R

P+R

)
(all three multiplied by 100,

in percentages).
We evaluated relationship extraction in isolation (using

manually-annotated entities, i.e. the proteins and local-
izations) and as a whole (with predicted entities). Given
the importance of the NER module (wrongly predicted
entities lead to wrongly predicted relationships), we also
evaluated the NER in isolation. We considered a pre-
dicted named entity as successfully extracted (tp) if and
only if its text offsets (character positions in a text-string)
overlapped those of a known entity and its normalized
identifier matched the same test entity’s normalization
(also accounting for similar proteins and for the GO hier-
archy). Any other predicted entity was counted as fp and
any missed entity as fn. In analogy, we computed P, R, and
F for named-entity recognition.
We evaluated methods in 5-fold cross-validation with

three separate sets as follows. First, we split a fold
into the three sets by randomizing the publications;
this lessens redundancy as different publications mention
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different localizations. Sixty percent of documents served
to train (train set), 20% to cross-train (validation set),
i.e. to optimize parameters such as in feature or model
selection. The remaining 20% were used for testing
(test set). The performance on the test set was com-
piled only after all development had been completed
and was thus not used for any optimization. Finally,
we repeated the folds four more times, such that each
article had been used for testing exactly once. We com-
puted the standard error (StdErr) by randomly select-
ing 15% of the test data without replacement in 1000
(n) bootstrap samples. With 〈x〉 as the overall per-
formance for the entire test set and xi for subset i,
we computed:

σ =
√√√√ 1

n − 1

n∑
i=1

(xi − 〈x〉)2 StdErr = σ√
n

(1)

In extrinsic evaluation, the complete LocText pipeline
(i.e. NER + RE) extracted from large sets of unannotated
PubMed abstracts novel protein localizations (namely,
GO annotations not tagged in Swiss-Prot). A unique
protein-location relation could be found in one or more
documents. The assumption is: the more document hits,
the more reliable the extracted relation. For a num-
ber of extracted unique relations, one person manually
reviewed the originating and linked documents. For each
“predicted” relation, we stopped our analysis when we
found proof of the annotation. We deemed the predic-
tion to be wrong if we found no textual proof in the
abstracts.

Text corpora
To train and formally benchmark the new method (intrin-
sic evaluation), we had only access to a custom-built cor-
pus, for simplicity referred to as LocTextCorpus [35]. We
could not reuse other annotated corpora as they did not
provide annotations at the text level or had incompatible
annotations. Specifically, the BioNLP’09 corpus [28] and
the BC4GO corpus [49] appeared very promising but con-
tained particular features that made it impossible for us
to use those valuable resources. BioNLP’09, for instance,
annotated events (relationships) not requiring the textual
mention of the protein or localization entities, some loca-
tion mentions contained extraneous words that were part
of the phrase but not strictly part of the location names,
and some locations were not only subcellular localizations
but specific cells or body tissues. BC4GO contained nei-
ther exact text-level annotations of the entities nor the
relationships.
We had previously annotated the LocTextCorpus with

the tagtog tool [50]. For this work, we added 8 miss-
ing protein normalizations. LocTextCorpus collected 100
abstracts (50 abstracts for human proteins, 25 for

yeast, and 25 for thale cress) with 1393 annotated
proteins, 558 localizations, and 277 organisms. The
organism annotation had been crucial to correctly map
the protein sequence, e.g. to distinguish the human
Protein S (P07225/PROS_HUMAN) from its mouse
ortholog (Q08761/PROS_MOUSE). The corpus anno-
tated 1345 relationships (550 protein-localization + 795
protein-organism). When removing repeated relations
through entity normalization (Evaluation), the number of
unique protein-localization relations was 303. Relation-
ships of entities mentioned in any sentence apart had
been annotated (Results). That is, the related protein and
location entities could have been mentioned in the same
sentence (sentence distance=0, D0), or contiguous sen-
tences (sentence distance=1, D1), or farther away (D≥ 2).
The agreement (F-measure) between two annotators (an
estimation of the quality of annotations) reached as high
as: F = 96 for protein annotation, F = 88 for localization
annotation, and F = 80 for protein-localization relation-
ship annotation. LocTextCorpus was used to train, select
features, and test (in cross-validation) the new LocText
method.
Furthermore, and to assess how the new method Loc-

Text could assist in database curation in practice, three
sets of PubMed abstracts were added: NewDiscover-
ies_human, NewDiscoveries_yeast, NewDiscoveries_cress.
For each organism, keyword searches on PubMed
revealed recent publications that likely evidenced (men-
tioned) the localization of proteins (e.g. the search for
human http://bit.ly/2nLiRCK). The search for all human-
related journals published between 2012 to 2017/03
yielded ∼ 37k documents (exactly 37454). For publica-
tion years from 1990 to 2017/03, the search obtained
∼ 18k (17544) documents for yeast and ∼ 8k (7648) for
cress. These documents were not fully tagged. They
were only used for final extrinsic evaluation, and only
after the method had been finalized. In other words,
those abstracts never entered any aspect of the develop-
ment/training phase.

Existing methods for comparison
Two previous methods that used machine learning tech-
niques to model syntax also extracted protein localization
relationships [27, 31]. However, neither methods were
made available. We found no other machine learning-
based methods available for comparison. The Textpresso
system uses regular expressions and is used in database
curation [15]. The method, however, is packaged as a
search index (suited to their specialized corpora, e.g. for
WormBase) and not as an extractionmethod.Wewere not
able to run it for new corpora.
Other methods exist that follow a simple heuristic:

if two entities are co-mentioned then they are related
[22–24]. The heuristic of same-sentence co-occurrence
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(as opposed to e.g. document co-occurrence) is simple
and yields top results. Therefore, this was considered as
the Baseline to compare the new method against.
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