
SOFTWARE Open Access

MutScan: fast detection and visualization of
target mutations by scanning FASTQ data
Shifu Chen1,2,3*, Tanxiao Huang2, Tiexiang Wen1, Hong Li2, Mingyan Xu2 and Jia Gu1*

Abstract

Background: Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA
(ctDNA), require sensitive detection of known target mutations. However, conventional next-generation
sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause
miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations
detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization
tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for
validating mutations in ultra-deep sequencing data.

Result: We developed MutScan to address problems of sensitive detection and efficient validation for
target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input
FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target
mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms
such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to
detect or visualize target mutations in a very fast way.

Conclusion: MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw
data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster,
and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes
detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target
mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML
pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/
OpenGene/MutScan

Keywords: MutScan, Mutation scan, Variant visualization, Fast detection

Background
Next-generation sequencing (NGS) can detect thousands
of mutations; however, for some applications, only few
of these are targets of interest. For applications such as
personalized medicine testing for cancer via NGS tech-
nology, clinicians and genetic counselors usually focus
on the detection of drugable mutations [1]. For example,
both p.L858R mutation and exon 19 deletion of epider-
mal growth factor receptor (EGFR) gene are highly
affected when treating lung cancer patients, since the
patients who carry these mutations benefit from EGFR

tyrosine kinase inhibitors (TKI) [2]. These mutations can
be detected via deep sequencing of patients’ cell-free
tumor DNA (ctDNA) [3]. However, the mutated allele
frequency (MAF) of variants called in ctDNA sequen-
cing data is very low. Typically, the MAF is usually
below 5%, and can even be as low as 0.1% [4]. The need
for the detection of mutations with such low MAF
drives the development of highly sensitive methods to
analyze ctDNA sequencing data [4].
The cconventional mutation detection pipeline for

NGS data usually involves different tools for each step.
For example, in our regular tumor variant calling pipe-
line, we use After [5] for data preprocessing, BWA [6]
for alignment, Samtools [7] for pipe-up generation, and
VarScan2 [8] for variant calling, as well as many

* Correspondence: sf.chen@siat.ac.cn; jia.gu@siat.ac.cn
1Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chen et al. BMC Bioinformatics (2018) 19:16
DOI 10.1186/s12859-018-2024-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2024-6&domain=pdf
https://github.com/OpenGene/MutScan
https://github.com/OpenGene/MutScan
mailto:sf.chen@siat.ac.cn
mailto:jia.gu@siat.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

auxiliary tools. The different tools used in these steps
may cause information loss due to different applied
filters, which may finally lead to miss-detection of muta-
tions, especially those with low MAF [9]. This type of
false negativity caused by data analysis is not acceptable
in clinical applications since it can miss opportunities
for better treatment of patients.
In contrast, false positive detection of key mutations

should also be avoided since this can introduce
expensive but ineffective treatment, and may even
cause severe adverse reactions [10]. Conventional
NGS pipelines can detect many substitutions and
INDELs but unavoidably causes false positives. Par-
ticularly, false positive mutations may be detected in
the highly repetitive regions of the genome due to in-
accurate reference genome mapping of aligners. To
reduce this false calling rate, all important mutations
must be validated [11]. Variant visualization is a key
method for a manual check of mutation confidence.
Variant visualizations can be done with tools like IGV
[12] and GenomeBrowse, but these tools require slow
and inefficient BAM file operations. Especially for
visualizing low MAF mutations in ultra-deep sequen-
cing data, IGV or GenomeBrowse is inconvenient
since it is difficult to locate the mutated reads among
thousands of reads. A fast, lightweight, and cloud-
friendly variant visualization tool is therefore needed.
MutScan, the tool presented in this work, is specific-

ally designed to address these problems. It is built on
error-tolerant string searching algorithms and is highly
optimized for speed with rolling hash [13] and bloom fil-
ters [14]. MutScan can run in a reference-free mode to
detect target mutations, which are provided via CSV file
or pre-defined in the program. With a VCF file and its
corresponding reference genome FastA file provided,
MutScan can scan all variants in this VCF and visualize
them by rendering an HTML page for each variant.

Implementation
Essentially, MutScan is a highly optimized string-searching
program, which scans the input FASTQ files and detects
reads that support the mutation targets. In MutScan, a mu-
tation is defined as a combination of (L, M, R), in which M
denotes the mutated bases, L denotes the neighbor se-
quence left to M in the reference genome, and R denotes
the right neighbor sequence. For a read to be considered as
a supporting read of a mutation, MutScan requires that a
subsequence (substring) of this read exactly matches M,
and its corresponding left and right neighbor sequences
match L and R, with a few (default is 2) mismatches
allowed to support the tolerance of sequencing errors and
single-nucleotide polymorphism.
For instance, the EGFR p.L858R mutation locates at

chr7: 55,259,515, and the corresponding CDS change is

c.2573 T > G. We can extract the context sequence of
EGFR p.L858R mutation as:
CATGTCAAGATCACAGATTTTGGGC[G]GGCCA

AACTGCTGGGTGCGGAAGAG.
where [G] is the mutation base M, CATGTCAAGATC

ACAGATTTTGGGC is the left neighbor sequence L,
and GGCCAAACTGCTGGGTGCGGAAGAG is the
right neighbor sequence R. We denote this whole se-
quence as the pattern sequence P.
For a read sequence S to be considered as supporting

a mutation, it should be able to align with the pattern
sequence P of the mutation, and the overlapped region
of this alignment should meet the following four
conditions:

1. Either L +M or M + R is completely covered by
overlap (S, P)

2. Mutation point M is exactly matched
3. No insertion or deletion exists around M (by default,

two left neighbor bases and two right neighbor bases)
4. Edit distance of overlapped sequences should be no

more than a threshold Ted (Ted = 2 by default)

The reads that meet above conditions will be captured by
MutScan, then piled up, and visualized as an HTML page.

Overall design
The program flow of MutScan can be divided into three
major steps: indexing, matching, and reporting. Figure 1
demonstrates how MutScan works.
In the indexing step, a mutation list is prepared from

built-in mutations, a mutation file, or a VCF file. If the
input file is a VCF file, the corresponding reference gen-
ome of this VCF file should also be provided. A KMER
set of each mutation is generated and mapped to 64-bit
keys (key64) via hashing functions. An indexing hash-
map of key64 mapping to mutations is created.
In the matching step, the KMER set and the corre-

sponding key64 set are computed for each read, and the
associated mutations of this read can be found by map-
ping the key64 set to the mutations using the index com-
puted in the last step. If the key64 mapped count of a
mutation is higher than a threshold Tmap (Tmap = 1 by de-
fault), this mutation will be naively aligned with this read.
Furthermore, if their edit distance is below threshold Ted

(Ted = 2 by default), they are considered as matched.
In the reporting step, the supporting reads of each

mutation are sorted and a unique number is computed
via grouping supporting reads. If the unique number is
above a threshold Tunique (Tunique = 2 by default), this
mutation is considered valid and will be reported. Then,
the reads will be piled up and rendered as an HTML
page with the base quality scores represented by colors.
Some index pages will also be generated to arrange the

Chen et al. BMC Bioinformatics (2018) 19:16 Page 2 of 11

mutations by chromosomes, and the HTML format re-
port is finally created.

Main algorithms
Since the indexing and matching steps are computation-
ally intensive, we use several algorithms to accelerate
this process:

(1) For all mutations, we first compute their (L, M, R),
and then compute the fixed-length Levenshtein
automatas [15] of each (L, M, R). L and R are
20 bp long in MutScan’s implementation. This
operation will generate a complete set of target
sequences to search.

(2) For each sequence in the above set, we use a hash
function kmer2int to make a 64-bit integer number.
A rolling hash [13] method is used to accelerate this

process. A hashmap H will then be generated,
recording every 64-bit key and the mutation list it
maps to.

(3) A bloom filter [14] is then applied to accelerate the
process of checking whether a 64-bit key is in the
hashmap H. An array B of length N is initialized
with 0, and each key in H is hashed to [0, N-1] with
several hash functions. The value in a position of B
will be set to 1 if any hash value of a key hits this
position. MutScan uses N= 230 and uses three different
bloom filter hash functions.

(4) For each read to scan, we use kmer2int to compute
the 64-bit integer keys of the read’s KMER. This
process is also accelerated via rolling hash.

(5) For every 64-bit key computed above, a bloom filter
is used to check whether it is in the hashmap H.
Use the same hash functions in step (3) to obtain

Fig. 1 The overall design of MutScan. Three steps are presented: indexing, matching, and reporting. In the indexing step, a hashmap of KMER (all
possible substrings of length k, k = 16 in MutScan’s implementation) mapping to mutations is computed; in the matching step, reads are
associated with mutations by looking up the indexed hashmap; in the reporting step, the detected mutations are validated, the supporting reads
for each mutation are piled up and rendered to an HTML page. The input and output files are then highlighted in grey

Chen et al. BMC Bioinformatics (2018) 19:16 Page 3 of 11

the hash values, and check if every value v makes
B[v] = 1. If yes, the corresponding sequence is then
considered as a potential match, and the mutation
list of this key can be obtained from H.

(6) Every mutation in the above list will be compared
to the sequence S of this read. With (L, M, R)
provided for this mutation, let P be the complete
pattern sequence (P = L +M + R). MutScan first
locates the potential mapping of P and S by finding
an exact match of M in S. We will get the
overlapped subsequences of P and S, which can be
denoted as PO and SO, and can compute their edit
distance [16] d = ed.(PO, SO,). If d is not above the
threshold T (T = 2 by default), this read will be
added into this mutation’s supporting read set and
will be piled with other supporting reads in the
visualization process.

Fixed-length Levenshtein automata
Since the original Levenshtein automata will cause an in-
consistent length of the transformed sequences due to
insertions or deletions, MutScan computes a fixed-
length Levenshtein automata instead of the original.
MutScan allows up to one insertion or deletion when
searching the mutation patterns from the input reads.
To compute the sequence’s Levenshtein automata of
fixed-length F, MutScan requires an input sequence of a
length not shorter than F + 2. If an insertion happens in
the transformation, the base in the edge will be shifted
out, and if a deletion happens, the alternative base out-
side will be filled in, so the transformed sequences are
all of a length F.
In our design, only up to two mismatches are

allowed by MutScan when searching for the KMER
matches between a read and a mutation; therefore,
we applied a simplified method to calculate the
Levenshtein automata. For a given sequence S, its
Levenshtein automata is calculated by building a
mutated string set of S containing all the strings
with up to two differences from S, and sampling all
the KMER of these strings.

Rolling hash and kmer2int
The rolling hash used to accelerate the calculation of
64-bit hash resembles the Rabin-Karp string matching
algorithm [17]. For a sequence of length k, this hash
function maps a sequence to an integer as follows:

H ¼ b1a
k−1 þ b2a

k−2 þ b3a
k−3 þ…⋯þ bka

0

where a represents a constant number, bi represents
the number representing the base at position i. We
use a = 2 since k is usually above 40, and the hash
value can be greater than 264 if we use a = 3 or

above. It is difficult to choose the values representing
different bases (A/T/C/G/N), too small or too simple
values will cause heavy hash collisions. After many
iterations, the following odd numbers were chosen:
A = 517, T = 433, C = 1123, G = 127, N = 1.
This hash function can be used to accelerate the hash

calculation of Levenshtein automatas or subsequences of
reads. For example, if we already have a sequence S1 and
its hash value H(S1); then, we transform S1 to S2 by re-
placing the 5th base A by T and the hash value of S2 can
be computed as:

HðS2Þ ¼ HðS1Þ−2k−5 � 517þ 2k−5 � 433

When we compute all hashes of a sequence S, we
can compute the hashes one by one by sliding the
fixed-width window over S. Except for the first hash
that is fully computed, the remaining hashes can be
computed quickly. For example, let H(S1…k) denote
the hash of the 1…k sub-sequence of the sequence S.
When the needle moves to the next window, the hash
of the 2…k + 1 sub-sequence H(S2…k + 1) can be com-
puted as:

H S2…kþ1ð Þ ¼ H S1…kð Þ−b12k−1
� �� 2þ bkþ1

This calculation can be very fast since the multiplica-
tion with 2 or 2k-1 can be conducted by bit shifting
operations.

Bloom filter
When testing a read to find whether it matches any of
our target sequences, we should compute its hashes and
compare them to the pre-computed Levenshtein
automata set. Since this function will be very heavily
used, it should be optimized to avoid performance
bottlenecks. The Levenshtein automata set is stored as a
hashmap, whose keys are 64-bit integers. The keys are
sorted, and by default, a binary search method is applied
to find whether a given key is in the key set of the
hashmap, which is usually not efficient. It requires about
28 comparisons to test a key against a key set with 256
elements.
Bloom filter can be applied to accelerate the hit-or-

not testing of a key against a key set. As explained
above, an array B of length N is initialized with 0 at
each position, and hash values of multiple hash
functions for each 64-bit key are computed. The
element of B is set to 1 if any hash value of any key
hits the particular position. When testing a given key
K, compute its hash values of the same hash func-
tions. K is not a member of the key set if any hash
value hits 0. The trick is that most keys are not
members of the key set so that the testing will return
false after a few checks (typically one or two).

Chen et al. BMC Bioinformatics (2018) 19:16 Page 4 of 11

MutScan uses three different hash functions to
map 64-bit integers to [0, 230-1], all of which have
the following form:

f i keyð Þ ¼ vi � keyð Þ 230−1
� �

; i ¼ 1; 2; 3

Large odd numbers can be chosen for vi, MutScan uses
v1 = 1,713,137,323, v2 = 371,371,377, and v3 = 7,341,234,131.

Paired-end read merging
Sequence length is also a factor that affects mutation de-
tection. To obtain a longer sequence, MutScan tries to
merge each pair of reads for paired-end sequencing data.
For a read pair R1 and R2, rcR2 is computed as the re-
verse complement of R2. The merging algorithm
searches the biggest overlap of R1 and rcR2, while their
overlapped subsequences are entirely identical. If the
overlapped region is longer than a threshold (by default,
Tlen = 30 bp), we consider them as overlapped and merge
them to a single read. We can obtain longer sequences
after merging read pairs, and continue the matching
process even if the mutation point locates on the edge of
reads. If one pair of reads cannot be merged, MutScan
will process them. Although a sequencing library with
large insert sizes would prohibit the overlap of read
pairs, it will not cause too much impact on performance
since MutScan can even work well for single-end se-
quencing data.

Visualization
In the visualization stage, MutScan generates an
HTML file for each mutation, in which all supporting
reads are piled up. MutScan cuts each supporting
read by its mapping to (L, M, R) sequences of its mu-
tation. MutScan sorts each mutation’s supporting
reads by its starting and ending positions and con-
siders the supporting reads with identical positions as
duplicates of one unique read. Bases on the HTML
page are colorized according to their quality scores.
Figure 2 provides an example of a mutation’s pile-up
HTML graph.
Another advantage of MutScan is that it can

visualize read duplications. Since the supporting reads
of each mutation are sorted by their coordination,
reads sharing the same coordination will be grouped.
Multiple reads that share the same coordination will
be displayed as a block and thus can easily be found
from the visualization result. Such a block of reads
can be considered as a single unique read. In the
HTML report of MutScan, both numbers of support-
ing reads and unique supporting reads are given for
each mutation.

Results and discussion
MutScan can be used to both detect and visualize target
mutations. For example, in clinical genetic testing for
cancer, several hotspot mutations are highly concerned

Fig. 2 Screenshot of a MutScan’s pile-up result. The demonstrated mutation is EGFR p.T790 M (hg19 chr7:55,249,071 C > T), which is an important
drugable target for lung cancer. This mutation’s (L, M, R) sequences are provided at the top of this figure, and M is the mutation base (C > T). The
color of the bases indicates the quality score (green and blue indicate high quality, red indicates low quality). This screenshot is incomplete, and
the complete report can be found at http://opengene.org/MutScan/report.html

Chen et al. BMC Bioinformatics (2018) 19:16 Page 5 of 11

http://opengene.org/MutScan/report.html

by oncologists. MutScan contains a built-in list with
most actionable gene mutations for cancer diagnosis
[18]. It can scan these pre-defined mutations in a very
fast way, which is typically at least 20X faster than con-
ventional complete pipelines.
The visualization functions make MutScan applic-

able for variant validation. MutScan generates an
HTML page for each mutation with its supporting
reads piled up, from which users can evaluate the
confidence of a mutation by calculating the support-
ing read number, the quality scores of the bases at a
mutation point, the rate of duplication, and the form
of overlapping read pairs.

Sensitivity and specificity
A major concern is MutScan’s mutation detection sensi-
tivity for key mutations. Since MutScan was initially de-
veloped for tumor mutation detection and visualization,
we conducted an experiment to evaluate the mutation
sensitivity using 28 mutation-positive tumor samples.
These samples were either circulating tumor DNA sam-
ples (ctDNA) or formalin-fixed, paraffin-embedded
(FFPE) tissue samples. The DNA samples extracted from
these were target captured using a cancer targeting se-
quencing panel with a size of around 100 K base pairs.
The sequencing depth was at least 5,000X for ctDNA,
and 1000X for FFPE samples to detect mutations with
low MAF. In this evaluation, we focused on seven
actionable oncogene mutations of four genes, which are
p.T790 M/p.E746_A750delELREA of the EGFR gene,
p.V600E of the BRAF gene, p.H1047R/p.E545 K/
p.E542K of the PIK3CA gene, and p.G12D of the KRAS
gene. Among these seven mutations, six are a single
nucleotide variation (SNV), and the remaining mutation
is a 15-bp deletion [19–21]. All 28 samples underwent at
least one of these 10 mutations, and some samples
underwent two or more mutations.
In this evaluation, MutScan was compared to a tumor vari-

ant calling pipeline of (AfterQC + BWA+Samtools +
VarScan2), which can be found at GitHub (http://github.com/
sfchen/tumor-pipeline). The unique supporting read number
for each mutation was computed via MutScan and the tumor
pipeline respectively, and the result of the comparison is
shown in Fig. 3.
Figure 3 shows that most mutations detected by the

tumor pipeline were also detected by MutScan, except
for the S6 sample, which was reported with two
unique reads of KRAS p.G12D and three unique
reads of PIK3CA p.E545 K detected by tumor pipe-
line, but not detected by MutScan. By manually
checking the data of this sample, we found that the
miss-detection of these two mutations was caused by
too many mismatches of their supporting reads. In
most cases, the unique supporting read numbers of

tumor pipeline detected mutations and MutScan de-
tected mutations were close. Furthermore, MutScan
also detected some mutations with less than six
unique supporting reads that were not detected by
tumor pipeline, suggesting that MutScan is more sen-
sitive than tumor pipeline for the detection of these
key mutations. We checked the reads of all mutations
that were only detected by MutScan and found that
almost all reads perfectly matched their corresponding
mutations, indicating that MutScan’s read searching
algorithm rarely made false calling for these target
mutations. Considering that only one unique support-
ing read is not confident to call a variant, MutScan

Fig. 3 Comparison result of MutScan and conventional NGS pipeline. The
conventional NGS is a tumor variant calling pipeline using AfterQC + BWA
+Samtools + VarScan2, which can be found at https://github.com/sfchen/
tumor-pipeline. Mutations are given in columns and samples are given in
rows. Tumor pipeline detected mutations are highlighted in shades of red,
and MutScan detected mutations are highlighted in shades of green. The
depth of the color reflects the unique supporting read number, which is
also shown in the table cells

Chen et al. BMC Bioinformatics (2018) 19:16 Page 6 of 11

http://github.com/sfchen/tumor-pipeline
http://github.com/sfchen/tumor-pipeline
https://github.com/sfchen/tumor-pipeline
https://github.com/sfchen/tumor-pipeline

provides an option to set the minimum unique sup-
porting reads (2 as default) to obtain high specificity.

Speed and memory usage evaluation
To evaluate the speed of MutScan, we compared its run-
ning time against two conventional pipelines; one is the
tumor pipeline of AfterQC + BWA + Samtools + VarS-
can2, the other is GATK best practices pipeline with
GATK HaplotypeCaller [22]. Since we did not evaluate
tumor/normal paired samples, we did not use the
MuTect2 pipeline [23], which is even slower than GATK
HaplotypeCaller. We first ran these two pipelines to gen-
erate the respective VCF files, and then passed these files
to MutScan for detection and visualization. We also ran
MutScan with built-in actionable mutations. Eight pairs
of paired-end sequencing FASTQ files were used for this
speed evaluation, the execution times of all tests were
recorded, and the comparison result is shown in Table 1.
In this evaluation, BWA alignment was both involved

in the GATK pipeline and the tumor pipeline, and both
pipelines used 10 threads for running BWA. GATK Hap-
lotypeCaller of the GATK pipeline and VarScan2 of
tumor pipeline were run with a single thread. We found
the alignment (BWA) and the variant calling (GATK/
VarScan2) components took more than 80% of the total
running time. MutScan was run with a single thread for
indexing, four threads for matching, and a single thread
for reporting. Despite having the difference of threading
settings, we still found that MutScan is much faster than
both the GATK pipeline and the tumor pipeline.
During this evaluation, we also found that MutScan

could eliminate some false positives called by conven-
tional pipelines. For example, we found some mutations
near chr22: 42,526,561 appeared in all the eight samples
and surmised that they should be false positives. By
manually looking into the alignment, we found about
seven mismatches near that genome position, and con-
firmed that those mutations were false positives caused
by bad alignment. For details of the GenomeBrowse soft-
ware, please refer to Additional file 1. Since MutScan
does not call variants with too many mismatches, these
mutations will not be detected.
When processing large FASTQ files with many target

mutations, MutScan may use too much memory since it
keeps all the supporting reads in RAM. To address such
problem, MutScan provides a simplified mode to reduce
the memory usage. In the simplified mode, each sup-
porting read’s quality string and the name string are not
kept, and the sequence string is compressed as a 2-bit
buffer. The four bases (A, T, C, G) are represented by
two bits (00, 01, 10, 11), and the read contains N bases
will be discarded since it usually indicates low quality
and N base cannot be represented in the 2-bit format.
The simplified mode also requires less mismatches when

comparing the reads and the target mutations, conse-
quently it’s faster than the normal mode since the
Levenshtein automata is smaller. We conducted an ex-
periment to evaluate the time and memory used by
MutScan for processing FASTQs and mutations in dif-
ferent sizes, and the result is shown in Table 2.
From Table 2, we can learn that the memory usage is

nearly linear related to the size of FASTQ and the num-
ber of mutations. The running time is also nearly linear
related to the size of FASTQ, but is not linearly related
to the number of mutations. Much less memory and
running time is used in the simplified mode than the
normal mode. As a side effect, a small part of the sup-
porting reads with many sequencing errors or some N
bases cannot be detected in the simplified mode since it
applies stricter comparison strategy. In our evaluation,
about 1% reads that were detected in the normal mode
couldn’t be detected in the simplified mode, which is still
acceptable in most cases. The quality string is not kept
in the simplified mode so the quality score of each base
is not available in the report. The simplified mode can
be explicitly enabled or disabled by the command line
arguments. By default, Muscat will evaluate the FASTQ
file size and automatically enable the simplified mode if
the evaluated FASTQ file size is larger than 50GB and
the mutation number is more than 10,000.

Limitations and future work
Although MutScan can detect and visualize target muta-
tions in a fast way, it still has some disadvantages and
can be improved in future versions.
The first major disadvantage is that if the target mutation

is coupled with a long insertion or deletion in its neighbor
sequence, MutScan may fail to detect it. In the speed evalu-
ation using eight samples, a total of 2646 single-nucleotide
polymorphism (SNPs) were called by the GATK pipeline,
all the SNPs were detected by MutScan with VCF input ex-
cept three mutations, and all of these undetected mutations
were coupled with long INDELs. For example, one of these
three mutations is a C > T substitution located at chr4:
55,146,389 (dbSNP id = rs1547904), and it has a coupled
T >TTGTAGGTCCCCCAG insertion located at chr4:
55,146,406 (dbSNP id = rs6148442), which is very close to
the target mutation. To address this issue, the neighbor var-
iants (i.e., SNPs) should be considered when searching for
matches, which will be implemented in future.
Another significant disadvantage is that MutScan only

supports substitutions and INDELs, while it does not sup-
port gene fusions. Gene fusions are also important for
cancer genomics, and there are also a lot of drugable gene
fusions. For example, a patient with a fusion of the echino-
derm microtubule-associated protein-like 4 (EML4) gene
and the anaplastic lymphoma kinase (ALK) gene can be
treated with Crizotinib. MutScan has difficulties catching

Chen et al. BMC Bioinformatics (2018) 19:16 Page 7 of 11

Ta
b
le

1
Ex
ec
ut
io
n
tim

e
co
m
pa
ris
on

of
M
ut
Sc
an

an
d
co
nv
en

tio
na
lp

ip
el
in
es

Sa
m
pl
e
ID

Ba
se

nu
m
be

r
G
A
TK

pi
pe

lin
e
ca
lle
d

va
ria
nt
s

Tu
m
or

pi
pe

lin
e
ca
lle
d

va
ria
nt
s

G
A
TK

pi
pe

lin
e

tim
e

Tu
m
or

pi
pe

lin
e

tim
e

M
ut
Sc
an

tim
e

(G
A
TK

VC
F)

M
ut
Sc
an

tim
e
(t
um

or
pi
pe

lin
e
VC

F)
M
ut
Sc
an

tim
e

(b
ui
lt-
in

m
ut
at
io
n)

S0
01

3.
07

G
37
6

11
63

16
6m

01
s

84
m
26
s

3m
09
s

4m
31
s

1m
28
s

S0
02

2.
70

G
37
6

14
38

15
8m

40
s

64
m
09
s

3m
03
s

4m
50
s

1m
11
s

S0
03

4.
98

G
53
1

94
9

23
6m

57
s

13
5m

47
s

4m
57
s

6m
59
s

2m
19
s

S0
04

3.
51

G
37
5

79
8

18
6m

48
s

10
0m

14
s

3m
16
s

4m
26
s

1
m

34
s

S0
05

3.
50

G
38
5

75
1

19
1m

29
s

84
m
24
s

3m
26
s

4m
20
s

1m
34
s

S0
06

3.
67

G
35
9

13
03

18
2m

42
s

96
m
50
s

3m
24
s

5m
57
s

1m
36
s

S0
07

6.
08

G
38
0

20
55

20
0m

22
s

14
2m

30
s

4m
20
s

11
m
17
s

2m
29
s

S0
08

3.
33

G
38
3

87
3

17
5m

16
s

90
m
27
s

2m
52
s

4m
37
s

1m
20
s

Th
e
in
pu

t
fil
es

ar
e
G
zi
p
co
m
pr
es
se
d
pa

ire
d-
en

d
se
qu

en
ci
ng

FA
ST
Q
,a
nd

th
e
ba

se
nu

m
be

r
is
th
e
su
m
m
at
io
n
of

bo
th

pa
ire

d
fil
es
.S
in
ce

th
e
tu
m
or

an
d
G
A
TK

pi
pe

lin
e
us
ed

di
ff
er
en

t
va
ria

nt
de

te
ct
io
n
an

d
fil
te
rin

g
st
ra
t-

eg
ie
s,
th
e
tu
m
or

pi
pe

lin
e
de

te
ct
ed

m
or
e
va
ria

nt
s
th
an

th
e
G
A
TK

pi
pe

lin
e.
Th

e
co
lu
m
n
M
ut
Sc
an

(G
A
TK

VC
F)

is
th
e
ex
ec
ut
io
n
tim

e
of

M
ut
Sc
an

fo
r
pr
oc
es
si
ng

tim
e
w
ith

th
e
VC

F
(IN

D
EL

+
SN

V)
ca
lle
d
by

th
e
G
A
TK

pi
pe

-
lin

e,
si
m
ila
rly

fo
r
th
e
co
lu
m
n
M
ut
Sc
an

(t
um

or
pi
pe

lin
e
VC

F)
.W

he
n
M
ut
Sc
an

w
as

ra
n
w
ith

a
VC

F,
its

ex
ec
ut
io
n
tim

e
w
as

pr
ed

om
in
an

tly
de

te
rm

in
ed

by
th
e
si
ze

of
th
e
FA

ST
Q
fil
e
an

d
th
e
nu

m
be

r
of

va
ria

nt
s

Chen et al. BMC Bioinformatics (2018) 19:16 Page 8 of 11

Ta
b
le

2
Ti
m
e
(in

se
co
nd

)
an
d
m
em

or
y
(in

m
eg

ab
yt
es
)
us
ed

by
M
ut
Sc
an

fo
r
pr
oc
es
si
ng

FA
ST
Q
s
an
d
m
ut
at
io
ns

in
di
ffe
re
nt

si
ze
s

M
ut
at
io
n
N
um

be
r➔

5
K
M
ut
at
io
ns

10
K
M
ut
at
io
ns

50
K
M
ut
at
io
ns

M
ut
Sc
an

M
od

e➔
Si
m
pl
ifi
ed

N
or
m
al

Si
m
pl
ifi
ed

N
or
m
al

Si
m
pl
ifi
ed

N
or
m
al

5G
bp

FA
ST
Q

25
5
s,
67
2
M

37
0
s,
15
42

M
28
9
s,
68
3
M

42
8
s,
21
10

M
38
0
s,
94
3
M

53
7
s,
91
13

M

10
G
bp

FA
ST
Q

40
2
s,
69
2
M

62
1
s,
22
60

M
44
7
s,
71
4
M

64
8
s,
32
01

M
62
4
s,
11
13

M
22
79

s,
15
,5
69

M

50
G
bp

FA
ST
Q

16
22
s,
76
9
M

29
56

s,
83
52

M
18
97
s,
92
9
M

34
69

s,
12
,4
40

M
27
29

s,
26
01

M
10
,9
27

s,
69
,3
89

M

Th
e
in
pu

t
w
as

pa
ire

d-
en

d
da

ta
,a
nd

th
e
ba

se
nu

m
be

r
w
as

th
e
su
m

of
re
ad

1
an

d
re
ad

2.
Bo

th
th
e
si
m
pl
ifi
ed

m
od

e
an

d
th
e
no

rm
al

m
od

e
w
er
e
ev
al
ua

te
d
an

d
sh
ow

n
in

th
e
ta
bl
e

Chen et al. BMC Bioinformatics (2018) 19:16 Page 9 of 11

these gene fusions since the breakpoints of these fusions
are usually varying, and consequently, we cannot generate
MutScan compatible mutations with (L, M, R). The au-
thors have partially addressed this problem by creating a
gene fusion detection and visualization tool, which is
called GeneFuse and is also an open source project
(https://github.com/OpenGene/GeneFuse).

Conclusion
In clinical applications, it is essential to seek low
MAF drugable mutations from ultra-deep sequencing
data. In contrast to traditional variant discovery strat-
egies (filtering, mapping, deduplicating, and variant
calling), MutScan provides a novel way to directly
detect target mutations from raw FASTQ files. Since
it is based on direct error-tolerant string searching
algorithms, MutScan can achieve very high sensitivity.
Furthermore, MutScan can visualize variants by gen-
erating HTML-based read pile-ups, and consequently
provide a cloud-friendly method to validate variants
called by conventional pipelines.
In summary, MutScan is a fast, standalone and light-

weight tool aimed to detect target mutations from raw
FASTQ data or to validate mutations by generating
HTML-based read pile-up visualizations.

Additional file

Additional file 1: A screenshot of false positive caused by bad alignment
at chr22. We found some mutations near chr22:42,526,561 appeared in all
the eight samples and surmised that they should be false positives. By
manually looking into the alignment, we found about seven mismatches
near that genome position, and confirmed that those mutations were false
positives caused by bad alignment. (PNG 193 kb)

Abbreviations
ALK: Anaplastic lymphoma kinase; BRAF: B-Raf proto-oncogene, serine/threo-
nine kinase; ctDNA: Circulating tumor DNA; EGFR: Epidermal growth factor
receptor; EML4: Echinoderm microtubule-associated protein-like 4;
FFPE: Formalin-fixed, paraffin-embedded; IGV: Integrative genome viewer;
INDEL: Insertion and deletion; KMER: All possible substrings of length k;
KRAS: Proto-oncogene corresponding to the oncogene first identified in
Kirsten rat sarcoma virus; MAF: Mutated allele frequency; NGS: Next-
generation sequencing; PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha; SNP: Single-nucleotide polymorphism;
SNV: Single-nucleotide variant

Acknowledgements
This authors would like to thank all the reviewers for helpful comments
that greatly improve the quality of this software and the presentation of
this article.

Funding
This study was partially financed by the National Science Foundation of
China (NSFC Project No. 61472411), the National 863 Program of China (No.
2015AA043203), the Technology Development and Creative Design Program
of Nanshan Shenzhen (Project No. KC2015JSJS0028A), Special Funds for
Future Industries of Shenzhen (Project No. JSGG20160229123927512), and
the SZSTI Entrepreneurship Funds of Shenzhen (Project No.
CYZZ20150527145115656). The recipient of the first two funding is Dr. Gu
with Shenzhen Institutes of Advanced Technology, Chinese Academy of

Sciences, while the recipients of the last three funding are Dr. Chen and Dr.
Xu with HaploX Biotechnology.

Availability of data and materials
The code project of MutScan is available at: https://github.com/OpenGene/
MutScan and the dataset to test MutScan can be downloaded from: http://
opengene.org/dataset.html.

Authors’ contributions
SC. developed this tool and wrote the paper, TH, HL, and MX conducted the
software testing, TW revised the paper writing, and JG co-supervised this
study. All authors read and approved the final manuscript.

Ethics approval and consent to participate
N/A

Consent for publication
N/A

Competing interests
The authors have the following interests: Shifu Chen, Tanxiao Huang, Hong
Li and Mingyan Xu are employed by HaploX BioTechnology. There are no
patents, products in development or marketed products to declare.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen, China. 2HaploX Biotechnology, Shenzhen, China.
3University of Chinese Academy of Sciences, Beijing, China.

Received: 20 June 2017 Accepted: 15 January 2018

References
1. Bratman SV, et al. Potential clinical utility of ultrasensitive circulating tumor

DNA detection with CAPP-Seq. Expert Rev Mol Diagn. 2015;15(6):715–9.
2. Wu K, et al. Personalized targeted therapy for lung cancer. Int J Mol Sci.

2012;13(9):11471–96.
3. Bettegowda C, et al. Detection of circulating tumor DNA in early- and late-

stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.
4. Newman AM, et al. An ultrasensitive method for quantitating circulating

tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.
5. Chen S, et al. AfterQC: automatic filtering, trimming, error removing

and quality control for FASTQ data. BMC Bioinformatics.
2017;18(Suppl 3):80. 91-100

6. Li H, Durbin R. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics. 2009;25(14):1754–60.

7. Li H, et al. The sequence alignment/map format and SAMtools.
Bioinformatics. 2009;25(16):2078–9.

8. Koboldt DC, et al. VarScan 2: somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.

9. Garofalo A, et al. The impact of tumor profiling approaches and genomic
data strategies for cancer precision medicine. Genome Med. 2016;8(1):79.

10. Anand S, et al. Next generation sequencing of pooled samples: guideline
for Variants’ filtering. Sci Rep. 2016;6:33735.

11. Endrullat C, et al. Standardization and quality management in next-
generation sequencing. Appl Transl Genom. 2016;10:2–9.

12. Robinson JT, et al. Integrative genomics viewer. Nat Biotechnol. 2011;
2011(29):24–6.

13. Chen, L. and G. Wang, An Efficient Piecewise Hashing Method for Computer
Forensics. Knowledge Discovery and Data Mining. 2008. p. 635–638. http://
ieeexplore.ieee.org/abstract/document/4470474/.

14. Kirsch A, Mitzenmacher M. Less hashing, same performance: building a
better bloom filter. Random Struct Algorithms. 2008;33(2):187–218.

15. Schulz KU, Mihov S. Fast string correction with Levenshtein automata. Int J
Doc Anal Recognit. 2002;5(1):67–85.

16. Gao X, et al. A survey of graph edit distance. Pattern Anal Applic.
2009;13(1):113–29.

Chen et al. BMC Bioinformatics (2018) 19:16 Page 10 of 11

https://github.com/OpenGene/GeneFuse
dx.doi.org/10.1186/s12859-018-2024-6
https://github.com/OpenGene/MutScan
https://github.com/OpenGene/MutScan
http://opengene.org/dataset.html
http://opengene.org/dataset.html
http://ieeexplore.ieee.org/abstract/document/4470474/
http://ieeexplore.ieee.org/abstract/document/4470474/

17. Karp RMR, Michael O. Efficient randomized pattern-matching algorithms.
IBM J Res Dev. 1987;31(2):249–60.

18. Wang L, Wheeler DA. Genomic sequencing for cancer diagnosis and
therapy. Annu Rev Med. 2014;65:33–48.

19. Thierry AR, et al. Clinical validation of the detection of KRAS and BRAF
mutations from circulating tumor DNA. Nat Med. 2014;20(4):430–5.

20. Cescon DW, Bedard PL. PIK3CA genotype and treatment decisions in
human epidermal growth factor receptor 2-positive breast cancer. J Clin
Oncol. 2015;33(12):1318–21.

21. Morgan SR, et al. Comparison of KRAS mutation assessment in tumor DNA
and circulating free DNA in plasma and serum samples. Clin Med Insights
Pathol. 2012;5:15–22.

22. Van der Auwera GA, et al. From FASTQ data to high confidence variant
calls: the genome analysis toolkit best practices pipeline. Curr Protoc
Bioinformatics. 2013;43:11 10 1-33.

23. Cibulskis K, et al. Sensitive detection of somatic point mutations in impure
and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Chen et al. BMC Bioinformatics (2018) 19:16 Page 11 of 11

	Abstract
	Background
	Result
	Conclusion

	Background
	Implementation
	Overall design
	Main algorithms
	Fixed-length Levenshtein automata
	Rolling hash and kmer2int
	Bloom filter
	Paired-end read merging
	Visualization

	Results and discussion
	Sensitivity and specificity
	Speed and memory usage evaluation
	Limitations and future work

	Conclusion
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

