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Abstract

Background: Feature selection is commonly employed for identifying collectively-predictive biomarkers and
biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and
comprehend while providing insight to the human expert. In this work we extend established constrained-based,
feature-selection methods to high-dimensional “omics” temporal data, where the number of measurements is orders
of magnitude larger than the sample size. The extension required the development of conditional independence
tests for temporal and/or static variables conditioned on a set of temporal variables.

Results: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands
of features, and outperform or be on par with existing methods depending on the analysis task specifics.

Conclusions: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.

Keywords: Time course data, Longitudinal data, Regression, Variable selection, Multiple solutions

Background
Temporal data measure a set of time-varying quantities
over time on a population. They are often employed to
understand the dynamics of evolution of a system, the
effects of a perturbation (interventional studies), or the
differences in dynamics between two groups (such as
in case-control studies). Such data arise in many fields,
namely bioinformatics, medicine, agriculture and econo-
metrics, just to name a few.
Two broad categories of temporal data can be defined,

depending on the sampling procedure: longitudinal data
arise when the same samples are repeatedly measured at
different times points, while time–course (a.k.a repeated
cross-sectional) data are produced when distinct samples
(from the same population) are measured at each time
point (e.g., in case of destructive testing). In contrast,
time-series data that often arise in econometrics, measure
samples at regular time intervals and are often of a much
larger temporal extent than temporal data in biology.
The correlation structure of temporal data, which

includes auto-correlation of the same quantity over time
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or over the same sample requires special analysis tech-
niques. For example, longitudinal data are often modeled
with mixed models, which allow to properly account for
within-subject correlations.
Feature selection (a.k.a. variable selection) in predictive

modeling can be defined as the task of selecting one or
more minimal-size and (collectively) optimally predictive
feature subsets for a target outcome. Reducing the number
of features results in smaller, easier-to-verify, understand,
visualize, and apply predictive models; most importantly
perhaps, it provides important insight to the data gener-
ating mechanism. This is no accident, as feature selection
has been theoretically connected to causal discovery and
the causal data generating model [1]. A typical exam-
ple of a feature selection task is the identification of the
genes whose expression allows the early diagnosis of a
given disease. In the context of temporal data, each fea-
ture has a temporal extent and a time trajectory that can
be employed for prediction.
To the best of our knowledge, most variable selection

methods proposed so far for temporal data are devised for
studies where the number of samples is larger than the
number of predictors, i.e., p < n. This limits the appli-
cability of these algorithms to “omics” types of data such
as transcriptomics, epigenomics and genomics, where p is
usually order of magnitudes larger than n.
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Constraint-based, Markov-Blanket variable-selection
methods form a class of algorithms that are inspired by
the theory of (Causal) Bayesian Networks [2] and include
HITON, MMMB, MMPC, SES and others [3–5]. The
Markov Blanket of the target outcome T is defined as
a minimal-size set that renders all other variables con-
ditionally independent of T. Under certain broad condi-
tions it has been shown to be the solution to the feature
selection problem [1]. If the data distribution can be rep-
resented with a faithful Bayesian Network (BN) [6] then
the Markov Blanket of T is unique and has an interest-
ing graphical interpretation: it comprises of the neighbors
of T (i.e., the parents and children of T) and the spouses
(parents or common children) ofT in any such (unknown)
faithful BN graph.
The main contribution of this paper is adapting

constraint-based, variable selection methods for temporal
data. Constraint-based methods process the data exclu-
sively through conditional independence tests, repetitively
applying these tests for identifying variables that can-
not be made independent of T conditioned on any other
subset, and are thus needed for optimal prediction. As
discussed in [7], employing a suitable conditional inde-
pendence test is sufficient for extending constraint-based
methods to new types of data. While such tests exist for
various types of data, the idiosyncrasies of temporal data
require the development of novel, specific conditional
independence tests. We denote with Ind(X;T ;Z) the test
assessing the null hypothesis that X is independent of T
givenZ. For temporal data some of these variables (but not
necessarily all of them) may have temporal extent and be
better denoted asXt instead ofX, with the index indicating
the time-point. The independence test could be imple-
mented as a log likelihood ratio test [8]. The latter fits two
nested models, one modeling T on Z alone and the other
on X ∪ Z. If the two models are equivalent, then the null
hypothesis is not rejected. The modeling strategy used for
creating the two nested models depends on the temporal
characteristics of the variables involved in the test. How-
ever, for linear mixed models, likelihood ratio tests do not
have the proper behaviour when the sample size is rather
small and hence the use of F tests is suggested [9]. We
depict four different scenarios with longitudinal and time
course data, and for each scenario we define a suitable test
of conditional independence.

• The target variable is time-varying. In this
scenario the task consists of identifying the predictors
that are associated with the outcome of interest in the
course of time. An example is modeling how a gene
expression progresses over time on the basis of other
gene expressions. Missing values can occur, or not all
subjects may have measurements for all time points
(unbalanced design). This case can be further

subdivided in two sub-scenarios: the
Temporal-longitudinal scenario, the same samples
are being studied at all time points (longitudinal
data), and the Temporal-distinct scenario, where
different samples are being studied for each time
points. The latter typically arises when it is
impossible to repeat the measurements on the same
sample: prototypical examples are animal studies
where specimens are killed for collecting internal
organs at different time points.

• The target variable is a static (non-temporal)
variable. In some studies the predictors are
measured over time, however the dependent variable
is static. An example is the study of gene-expressions
differences between two mice groups (target). The
task in this case is to identify the minimal set of genes
whose trajectories, considered together, allow to best
discriminate between the two groups. Also for this
scenario we can identify two sub-cases, namely the
Static-longitudinal scenario, where the same
samples are measure over time, and the
Static-distinct scenario, where different samples are
considered at each time point.

Figure 1 graphically presents these four scenarios using
data from some of the real datasets used in our experi-
mentation. More information and example data for each
scenario are presented in the Additional file 1.
These scenarios represent themost common designs for

biological studies involving temporal data, and are widely
applied in other fields as well. Other scenarios/study
designs are of course possible (for example measurements
might be repeatedly taken for each sample at each time
point), however we consider them less relevant and out of
the scope of the present paper.
In this paper we use the Statisticaly Equvialent Signa-

tures (SES) algorithm [5, 10] as a prototype for the class
of constraint-based algorithms. The predictors selected by
SES (signature) are the neighbors of T in any BN (faith-
fully) representing the data distribution. This is a subset
of the full Markov Blanket but it has been shown to be
a good approximation for predictive purposes in exten-
sive empirical studies [11]. Some algorithms (HITON,
MMMB) do continue in trying to identify the full Markov
Blanket which also includes the spouses of T at the
expense of computational time. SES can successfully scale
up to cases where p >> n, preserving excellent pre-
dictive capabilities [5]. We measure the time complexity
of the algorithm in terms of the number of performed
conditional independence tests. Each variable must be
contrasted against each subset of the selected signature
before being eliminated. This would require a number of
tests in the order of O (p · 2s), where p is the number of
variables and s the number of selected variables. However,
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Fig. 1 Graphical representation of the four different scenarios. In all panel the x-axis reports the time dimension, while y-axis reports the
log-transformed expression value of a randomly-chosen probeset from one of the datasets used in the experimentation. a Temporal-longitudinal
scenario. All data, including the target variable, consists of longitudinal (repeated) measurements. Values from the same subject are linked with a
dashed line. (data from the GDS3915 dataset). b Temporal distinct scenario. Each observed value refers to a different subject (data from the GDS964
dataset). c Static longitudinal scenario. There are two groups (red and black lines), and each group consists of trajectories of longitudinal
measurements. Each trajectory refers to the same subject (data from the GDS4146 dataset). d Static distinct scenario. At every time point different
subjects are measured. Green and red colors indicate the two populations from which the subjects are sampled from (data from the GDS2456
dataset)

we only allow conditioning upon maximum k variables at
the time, decreasing the complexity of the algorithm to
O

(
p · sk). This means that the algorithm can still require

an exponential number of tests with respect to the size
of the selected signatures; however, in our experience the
actual computational requirements of the algorithm are
much lower, also due to the parsimonious signature often
retrieved.
A desired feature of SES is the fact that it heuristically

and efficiently attempts to identify statistically, equiv-
alent solutions, i.e., minimal-sized feature subsets with
the same optimal predictive performance. As mentioned
before, when the distribution is faithful to a BN the solu-
tion is unique; however, in practice whether due to finite
sample or deviations from assumptions there are multiple
(empirically) equivalent solutions. Identifying all equiv-
alent solutions is important when feature selection is
employed for knowledge discovery and getting insight to
the domain under study. Returning an arbitrarily-chosen
single solution S may mislead the domain expert into
thinking that all other variables are either redundant or
irrelevant, when the situation can be reversed if selecting
some other feature subset S′.

In our empirical study, we compare SES against the
state-of-the-art feature selection algorithms for the above
4 scenarios on gene-expression data. SES successfully
scales up to tens of thousands of gene trajectories. In
terms of selection quality and predictive performance, SES
outperforms other methods in the Temporal-longitudinal
scenario, is on par or better in the Static-longitudinal and
Static-distinct scenarios while selecting many fewer vari-
ables, while it is outperformed in the Temporal-distinct
scenario.
The rest of the paper is organized as follows. The

“Methods” section introduces conditional independence
testing for temporal data, as well as the SES algorithm.
A comparative evaluation of the proposed approaches
against LASSO-inspired algorithms is then performed on
real, high dimensional omics data. Discussion and conclu-
sions end the paper.

Related work
In general, variable selection algorithms can be classified
into two main categories, filter based and wrappers [12].
Methods of the first class select a subset of relevant fea-
tures independently of themodeling algorithm that will be
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subsequently applied. On the other hand, wrapper meth-
ods try to select the set of features that optimize the
performance of a specific classifier. A large bulk of liter-
ature has been published on the subject, with methods
using several different approaches [13–23].
Finally, embedded methods are modeling algorithms

whose operation automatically lead to the selection of the
most relevant features (e.g., classification and regression
trees [24]).
Many variable selection methods for classification

of high dimensional biological data (particularly gene
expression) have been proposed in the last decades [25].
For a recent review and open problems with regard to
variable selection in high dimensional data the reader is
addressed to Bolón-Canedo et al. [26].
In this work, we have carefully reviewed the current lit-

erature for identifying themost related and recent variable
selection methods suitable for the four scenarios depicted
above. Particularly, we have sought methods both appli-
cable on temporal data and scalable to high-dimensional
problems (i.e, thousands of candidate predictors).
In brief, the glmmLasso algorithm seems to be the most

well-performing method for studies that belong to the
Temporal-longitudinal scenario, according to the compar-
ison performed in [27]. This algorithm combines mixed-
models representation of complex variance structures
with the sparsity of LASSO solutions; as a drawback, the
resulting model is non-convex and difficult to optimize. In
the Temporal-distinct and static-distinct scenarios there
is no within-sample variance, and these two cases can be
addressed with variable selection algorithms designed for
non-temporal data. The Static-longitudinal scenario cor-
responds to discriminant analysis in longitudinal data, and
not much research has been performed in the context of
variable selection, see for example [28–30].

Available approaches for the Temporal-longitudinal
scenario
Several approaches for variables selection were proposed
in the last 15 years for studies where both the outcome
and the predictors are measured over time on the same
samples. Most of these approaches use either Generalized
LinearMixedModels (GLMM) or Generalized Estimating
Equations (GEE).
On GLMM, Ni et al. [31] proposed a double-penalized

likelihood approach in semi-parametric mixed models.
Bondell and co-authors [32] proposed an algorithm that
performs simultaneous selection of the fixed and ran-
dom factors using a modified Cholesky decomposition
andmaximum penalized likelihood estimation, along with
the smoothly clipped absolute deviation (SCAD). A sim-
ilar approach, using adaptive LASSO penalty functions
instead of SCAD, was presented as well [33]. Zhao et al.
[34] suggested using a basis function approximations and

a partial group SCAD penalty for semi-parametric vary-
ing coefficient partially linear mixed models, while Tang
et al. [35] focused on quantile varying coefficient mod-
els via penalizing the Lγ norm. Schelldorfer et al. [36]
proposed an L1-penalty term for linear mixed models,
and this work was later extended to include Poisson and
binary logistic regression [37]. A method quite similar to
the one of [37] was proposed in [27]; however the lat-
ter uses a gradient ascent algorithm whereas the former
uses a coordinate gradient descent method based on a
quadratic approximation of the penalized log-likelihood.
Finally, a comparison of model selection methods for lin-
ear mixed models based on four major approaches is
presented in [38]: information criteria such as AIC or
BIC, shrinkagemethods based on penalized loss functions
such as LASSO, fence (ad-hoc procedures) and Bayesian
techniques.
The literature is less extensive when it comes to GEE.

The use of a modified AIC, termed quasi-likelihood infor-
mation criterion (QIC), was proposed in [39]. Cantoni and
co-authors [40] first used a generalisedMallow’s criterion,
and subsequently [41] used a Markov chain Monte Carlo
(MCMC) procedure for variable selection without visiting
all possible candidate models. The case of missing-at-
random data was addressed in [42] by using a missing
longitudinal information criterion selecting the optimal
model and the correlation structure. Finally, a penalized
GEE method that is consistent even when the work-
ing correlation structure is misspecified was presented
in [43].
Some Bayesian techniques include [44–46] among

others. The first used a Cholesky decomposition of the
random effects covariance matrix and introduced a fur-
ther decomposition of the Cholesky decomposed lower
triangular matrix. The elements of the resulting diago-
nal matrix are assigned zero-inflated truncated-Gaussian
priors and MCMC methods are applied. However, these
types of approaches are discouraged [47], as they are
computationally heavy and are prior dependent. Han
and co-authors [45] compared a number of methods for
comparing two linear mixed models using Bayes factors.
They also mentioned that these kinds of methods require
substantial human intervention and high computational
power.
A common drawback of all the procedures presented so

far is that they are applicable only on a small number of
candidate predictors. The only exceptions are presented in
[35–37], [43], that were tested on 100, 200, 500 and 1000
candidate predictors in their respective simulation stud-
ies. To note, these studies do not report information about
the computational time required by the algorithms. More-
over, authors do not usually provide implementations of
the methods they propose. The only methodologies avail-
able as R packages are the one presented by [36], under
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the name GLMMLasso, and the glmmLasso package by
[27], which offers linear, Poisson and binary logistic mixed
models .

Available approaches for the static-longitudinal scenario
This scenario refers to the task of discriminant analy-
sis in longitudinal data. According to the concise review
presented in [48], variable selection is somewhat not
heavily researched in this context. More recently, L1
type constrains such as LASSO and SCAD allowing
for grouped variables [28] were suggested. Matsui et
al. [49] extended previous work to include multino-
mial logistic regression where the variables are selected
in a grouped way. Finally, approaches based on func-
tional regression also exist in the literature, see for
example [50].

Available approaches for the Temporal-distinct and
Static-distinct scenarios
Both the Temporal-distinct and Static-distinct scenarios
are defined over time-course data measured at each time
point on different samples. Thus, the within-sample vari-
ance cannot be modeled for these scenarios. This allows
variable selectionmethods devised for non-temporal data,
as the widely used LASSO [51], to be applied in this
context.
The LASSO algorithm started gaining popularity after

the work in [52] who suggested the least angle regres-
sion as a better and faster way to solve its underlying
optimization problem. A coordinate descent algorithm,
which allows using the LASSO penalty in the context
of generalized linear models was then suggested [53].
This latter approach is implemented in the R package
glmnet [54].
Grouped Lasso (gLASSO, [55]) was developed to han-

dle categorical predictors, which are often encoded in
linear modeling as groups of binary variables (dummy
variables). For the sake of consistency, the dummy
variables corresponding to a single categorical predic-
tor should be either included or excluded altogether
(“as a group”) in the final LASSO solution. More recently,
a quite efficient gLASSO implementation was proposed
by [56], with their code made available in the R package
gglasso [57].

Methods
In this section we discuss in detail how to adapt
constraint-based method for temporal data analysis. First,
we will briefly present Generalized Linear Mixed Models
(GLMM) and Generalized Estimating Equations (GEE).
Both techniques are suitable for devising conditional inde-
pendence tests for temporal data with (un)balanced study
designs. For a thorough comparison between GLMM and
GEE see [58, 59].

Generalised linear mixedmodels
Let Ti denote the ni-dimensional vector of observed val-
ues for the target (response) variable T in the i-th subject
at the different d time-points. We model the link of Ti
with p covariates via the following equation:

g (Ti) = Xiβββ + Wibi + ei, i = 1, . . . ,K . (1)

The vector βββ is the (p + 1)-dimensional vector of coef-
ficients for the ni × (p + 1) fixed effects design matrix
Xi, which contains the predictor variables. The vector
bi ∼ Nq (0,���) is the q-dimensional vector of coeffi-
cients for the ni × q random effects matrix Wi, while
��� is the random-effects covariance matrix. The vector
ei ∼ Nni

(
0, σ 2Ini

)
is the ni dimensional within-group

error vector which follows a spherical normal distribution
with zero mean vector and fixed variance σ 2.
We used the exchangeable or compound symmetry (CS)

structure on the covariance matrix ���. We decided not to
use a first order autoregressive covariance ( AR(1) ) struc-
ture as a hyper-parameter of the GLMM method, since
this type of structure did not improve the performance
of generalised estimating equations (presented below) and
would add a high computational burden to the fitting of
GLMM.
K stands for the number of subjects and the total sample

size (number of measurements) is equal to N = ∑K
i=1 ni.

The link function g connects the linear predictors on the
right hand side of (1) with the distribution of the target
variable. Common link functions are the identity, for nor-
mally distributed target variables, and the logit function
for binomial responses.
The possibility of specifying random effects allows

mixed models to adequately represent between and
within-subject variability, and to model the deviates of
each subject from the average behavior of the whole pop-
ulation. These characteristics make GLMMs particularly
suitable for temporal and longitudinal data [9].

Generalised estimating equations
Generalised Estimating Equations (GEE), developed by
[60, 61], are an alternative to mixed models for modeling
data with complex correlation structures. In contrast to
GLMMwhich are subject specific, GEE contain only fixed
effects and thus are population specific.
Using the notation defined in the previous section, in

GEE the p covariates are related to the outcome as

g (Ti) = Xiβββ + ei, i = 1, . . . ,K . (2)

with the variance of the response variable T being mod-
eled as Var

(
Tij

) = φ · αij, j = 1 . . . ni, where φ is a
common scale parameter and αij = α

(
Tij

)
is a known

variance function. We will focus on two different correla-
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tion structures for estimating α, the CS and the first order
autoregressive AR(1):

CS: Cor
(
Tij,Tij′

) = α

AR(1): Cor
(
Tij,Tij′

) = a|j−j′|. (3)

CS assumes that correlations of measurements for the
same subject at different time-points are always the
same, regardless of the temporal distance between them.
Depending on the specific application, this might be not
very realistic. In contrast, the AR(1) structure assumes
that the correlation between measurements at different
time points for the same subject decreases exponentially
as the temporal gap between them increases.
A precise numerical estimation of α is critical in GEE

modeling; we use the jackknife variance estimator sug-
gested by [62], which is quite suitable for cases when the
number of subjects is small (K ≤ 30), as in many biologi-
cal studies. The simulation studies conducted by [63] and
[64] showed that the approximate jackknife estimates are
in many cases in good agreement with the fully iterated
ones.

Conditional independence tests for the
Temporal-longitudinal scenario
We devise two independence tests based on GLMMs
(Eq. 1) and GEEs (Eq. 2) respectively. This scenario
assumes the predictors and the target variable are mea-
sured at a fixed set of time-points τττ = {τ1, . . . , τm} in
the same set of subjects. For balanced designs, all subjects
are measured at all time-points, i.e, ni = n,∀i. The tar-
get variable is often a gene-expression trajectory and thus,
in the rest of the paper and for this scenario we assume a
continuous target.
Recall that the null hypothesis Ind(X;T |Z) implies that

X is not necessary for predicting T when Z is given, and
thus the conditional independence tests can be thought of
as a testing the significance of the coefficient of x. The null
and full models are written as

H0 : Ti = 1a + 1bi + γτττ + δδδZi

H1 : Ti = 1a + 1bi + γτττ + δδδZi + βXi
(4)

where 1 is a vector of 1s, a is the global intercept, bi stands
for the random intercept of the i-th subject, γ , δδδ and β

are the coefficient of the predictors, and the generic link
function g(.) (Eq. 1) has been substituted with the identity
one.
This formulation stems from two specific modeling

choices: (a) we use the vector of actual time points τττ as a
covariate, in order to model the baseline effect of the time
on the trajectory of the target variable. Time becomes a
linear predictor of the target. Other choices are possible,
but would require more time-points that are typically not
available in gene-expression data. (b) We include random

intercepts, meaning we allow a different starting point for
the estimated trajectory of each subject. This choice leads
to Wi = 1ni ,∀i, where 1n is a vector of ones of size n.
However, we do not allow random slopes, thus assuming
all subjects have the same dynamics. This choice was dic-
tated by the need of avoiding model over-specification,
especially considering the small sample size of the datasets
used in the experimentation.
Pinheiro and Bates [9] suggests the use of the F-test for

comparing the twomodels, where only the model, the full,
under the alternative is fitted and the significance of the
coefficient β is tested. Another possible choice would be
the log-likelihood ratio test, however the F-test is prefer-
able for small samples, since the type I error is better
controlled with the F distribution.
A second test is based on the GEE model. The null and

alternative models now lose the random terms:

H0 : Ti = 1a + γτττ + Ziδδδ

H1 : Ti = 1a + γτττ + Ziδδδ + βXi
(5)

GEE fitting does not compute a likelihood [59] and thus,
no log-likelihood ratio test can be computed. A Wald
test is used instead here again and the significance of the
coefficient β is tested. Because of the lack of likelihood
computation, its effectiveness in assessing conditional
independence is questionable [65]. Despite these theoret-
ical considerations, the experimental results proved the
test to be quite effective in our context.

Conditional independence tests for the Static-longitudinal
scenario
The Static-longitudinal scenario assumes longitudinal
data with continuous predictors and a static target vari-
able T that is either binary or multi-category. The
goal is to discriminate between two or more groups
on the basis of time-depending covariates. As in the
Temporal-longitudinal scenario, the presence of longitu-
dinal data requires to take into account the within-subject
correlations.
We have devised a two-stage approach, partially

inspired by the work of [66] and [67], for testing condi-
tional independence in this scenario. In our approach a
separate regression model is first fitted for each subject
and predictor, using the time-points vector τττ as unique
covariate:

Gi = γi0 + γi1τττ , i = 1, . . . , n. (6)

Here, Gi is the vector of measurements for subject i and
the generic predictor variable G. At the end of this step
we end up with a matrix � with dimensions K × (2 · p),
containing all coefficients derived with theK models spec-
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ified in (6). The two nested models needed for testing
conditional independence can then be specified as:

H0 : g (Ti) = 1a + δδδ


Z

H0 : g (Ti) = 1a + δδδ


Z + βββ


X
(7)

where 


Z are the coefficients corresponding to the set of
conditioning variables Z and 


X are the coefficients cor-
responding to the variable X. A logit function g(.) is used
for linking the linear predictors to the binomial (or multi-
nomial) outcome. The log-likelihood ratio test (calibrated
with a χ2 distribution) is used to decide which of the two
models is to be preferred.

Conditional independence tests for the Temporal-distinct
and Static-distinct scenarios
In these two scenarios different subjects are sampled
at each time point (time-course data), and subject-
specific correlation structures cannot be modeled. For the
Temporal-distinct scenario, where the target variable is
continuous, it is thus possible to use models (5) for assess-
ing conditional independence. In absence of subject-
specific correlation structures the GEE models reduce to
standard linear models that can be compared with the
standard F-test. A similar approach can be used for the
Static-distinct scenario, where the outcome is binary or
multinomial, by using a logit link function instead of the
identity.

The SES algorithm
First introduced in [10], the SES algorithm attempts to
identify the set(s) of predictors (signatures) that are min-
imal in size and provide optimal predictive performances
for a target variable T. The basic idea is that if ∃Z, s.t.,
Ind(X;T |Z), then X is superfluous for predicting T. Thus,
SES repetitively applies a test of conditional independence
until it identifies the predictors that are associated with
T regardless of the conditioning set used. Under certain
conditions, these variables are the neighbors of T in a
Bayesian Network representing the data at hand [2]. An
interesting characteristic of SES is that it can return mul-
tiple, statistically indistinguishable predictive signatures.
As discussed in [68], limited sample size, high collinearity
or intrinsic characteristics of the data may produce several
signatures with the same size and predictive power. From
a biological perspective, multiple equivalent signatures
may arise from redundant mechanisms, for example genes
performing identical tasks within the cell machinery. The
SES algorithm is further explained in the Additional file 1
and in [5].

Equipping constraint-basedmethods with conditional
independence test for temporal data
SES belongs to the class of constraint-based feature-
selection methods [4]. This type of algorithm processes

the data exclusively through tests of conditional indepen-
dence that assess Ind(X;T |Z). This means that in order to
extend any constraint-based methods to temporal data it
is sufficient to equip an appropriate test, such as the ones
defined in Eqs. (4)-(7).

Experimentation on real data
The experimental evaluation aims at assessing the capa-
bilities of the proposed conditional independence tests
in real setting. For each scenario we identified several
gene-expression datasets over which we applied the SES
algorithm equipped with the conditional independence
test most suitable for the data at hand. The feature subsets
identified by SES were then fed to modeling methods for
obtaining testable predictions.
Furthermore, in each scenario we contrasted SES

against a feature selection algorithm belonging to the
family of LASSO methods. This class of algorithms
has proven to be well-performing in several appli-
cations, including variable selection in temporal data
(see the Section regarding the literature review). Par-
ticularly, we compare against glmmLasso [27] for the
Temporal-longitudinal scenario, with standard LASSO
regression [51] for the Temporal-distinct scenario,
and the grouped LASSO (GLASSO) for classification
[54, 56] in the Static-longitudinal and Static-distinct
scenarios.
We excluded from this comparative analysis approaches

that a) do not scale-up to thousands of variables (e.g.,
Bayesian procedures), b) require a number of time
points much larger than the applications taken into
consideration in this work (as for functional regres-
sion, [69]), and c) in general do not have available
implementations.
The configuration settings of all algorithms involved

in the experimentation were optimized by following an
experimentation protocol specifically devised for estimat-
ing and removing any bias in performance estimation due
to over-fitting.

Datasets
We thoroughly searched the Gene Expression Omnibus
database (GEO, http://www.ncbi.nlm.nih.gov/) for
datasets with temporal measurements. Keywords “lon-
gitudinal”, “time course”, “time series” and “temporal”
returned nearly 1000 datasets. We only kept datasets hav-
ing at least 15 measurement and at least three time points,
and complete information about the design of the study
generating the data. This resulted in at least 6 datasets
for each scenario, except for the Static-longitudinal
scenario, where we identified 4 datasets with at least
8 measurements. Detailed information on the selected
datasets are available in the (Additional file 1: Tables S5
and S6).

http://www.ncbi.nlm.nih.gov/
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Modeling approaches
For the Temporal-longitudinal scenario SES was coupled
with either GLMM or GEE regression, so as to mirror the
conditional independence test equipped to the algorithm.
The glmmLasso algorithm is used for comparison, using
a model similar to (4) defined over the whole predictors
matrix X

Ti = 1a + bi + γτττ + Xiβββ (8)

For the Static-longitudinal scenario, logistic or multino-
mial regression was applied on the columns of the matrix



 selected by SES, depending on the outcome at hand.
The grouped Lasso (GLASSO, [56]) algorithm was used
for comparison. GLASSO allows to specify groups of vari-
ables that can enter the final model only altogether. Par-
ticularly, the GLASSO was applied on the whole matrix


,
forcing the algorithm to either select or discard predictors
in pairs, following the way columns in


 correspond to the
original predictors.
For Temporal-distinct and Static-distinct scenarios SES

was always coupled with standard linear, logistic or multi-
nomial regression (depending on the specific outcome),
while the standard LASSO algorithm (binary outcome)
and GLASSO (multinomial outcome) were used for com-
parison (see Additional file 1 for further details).
In all analyses SES’ hyper-parameters maximum con-

ditioning variables size k and significance level a var-
ied between {3, 4, 5} and {0.05, 0.1}, respectively. The
λ penalty values generated by the Least Angle Square
(LARS) algorithm [52] were used for the LASSO mod-
els of all scenarios, apart from the temporal-longitudinal.
LARS cannot be adapted to this latter scenario, and thus
the range of values was separately determined for each
dataset, by using all integer values between λmin, the
smallest value guarantying the invertibility of the Hes-
sian matrix in each fold, and λmax, the highest value after
which no variable was selected.

Experimentation protocol
We used the m-fold cross-validation procedure with the
Tibshirani-Tibshirani (TT) bias correction [70] for model
selection and performance evaluation. In the standard
cross-validation protocol the available samples are parti-
tioned in m folds, with approximately an equal number
of samples each. Each fold is in turn held-out for testing,
while the remaining data form the training set. The cur-
rent modeling approach is applied several times on the
training set, once for each predetermined configuration
setting, and the predictive performances of the corre-
sponding models are evaluated on the hold-out fold. The
configuration with the best average performance is then
used for training a final model on the whole dataset. In
all experimentation m was set to either 4 or 5, so that to

have at least two measurements in each fold. Particularly,
folds correspond to one or more subjects in the Static-
longitudinal scenario, and to one or more time points in
the other scenarios.
The performance of the best configuration is known to

be optimistically biased, and thus a correction is needed
for a fair evaluation. The TT method is a general method-
ology for estimating and removing the optimistic cross-
validation bias. If the performance’s metric is defined in
terms of prediction error (the lower the error the better
the performance), the bias estimation according to the TT
method is the following:

ˆbias = 1
m

m∑

i=1

[
ei

(
θ̂θθ
)

− ei
(
θ̂θθ i

)]
, (9)

where ei is the performance on fold i, while θ̂θθ and θ̂θθ i
are the configurations corresponding to the best aver-
age performance and to the best performance of the i-th
fold, respectively. Signs in (9) should be interchanged if
the performance metric assigns higher scores to better
models.
The statistical significance of the difference between

average performances is computed through permutation-
based t-tests, where single performances are randomly
permuted for approximating the null distribution.
All of the simulations, computations and time mea-

surements were performed on a desktop with Intel Core
i5-3470 CPU @ 3.2 processor, 4 GB RAM memory using
a 64-bit R version 3.2.2.

Results and discussion
Coupling SES with GLMM and GEE
First, we contrasted the performances of GLMM and
GEE-based conditional independence tests in the context
of the Temporal-longitudinal scenario. Table 1 reports the
results of the comparison.
For each dataset the cross-validated, TT-corrected

Mean Squared Prediction Error (MSPE) is reported (stan-
dard deviation in parenthesis), along with the respective
computational time in Table 1. Average performances are
reported at the bottom line. Methods are indicated as
SESglmm, SESgee(CS)) and SESgee(AR(1)), correspond-
ing to SES coupled with GLMM and GEE, the latter using
either the CS or AR(1) covariance structure. All methods
obtain statistically equivalent results in terms of MSPE
(all paired permutation-based t-test p-values are above
0.37). The average computational time largely varies, with
SESgee(AR(1)) being the fastest of the three methods
(all paired permutation-based t-test p-values are below
0.002). For all methods, computational times strongly
depend upon the number of variables of each dataset, in a
log-linear way (see Additional file 1).
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Table 1 Temporal-longitudinal scenario: comparison between SES equipped with GLMM (SESglmm) and SES equipped with GEE

Dataset MSPE Average time (in seconds)

SESglmm SESgee(CS) SESgee(AR(1)) SESglmm SESgee(CS) SESgee(AR(1))

GDS5088 0.131 (0.000) 0.189 (0.1) 0.289 (0.018) 1562.51 (230.53) 1022.45 (217.99) 933.14 (180.34)

GDS4395 0.116 (0.007) 0.156 (0.019) 0.298 (0.028) 21167.21 (26089.48) 4862.15 (1724.89) 5577.80 (1890.15)

GDS4822 0.066 (0.000) 0.055 (0.001) 0.045 (0.004) 1785.66 (321.92) 2103.96 (490.74) 1492.30 (205.03)

GDS3326 0.062 (0.001) 0.052 (0.000) 0.063 (0.002) 6617.09 (472.16) 3167.78 (795.74) 2348.69 (390.10)

GDS3181 0.805 (0.096) 0.458 (0.000) 0.458 (0.00) 1684.90 (206.26) 1011.44 (152.59) 748.18 (105.32)

GDS4258 0.074 (0.000) 0.149 (0.003) 0.152 (0.002) 4135.76 (506.15) 2818.024 (418.97) 2078.52 (462.30)

GDS3915 0.527 (0.038) 0.553 (0.01) 0.439 (0.000) 669.18 (63.93) 511.82 (84.22) 491.91 ( 108.64)

GDS3432 0.057 (0.001) 0.060 (0.008) 0.038 (0.003) 3275.22 (474.06) 2213.11 (371.68) 2104.05 (546.76)

Average 0.230 (0.280) 0.209 (0.192) 0.223 (0.172) 5112.2 (6756.04) 2378.56 (1566.36) 1971.82 (1611.13)

The latter is indicated as SESgee(CS) and SESgee(AR(1)), depending by the employed variance estimator. TT-corrected, cross-validated mean square prediction error are
reported for each dataset, along with their standard deviation (in parenthesis). Average (standard deviation) computational time is reported as well, while the last line reports
performances averaged across datasets. The MSPE values are not statistically different, however SESgee(AR(1)) is faster than the other alternatives

Since the three versions produced equally predictive
results, in the remaining of the analysis we use only SES-
glmm, in order to ensure a comparison as fair as possible
with the GLMM based method glmmLasso.

glmmLasso scalability in high-dimensional data
Preliminary analyses pointed out glmmLasso’s limited
ability of efficiently (in computational terms) scaling up
to a few thousands of predictors (glmmLasso’s imple-
mentation is limited to 17,000 variables). We charac-
terized glmmLasso scalability by running the algorithm
on increasingly larger numbers of randomly selected
variables. Figure 2a reports the results obtained from
dataset GSD5088. Different lines report time perfor-
mances of glmmLasso, and SES equipped with differ-
ent conditional independence tests. glmmLasso require-
ments in terms of computational time increase in a
super-linear way with the number of predictors (see
Additional file 1: Figures S1 and S2 for time compar-
isons with all datasets). An interesting feature of the
SES implementation that is worthy to mention is the
fact that information about the univariate associations
(test statistics and associated p-values) is stored. Hence,
when the hyper-parameters change values, the algorithm
begins from the second step. For the 6 pairs of configu-
rations (pairs of a and k) used in our experimental anal-
ysis this results in a significant amount of computational
savings.
The same analysis was repeated on all datasets

selected for the Temporal-longitudinal scenario, con-
sistently achieving similar results (Additional file 1).
Consequently, for each dataset related to the Temporal-
longitudinal scenario only 2000 randomly selected predic-
tors were retained in all subsequent analyses, so that the
experimentation could be performed in a reasonable time
and to allow a fair comparison between SESglmm and

glmmLasso (see Additional file 1: Table S9 for the values
of the penalty parameter used in glmmLasso).

Results on the four scenarios
Table 2 reports the main results of the experimen-
tation. For each dataset, cross-validated, TT-corrected
performances are reported as average (st.d.). Zero stan-
dard deviations are caused by numerical rounding. For
the Temporal-longitudinal and Temporal-distinct scenar-
ios the MSPE metric is used, with lower values indicating
better performances, while the Percentage of Corrected
Classification (PCC) metric is used for the other scenar-
ios, with higher values indicating better performances.
Average differences (SES - LASSO) over all datasets are
reported for each scenario and statistically significant dif-
ferences at 0.01 and 0.05 significance level are indicated
with ∗∗ and ∗, respectively.
On average, SES equipped with conditional inde-

pendence tests for temporal data outperforms the
corresponding LASSO algorithms, in terms of predictive
performance, in all scenarios, except for the Temporal-
distinct scenario. We also note that LASSO methods
did not select any variable in at least one fold of cross
validation for several datasets, as indicated by an average
number of selected variables < 1 (baseline predictive
models are produced in these cases). When LASSO
methods select at least one variable in each fold, their
variability in number of selected variables is considerably
higher than the one of SES. Particularly, for the Temporal-
longitudinal scenario SESglmm largely outperforms,
in terms of predictive performance, glmmLasso in all
datasets except one (GDS3181), where glmmLasso is
only marginally superior (See Additional file 1: Table
S10). For the Temporal-distinct scenario the results
are quite turned around, with LASSO having better
predictive performances than SES, although at the cost
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Fig. 2 a Temporal-longitudinal scenario: Time in seconds required by glmmLasso and SES equipped with different conditional independence
tests on the GSD5088 dataset. The number of randomly selected predictors is reported on the x-axis, while y-axis reports the required computational
time: glmmLasso rapidly becomes computationally more expensive than any SES variant. b Gene expression over time for the target gene CSHL1
in dataset GDS5088 (one line for each subject). c Average relative change for the target gene and predictors reported in model 10. The expression
of the genes was averaged over subjects for each time point, and the logarithm of the change with respect to the first time point was then
computed. The target gene appears as bold line, whereas the 5 predictor genes are reported as dashed lines. d Differences in performance between
SESglmm and glmmLasso for the 20 replications on each dataset. Negative values indicate SESglmm outperforming glmmLasso; SESglmm is always
comparable or better than glmmLasso, especially in dataset GDS5088 (excluded for sake of clarity). e Static-longitudinal scenario: Expressions over
time of gene TSIX, selected by SES for dataset GDS4146. The plot show one line for each subject: there is a clear separation between the two classes
included in the dataset (dashed and solid lines, respectively). f Static-distinct scenario: Expressions over time of gene Ppp1r42, selected by SES for
dataset GDS2882. The dotted and dashed lines correspond to the average trend of the gene in two different classes; differences in intercept and
trend are easily noticeable

of identifying larger and unstable sets of variables.
Finally, SES generally outperforms LASSO in the Static-
longitudinal and Static-distinct scenarios, both in terms
of average PCC and number of selected features. No
variables were selected for dataset GDS3944 by nei-
ther method, and thus we excluded this dataset from
the results.
Since the results for the Temporal-longitudinal scenario

could depend on the specific randomly selected gene used
as target variable, we repeated the whole comparison for
this scenario 20more times, each time with a different tar-
get gene. Table 3 contains the respective results: for 4 out
of 8 datasets SESglmm had statistically significantly bet-
ter performance (on average), whereas for the other 4, the
average performances did not differ in a statistically signif-
icant way. By aggregating the results we see that 91 out 160

times SESglmm had better performance than glmmLasso
(i.e., 56.88% of the times, significantly larger than 50%,
p-value=0.0395, according to the one-sided asymptotic
z-test). Figure 2d shows the difference between SESglmm
and and glmmLasso performances over the 20 repeti-
tions as boxplots. GDS5088 is not shown for the sake of
clarity: SESglmm largely outperforms glmmLasso for this
dataset and the difference is so out-of-scale that would
overshadow the differences in the other datasets (see
Additional file 1: Figure S3).
We give an example of how to interpret the mod-

els selected with SESglmm for Temporal-longitudinal
datasets. Figure 2b reports the expression over time of the
target gene CSHL1 for each subject in dataset GDS5088,
while Fig. 2c shows the logarithm of the average relative
change over time for the genes selected by SES as the
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Table 2 Cross-validated, TT-corrected performances of SES and LASSO-type methods on the four scenarios

Temporal-longitudinal scenario Temporal-distinct scenario

MSPE Selected vars MSPE Selected vars

Dataset SESglmm glmmLasso SESglmm glmmLasso Dataset SES LASSO SES LASSO

GDS5088 0.081 (0.026) 0.160 (0.042) 5.25 (0.85) 5.15 (8.65) GDS3859 0.068 (0.006) 0.019 (0.002) 3.5 (0.51) 11.81 (4.66)

GDS4395 0.104 (0.041) 0.640 (0.568) 5.37 (0.56) 12.35 (13.61) GDS972 0.022 (0.000) 0.001 (0.000) 5.83 (0.92) 22.2 (9.85)

GDS4822 0.115 (0.484) 0.765 (0.436) 4.75 (0.85) 3.16 (5.77) GDS947 0.056 (0.000) 0.054 (0.026) 5.92 (0.65) 12.40 (5.40)

GDS3326 0.135 (0.021) 0.234 (0.139) 5.42 (0.78) 2.42 (7.45) GDS964 0.033 (0.000) 0.003 (0.000) 5.73 (0.69) 25.69 (11.86)

GDS3181 0.971 (0.484) 0.684 (0.257) 4.17 (0.87) 0.35 (2.15) GDS2688 0.184 (0.006) 0.005 (0.001) 5.79 (1.06) 20.64 (10.93)

GDS4258 0.234 (0.096) 9.882 (4.518) 3.83 (0.51) 1.48 (4.06) GDS2135 0.053 (0.002) 0.014 (0.003) 3.80 (0.76) 10 (5.72)

GDS3432 0.357 (0.017) 2.283 (1.572) 1.67 (3.51) 0.08 (0.55) Av. diff. 0.053a -12.03a

GDS3915 0.059 (0.002) 0.150 (0.055) 5.12 (0.80) 1.66 (4.62)

Av. diff. -1.59b 1.12b

Static-distinct scenario Static-longitudinal scenario

PCC Selected vars PCC Selected vars

Dataset SES LASSO SES LASSO Dataset SES GLASSO SES GLASSO

GDS4319 0.873 (0.000) 0.995 (0.000) 2.1 (0.31) 8 (0.00) GDS4146 1.000 (0.000) 0.858 (0.142) 1.00 (0.00) 0.42 (1.38)

GDS3924 0.729 (0.000) 0.528 (0.104) 2.75 (0.44) 53.56 (28.55) GDS4518 0.750 (0.000) 0.417 (0.333) 1.75 (0.44) 3.04 (2.15)

GDS3184 0.556 (0.067) 0.578 (0.111) 3.00 (0.00) 10.62 (5.16) GDS4820 0.500 (0.000) 0.667 (0.167) 2.00 (0.00) 5.14 (3.19)

GDS3145 0.953 (0.000) 0.594 (0.125) 1.5 (0.88) 0.6 (0.55) GDS1840 0.625 (0.000) 0.500 (0.250) 1.5 (0.51) 2.67 (2.03)

GDS2882 0.800 (0.000) 0.750 (0.000) 1.5 (0.88) 0.25 (0.50) Av. diff. 0.108 -1.23

GDS2851 0.722 (0.000) 0.694 (0.000) 2.25 (0.44) 0.75 (0.50)

GDS1784 0.861 (0.000) 0.694 (0.000) 1.75 (0.85) 0.5 (0.58)

GDS2456 1.000 (0.000) 0.739 (0.000) 1.2 (0.41) 0.44 (0.53)

Av. diff. 0.115b -6.52b

For each dataset, performances are reported as average (st.d.). Zero standard deviations are caused by numerical rounding. For Temporal-longitudinal and Temporal-distinct
scenario’s performance are computed as Mean Squared Prediction Error (MSPE, lower values indicate better performances) and number of selected variables, while for the
other scenarios the Percentage of Corrected Classification (PCC, the higher the better) is used instead of MSPE. The bold numbers indicate better performance; average
differences over all datasets are reported for each scenario. Symbols a and b denote average differences that are statistically significant at 0.01 and 0.05, respectively. In terms
of predictive performances, SES is always on par or better than LASSO type algorithms in all scenarios except for the Temporal-distinct

best predictive signature for CSHL1. The fixed part of the
corresponding mixed-effect model is

CSHL1ij = 14.688 − 0.092 · τi + 0.297 · OR4G4Pij
− 0.628 · RRNAD1ij − 0.613 · NDUFS2ij
+ 0.212 · NCij + 0.314 · ICMTij

(10)

where i = 1, 2, 3, 4 represents the 4 time points, j =
1, · · · , 11 the 11 subjects, and NC stands for the genomic

region chr1 : 232358622 − 232358886. The variance of
the random intercepts is equal to 0.0018, correspond-
ing to a 7.8% of the total variability. All coefficients are
significant (maximum Wald test p-value 0.02), with pos-
itive coefficients indicating predictors whose trajectories
over time agree with the one of the target genes, while
the opposite holds for negative coefficients. The coeffi-
cient of the time effect has a negative sign; speculations
on Fig. 2c suggest that a quadratic effect would perhaps

Table 3 Temporal-longitudinal scenario: comparison between SESglmm and glmmLasso based on 20 replications with different
target variable (gene) and independently randomly selected 2000 genes as predictor variables

Dataset GDS5088 GDS4395 GDS4822 GDS3326 GDS3181 GDS4258 GDS3432 GDS3915

Average difference -3.560(4.118) 0.188(0.516) -0.003(0.134) -0.180(0.506) -0.020(0.04) -0.139(0.288) 0.000(0.355) 0.093(0.455)

Proportion 19/20 7/20 9/20 13/20 15/20 10/20 10/20 8/20

p-value 0.0001a 0.128 0.938 0.0015a 0.0312b 0.024b 0.9946 0.3842

Average difference in performances (standard deviation of the differences appear inside the parentheses) and percentage of times SESglmm outperformed glmmLasso. The
last line contains the permutation based p-value for the equality of the mean performances. Symbols a and b denote average differences that are statistically significant at
0.01 and 0.05, respectively. Notice that SESglmm is either statistically significantly better or on par with glmmLasso in terms of predictive performance
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perform better, but adding more parameters would eas-
ily lead to over-fitting, due to the limited number of time
points and subjects. Figure 2e and f show the tempo-
ral trajectories of gene TSIX and Ppp1r42, respectively,
which were included in the optimal predictive signatures
of dataset GDS4146 (Static-longitudinal) and GDS2882
(Static-distinct). In both cases the trajectories of the two
genes markedly differ between the two classes.

Conclusions
In this work we described how constraint-based, feature
selection methods can be extended for the analysis of
(high dimensional) temporal data, by equipping themwith
suitable conditional independence tests. The main con-
tribution of this work is thus indicating how a whole
class of state-of-the-art, provably well-performing feature
selection methods [4] can be easily extended to data char-
acterized by (a) measurements taken over time and (b)
high dimensionality, settings frequently encountered in
biological studies as well as in other fields. Furthermore,
conditional independence tests are the cornerstone of any
constrained-based method for (causal) network recon-
struction [71]; under this respect, this work also paves
the path for extending this type of algorithms to temporal
data.
We assessed the performances of the proposed

approach by evaluating a prototypical constraint-based
method, the SES algorithm, on several real-world
gene expression datasets. Each dataset belongs to one
out of four different scenarios, which represent com-
mon study designs for temporal data. The Temporal-
longitudinal and Static-longitudinal scenarios represent
longitudinal studies with time-dependent or static tar-
get variable, respectively, while the Static-longitudinal
and Static-distinct scenarios refer to the case of dif-
ferent samples measured at each time point. The
Temporal-longitudinal and Temporal-distinct scenarios
required devising conditional independence tests able
to take into account the idiosyncrasies of their respec-
tive data. The conditional independence test devised for
the Temporal-longitudinal scenario addresses the within
sample variation by employing the GLMM and GEE
modeling techniques; the tests devised for the Static-
longitudinal scenario uses a two-step regression strategy
for addressing the problem of discriminant analysis in
longitudinal data.
In the context of our experimentation, SES outper-

formed state-of-the-art methods belonging to the class
of LASSO algorithms in three out of four scenarios.
Particularly, in the Temporal-longitudinal scenario, SES-
glmm clearly superseded the glmmLasso algorithm [27].
Moreover, SESglmm easily scales to tens of thousands
of variables, while glmmLasso computation requirements
become rapidly prohibitive.

A key feature of the SES algorithm is its ability to pro-
duce multiple solutions, signatures, i.e. more than one set
of predictor variables, which are statistically equivalent,
as demonstrated in a recent publication [5]. Many times
in biological studies, and not only, the outcome of the
study, the final model, or the selected variables, is not what
expected by the expert in the field. This could be justified
by the fact that the chosen model is statistically equivalent
to the expected model. And hence, a degree of miss-
information has been delivered. Multicollinearity among
the predictor variables should not be treated as a dis-
ease, but rather as a means of extracting extra information
about the data.
We assessed the equivalence of the signatures produced

by SES also in the context of this experimentation. For
every signature computed by SES we fitted a predic-
tive model and calculated the corresponding MSPE. The
distribution of theseMSPE values confirmed that SES pro-
duces signatures whose predictive value is close to each
other (see Additional file 1: Tables S7, and S8 and Figures
S7, S8 and S9 for details).
The results showed in “Results on the four scenarios”

section and Table 2 purposely do not report informa-
tion regarding the computational time. In the Temporal-
longitudinal scenario SES’ computational requirements
can be one or two orders of magnitude smaller than
the ones of the glmmLasso. The opposite though is
true for the other scenarios. A prototypical SES run on
the GDS3859 dataset (45,100 variables and 23 samples,
Temporal-distinct scenario) requires on average 278 s,
while LASSO returns an answer in less than half a sec-
ond. This difference is mainly due to implementation
issues: the code of SES is written in R, while LASSO
is based on a fast FORTRAN implementation. In addi-
tion, the SES algorithm needs to perform some addi-
tional computation for identifying multiple signatures.
Other constraint-based methods, e.g., MMPC, that return
only one signature are expected to be faster, in case
the computational cost is an important parameter to
consider.
Finally, we performed over-representation analysis on

the pathways provided by the Kyoto Encyclopedia of
Genes and Genomes (KEGG [72]) using the hyper geo-
metric test. To ensure an adequate statistical power, we
performed this analysis only for the 12 datasets where
the probesets selected by SES correspond to five or more
genes. For each dataset we used the pathways of the
proper species. We found that on average 10 pathways are
significant at FDR level 0.1 for each signature (the lists of
enriched pathways are in the Additional file 1), meaning
that the selected genes are significantly over-represented
in known biological mechanisms. This indicates that per-
forming feature selection with constraint-based methods
coupled with conditional independence tests for temporal
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data can also provide biological insights, along with well-
performing predictive models.
The main limitation of the present study is the rel-

atively low sample size of several datasets, that makes
difficult to precisely estimate performances. However, we
note that the work presented by [73, 74] showed that the
TT protocol is able to provide precise estimation even
with relatively small sample size, computationally more
efficiently than the more complex nested-cross validation
protocol.
Future work will focus on several directions. Computa-

tionally, we have addressed the computational cost of the
linear mixed models by using our implementations. We
plan to add the other scenarios in this direction. Paral-
lel computations for the first step of the algorithm will
be made available for the other methods as well. More
intriguing, the application of the tests introduced in this
work on constraint-based, causal-discovery methods is
currently under investigation.

Additional file

Additional file 1: This file contains additional information regarding the
datasets and the algorithms used in the paper as well as results on SES
signatures equivalence and SES / Lasso computational requirements. (PDF
198 kb)

Abbreviations
Not applicable.

Acknowledgements
The first author would like to express his acknowledgments to Dimitris
Rizopoulos and Janice Scealy for answering some of his questions.

Funding
The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement n. 617393.
No funding body played any role in the design or conclusion of the present
study.

Availability of data andmaterials
All data are publicly available from the Gene Expression Omnibus database
(GEO, http://www.ncbi.nlm.nih.gov/). The R codes for the
Longitudinal-Temporal Scenario are available from the R package MXM
https://cran.r-project.org/web/packages/MXM/index.html.

Authors’ contributions
MT has participated in the design of the study, wrote the code, performed the
experiments and drafted the manuscript. VL has contributed to the
manuscript and to the design and supervision of the study. IT contributed the
initial idea, and to the design and supervision of the study. All authors have
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 17 July 2017 Accepted: 11 January 2018

References
1. Tsamardinos I, Aliferis CF, Statnikov AR, Statnikov E. Algorithms for Large

Scale Markov Blanket Discovery. In: FLAIRS Conference, vol. 2; 2003.
p. 376–381.

2. Tsamardinos I, Brown LE, Aliferis CF. The Max-Min Hill-Climbing Bayesian
network structure learning algorithm. Mach Learn. 2006;65(1):31–78.

3. Tsamardinos I, Aliferis CF, Statnikov A. Time and sample efficient
discovery of Markov Blankets and direct causal relations. In: Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York: ACM; 2003. p. 673–8.

4. Aliferis CF, Statnikov AR, Tsamardinos I, Mani S, Koutsoukos XD. Local
Causal and Markov Blanket Induction for Causal Discovery and Feature
Selection for Classification Part I : Algorithms and Empirical Evaluation.
J Mach Learn Res. 2010;11:171–234.

5. Lagani V, Athineou G, Farcomeni A, Tsagris M, Tsamardinos I. Feature
Selection with the R Package MXM: Discovering Statistically-Equivalent
Feature Subsets. J Stat Softw. 2017;80.

6. Neapolitan RE. Learning Bayesian Networks. Upper Saddle River: Prentice
Hall; 2004.

7. Lagani V, Tsamardinos I. Structure-based variable selection for survival
data. Bioinformatics. 2010;26(15):1887–94.

8. Casella G, Berger R. Statistical Inference. 2nd Ed. Pacific Grove: Duxbury
Press; 2002.

9. Pinheiro J, Bates D. Mixed-effects Models in S and S-PLUS. New York:
Springer; 2000.

10. Tsamardinos I, Lagani V, Pappas D. Discovering multiple, equivalent
biomarker signatures. In: Proceedings of the 7th Conference of the
Hellenic Society for Computational Biology & Bioinformatics. 54–56; 2012.

11. Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD. Local
causal and Markov Blanket induction for causal discovery and feature
selection for classification part ii: Analysis and extensions. J Mach Learn
Res. 2010;11:235–84.

12. Guyon I, Elisseeff A. An introduction to variable and feature selection.
J Mach Learn Res. 2003;3(Mar):1157–82.

13. Pavlidis P, Weston J, Cai J, GrundyWN. Gene functional classification from
heterogeneous data. In: Proceedings of the Fifth Annual International
Conference on Computational Biology. ACM; 2001. p. 249–55.

14. Mak MW, Kung SY. A solution to the curse of dimensionality
problem in pairwise scoring techniques. In: International Conference
on Neural Information Processing. Berlin, Heidelberg: Springer; 2006.
p. 314–23.

15. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in
bioinformatics. Bioinformatics. 2007;23(19):2507–17.

16. Lu X, Gamst A, Xu R. RDCurve: A nonparametric method to evaluate the
stability of ranking procedures. IEEE/ACM Trans Comput Biol Bioinforma
(TCBB). 2010;7(4):719–26.

17. Wu Q, Ye Y, Liu Y, Ng MK. Snp selection and classification of
genome-wide snp data using stratified sampling random forests. IEEE
Trans Nanobioscience. 2012;11(3):216–27.

18. Ye Y, Wu Q, Huang JZ, Ng MK, Li X. Stratified sampling for feature
subspace selection in random forests for high dimensional data. Pattern
Recogn. 2013;46(3):769–87.

19. Chinnaswamy A, Srinivasan R. Hybrid Feature Selection Using Correlation
Coefficient and Particle Swarm Optimization on Microarray Gene
Expression Data. In: Innovations in Bio-Inspired Computing and
Applications. Cham: Springer; 2016. p. 229–39.

20. Guo S, Guo D, Chen L, Jiang Q. A centroid-based gene selection method
for microarray data classification. J Theor Biol. 2016;400:32–41.

21. Ghalwash MF, Cao XH, Stojkovic I, Obradovic Z. Structured feature
selection using coordinate descent optimization. BMC Bioinformatics.
2016;17(1):158.

22. Sharbaf FV, Mosafer S, Moattar MH. A hybrid gene selection approach for
microarray data classification using cellular learning automata and ant
colony optimization. Genomics. 2016;107(6):231–8.

http://dx.doi.org/10.1186/s12859-018-2023-7
http://www.ncbi.nlm.nih.gov/
https://cran.r-project.org/web/packages/MXM/index.html


Tsagris et al. BMC Bioinformatics  (2018) 19:17 Page 14 of 14

23. Han C, Tan YK, Zhu JH, Guo Y, Chen J, Wu QY. Online feature selection
of class imbalance via pa algorithm. J Comput Sci Technol. 2016;31(4):
673–82.

24. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and
Regression Trees. Belmont: CRC press; 1984.

25. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, et al. Molecular classification
of cancer: class discovery and class prediction by gene expression
monitoring. Science. 1999;286(5439):531–7.

26. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature
selection for high-dimensional data. Progress Artif Intell. 2016;5(2):65–75.

27. Groll A, Tutz G. Variable selection for generalized linear mixed models by
L1-penalized estimation. Stat Comput. 2014;24(2):137–54.

28. Matsui H, Konishi S. Variable selection for functional regression models
via the L1 regularization. Comput Stat Data Anal. 2011;55(12):3304–10.

29. Gertheiss J, Maity A, Staicu AM. Variable selection in generalized
functional linear models. Stat. 2013;2(1):86–101.

30. Kayano M, Matsui H, Yamaguchi R, Imoto S, Miyano S. Gene set
differential analysis of time course expression profiles via sparse
estimation in functional logistic model with application to
time-dependent biomarker detection. Biostatistics. 2015;17(2):235–248.

31. Ni X, Zhang D, Zhang HH. Variable selection for semiparametric mixed
models in longitudinal studies. Biometrics. 2010;66(1):79–88.

32. Bondell HD, Krishna A, Ghosh SK. Joint Variable Selection for Fixed and
Random Effects in Linear Mixed-Effects Models. Biometrics. 2010;66(4):
1069–77.

33. Ibrahim JG, Zhu H, Garcia RI, Guo R. Fixed and random effects selection
in mixed effects models. Biometrics. 2011;67(2):495–503.

34. Zhao P, Xue L. Variable selection in semiparametric regression analysis for
longitudinal data. Ann Inst Stat Math. 2012;64(1):213–31.

35. Tang Y, Wang HJ, Zhu Z. Variable selection in quantile varying coefficient
models with longitudinal data. Comput Stat Data Anal. 2013;57(1):435–49.

36. Schelldorfer J, Bühlmann P, Van De Geer S. Estimation for
High-Dimensional Linear Mixed-Effects Models Using l1-Penalization.
Scand J Stat. 2011;38(2):197–214. Wiley Online Library.

37. Schelldorfer J, Meier L, Bühlmann P. Glmmlasso: an algorithm for
high-dimensional generalized linear mixed models using l1-penalization.
J Comput Graph Stat. 2014;23(2):460–77.

38. Müller S, Scealy JL, Welsh AH. Model selection in linear mixed models.
Stat Sci. 2013;28(2):135–67.

39. Pan W. Akaike’s information criterion in generalized estimating equations.
Biometrics. 2001;57(1):120–5.

40. Cantoni E, Flemming JM, Ronchetti E. Variable selection for marginal
longitudinal generalized linear models. Biometrics. 2005;61(2):507–14.

41. Cantoni E, Field C, Mills Flemming J, Ronchetti E. Longitudinal variable
selection by cross-validation in the case of many covariates. Stat Med.
2007;26(4):919–30.

42. Shen CW, Chen YH. Model selection for generalized estimating equations
accommodating dropout missingness. Biometrics. 2012;68(4):1046–54.

43. Wang L, Zhou J, Qu A. Penalized Generalized Estimating Equations for
High-Dimensional Longitudinal Data Analysis. Biometrics. 2012;68(2):
353–60.

44. Chen Z, Dunson DB. Random effects selection in linear mixed models.
Biometrics. 2003;59(4):762–9.

45. Han C, Carlin BP. Markov chainMonte Carlomethods for computing Bayes
factors: A comparative review. J Am Stat Assoc. 2001;96(455):1122–32.

46. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures
of model complexity and fit. J R Stat Soc Ser B (Stat Methodol). 2002;64(4):
583–639.

47. Saville BR, Herring AH. Testing random effects in the linear mixed model
using approximate Bayes factors. Biometrics. 2009;65(2):369–76.

48. Lix LM, Sajobi TT. Discriminant analysis for repeated measures data: a
review. Front Psychol. 2010;1.

49. Matsui H. Variable and boundary selection for functional data via
multiclass logistic regression modeling. Comput Stat Data Anal. 2014;78:
176–85.

50. Ferraty F, Hall P, Vieu P. Most-predictive design points for functional data
predictors. Biometrika. 2010;97(4):807–24.

51. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B (Methodol). 1996;58(1):267–88.

52. Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann
Stat. 2004;32(2):407–99.

53. Wu TT, Lange K. Coordinate descent algorithms for lasso penalized
regression. Ann Appl Stat. 2008;2(1):224–44.

54. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized
linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

55. Yuan M, Lin Y. Model selection and estimation in regression with
grouped variables. J R Stat Soc Ser B (Stat Methodol). 2006;68(1):
49–67.

56. Yang Y, Zou H. A fast unified algorithm for solving group-lasso penalize
learning problems. Stat Comput. 2015;25(6):1129–41.

57. Yang Y, Zou H. gglasso: Group Lasso Penalized Learning Using A Unified
BMD Algorithm. 2014. R package version 1.3. http://CRAN.R-project.org/
package=gglasso.

58. Gardiner JC, Luo Z, Roman LA. Fixed effects, random effects and GEE:
what are the differences?. Stat Med. 2009;28(2):221–39.

59. Hubbard AE, Ahern J, Fleischer NL, Van der Laan M, Lippman SA, Jewell
N, Bruckner T, Satariano WA. To GEE or not to GEE: comparing population
average and mixed models for estimating the associations between
neighborhood risk factors and health. Epidemiology. 2010;21(4):467–74.

60. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear
models. Biometrika. 1986;73(1):13–22.

61. Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized
estimating equation approach. Biometrics. 1988;44(4):1049–60.

62. Paik MC. Repeated measurement analysis for nonnormal data in small
samples. Commun Stat-Simul Comput. 1988;17(4):1155–71.

63. Ziegler A, Kastner C, Brunner D, Blettner M. Familial associations of lipid
profiles: A generalised estimating equations approach. Stat Med.
2000;19(24):3345–57.

64. Yan J, Fine J. Estimating equations for association structures. Stat Med.
2004;23(6):859–74.

65. Pawitan Y. A reminder of the fallibility of the wald statistic: likelihood
explanation. Am Stat. 2000;54(1):54–6.

66. Azen S, Afifi AA. Two models for assessing prognosis on the basis of
successive observations. Math Biosci. 1972;14(1):169–76.

67. Conesa A, Nueda MJ, Ferrer A, Talón M. maSigPro: a method to identify
significantly differential expression profiles in time-course microarray
experiments. Bioinformatics. 2006;22(9):1096–102.

68. Statnikov A, Aliferis CF. Analysis and Computational Dissection of
Molecular Signature Multiplicity. PLoS Comput Biol. 2010;6(5):1–9. https://
doi.org/10.1371/journal.pcbi.1000790.

69. Ramsay JO, Silverman BW. Applied Functional Data Analysis: Methods
and Case Studies. New York: Springer; 2002.

70. Tibshirani RJ, Tibshirani R. A bias correction for the minimum error rate in
cross-validation. Ann Appl Stat. 2009;3(2):822–9.

71. Spirtes P, Glymour CN, Scheines R. Causation, Prediction, and Search.
Cambridge: MIT press; 2000.

72. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27–30.

73. Tsamardinos I, Rakhshani A, Lagani V. Performance-Estimation Properties
of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter
Optimization. 2014;1–14.

74. Tsamardinos I, Rakhshani A, Lagani V. Performance-Estimation Properties
of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter
Optimization. Int J Artif Intell Tools. 2015;24(5):1540023.

http://CRAN.R-project.org/package=gglasso
http://CRAN.R-project.org/package=gglasso
https://doi.org/10.1371/journal.pcbi.1000790
https://doi.org/10.1371/journal.pcbi.1000790

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work
	Available approaches for the Temporal-longitudinal scenario
	Available approaches for the static-longitudinal scenario
	Available approaches for the Temporal-distinct and Static-distinct scenarios

	Methods
	Generalised linear mixed models
	Generalised estimating equations
	Conditional independence tests for the Temporal-longitudinal scenario
	Conditional independence tests for the Static-longitudinal scenario
	Conditional independence tests for the Temporal-distinct and Static-distinct scenarios
	The SES algorithm
	Equipping constraint-based methods with conditional independence test for temporal data

	Experimentation on real data
	Datasets
	Modeling approaches
	Experimentation protocol

	Results and discussion
	Coupling SES with GLMM and GEE
	glmmLasso scalability in high-dimensional data
	Results on the four scenarios

	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

