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Abstract

Background: Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic
concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel
deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks,

with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic
distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the

phylogenetic tree in a Euclidean space.

Results: Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection
of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses.
Classification performance is promising when compared to classical algorithms like Support Vector Machines and
Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron.

Conclusion: Ph-CNN represents a novel deep learning approach for the classification of metagenomics data.
Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following
convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the

case of image data, transparently to the user.
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Background

Biological data is often complex, heterogeneous and hard
to interpret, thus a good testbed for Deep Learning (DL)
techniques [1]. The superiority of deep neural network
approaches is acknowledged in a first group of biologi-
cal and clinical tasks, with new results constantly flowing
in in the literature [2—4]. However, DL is not yet a “silver
bullet” in bioinformatics; indeed a number of issues are
still limiting its potential in applications, including limited
data availability, result interpretation and hyperparame-
ters tuning [5]. In particular, DL approaches has so far
failed in showing an advantage in metagenomics, either
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in terms of achieving better performance or detecting
meaningful biomarkers. This lack of significant results
led Ditzler and coauthors [6] to state that deep learning
“may not be suitable for metagenomic application”; never-
theless, novel promising attempts have recently appeared
[7, 8]. With a slight abuse of notation, in what follows
we use the more common term metagenomics even in
the 16S metabarcoding case, following the notation of the
MetaHIT paper [9] and the official Illumina documenta-
tion [10].

Unique among other omics, metagenomics features
are endowed with a hierarchical structure provided by
the phylogenetic tree defining the bacterial clades. In
detail, samples are usually described by features called
Operational Taxonomic Units (OTU). For each OTU, its
position as a leaf of the phylogenetic tree and its abun-
dance value in the sample are automatically extracted by
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bioinformatics analysis. In this work we exploit this hierar-
chical structure as an additional information for the learn-
ing machine to better support the profiling process: this
has been proposed before in [11, 12], but only in shallow
learning contexts, to support classification or for feature
selection purposes. We aim to exploit the phylogenetic
structure to enable adopting the Convolutional Neural
Network (CNN) DL architecture otherwise not useful for
omics data: we name this novel solution Ph-CNN. Indeed
CNNes are the elective DL method for image classification
[13, 14] and they work by convolving subsets of the input
image with different filters. The operation is based on the
matricial structure of a digital image and, in particular, the
concept of neighbours of a given pixel. Using the same
architecture for non-image data requires the availability of
an analogous proximity measure between features.

In the metagenomics case, such measure can be inher-
ited by the tree structure connecting the OTUs and the
neighbourhood are naturally defined once an approprieate
tree distance between two OTUs is defined. In this paper,
we adopt the patristic distance, i.e., the sum of the lengths
of all branches connecting two OTUs on the phyloge-
netic tree [15]. By definition, the output of a CNN consists
of linear combinations of the original input features: this
implies that, if Ph-CNN includes more CNN layers, the
problem of finding the neighbours of a OTU is shifted
into the hardest task of finding the neighbours of a linear
combination of OTUs. The workaround here is map-
ping OTUs into points of a k-dimensional metric space
preserving distances as well as possible via a MultiDimen-
sional Scaling (MDS) projection [16]: the use of MDS is
allowed because the patristic distance is Euclidean [17].
A further refinement is provided by sparsifying MDS via
regularized low rank matrix approximation [18] through
the addition of the smoothly clipped absolute deviation
penalty [19], tuned by cross-validation. A caveat: different
topologies of the phyogenetic tree lead to different dis-
tance matrices. As pointed out in [20], different softwares
can produce very different topologies, thus the choice of
the software and its version in the whole metagenomic
pipeline play a critical role here as a relevant source of
variability, and this is true for all the steps throughout the
whole preprocessing workflow.

The convolutional layer combined with the neighbours
detection algorithm is operatively implemented as a novel
Keras layer [21] called Phylo-Conv. Ph-CNN consists of
a stack of Phylo-Conv layers first flattened then termi-
nating with a Fully Connected (Dense) and a final clas-
sification layer. The experimental setup is realized as a
10x5-fold cross-validation schema with a feature selection
and ranking procedure, implementing the Data Analysis
Protocol (DAP) developed within the US-FDA led ini-
tiatives MAQC/SEQC [22, 23], to control for selection
bias and other overfitting effects and warranting honest
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performance estimates on external validation data sub-
sets. Top ranking features are recursively selected as the k-
best at each round, and finally aggregated via Borda algo-
rithm [24]. Model performance is computed for increasing
number of best ranking features by Matthews Correlation
Coefficient (MCC), the measure that better convey in an
unique value the confusion matrix of a classification task,
even in the multiclass case [25—-27]. Experiments with ran-
domized features and labels are also performed as model
sanity check.

We demonstrate Ph-CNN characteristics with exper-
iments on both synthetic and real omics data. For the
latter type, we consider Sokol’s lab data [28] of micro-
biome information for 38 healthy subjects (HS) and 222
inflammatory bowel disease (IBD) patients. The bacte-
rial composition was analysed using 16S sequencing and
a total number of 306 different OTUs was found. IBD is
a complex disease arising as a result of the interaction
of environmental and genetic factors inducing immuno-
logical responses and inflammation in the intestine and
primarily including ulcerative colitis (UC) and Crohn’s
disease (CD). Both disease classes are characterized by
two conditions: flare (f), when symptoms reappear or
worsen, and remission (r), when symptoms are reduced
or disappear. Finally, since CD can affect different parts
of the intestine, we distinguish ileal Crohn’s disease (iCD)
and colon Crohn’s disease (cCD). Note however that the
number of non zero features varies for the different tasks,
(defined by disease, condition site) since some features
may vanish on all samples of a class.

Synthetic data are constructed mimicking the struc-
ture of the IBD dataset. They are generated as compo-
sitional data from multivariate normal distributions with
given covariances and means: in particular, to provide
different complexity levels in the classification task, four
different instances of data are generated with different
ratios between class means. On both data types, the Ph-
CNN architecture than compared with state-of-art shal-
low algorithms as Support Vector Machines (SVMs) and
Random Forest (RF), and with alternative neural networks
methods such as Multi-Layer Perceptron (MLPNN).

Moreover, the bacterial genera detected as top discrim-
inating features are consistent with the key players known
in the literature to play a major role during the IBD pro-
gression. Since the direct use of Ph-CNN on the IBD
dataset leads to overfitting after few epochs due to the
small sample size, the IBD dataset is used in a transfer
learning (domain adaptation) task.

Finally, although described and demonstrated on bac-
terial metagenomics, Ph-CCN can be applied to every
metagenomics datasets whose features are associated to a
taxonomy and thus to a tree structure, as in the case of
metagenomics of relatively large eukaryotes now appear-
ing in the literature [29].



Fioravanti et al. BVIC Bioinformatics 2018, 19(Suppl 2):49

A preliminary version of the method has been presented
as the M.Sc. thesis [30].

Methods

Ph-CNN

The Ph-CNN is a novel DL architecture aimed at effec-
tively including the phylogenetic structure of metage-
nomics data into the learning process. In detail, Ph-CNN
takes as input both the OTU abundances table and the
OTU distance matrix described hereafter and provides as
output the class of each sample. The core of the network
is the Phylo-Conv layer, a novel Keras [21] layer coupling
convolution with the neighbours detection. In a generic
Phylo-Conv layer, the structure input is represented by a
collection of meta-leaves, i.e. linear combinations of the
leaves of the original tree; for the first Phylo-Conv layer,
the structure input is simply the original set of leaves
(OTUs, in the metagenomic case). The neighbour detec-
tion procedure identifies the k-nearest neighbours of a
given metaleaf: the linear combination of the abundances
of the corresponding OTUs is then convolved with the fil-
ters by the CNN. The core ingredient is the choice of a
metric on the phylogenetic tree [31, 32] quantifying the
distance between two leaves on the tree. In the current
case, we choose the patristic distance [15], i.e., the sum
of the lengths of all branches connecting two OTUs. In
Fig. 1 we show how to compute the patristic distance
between two leaves in a tree. To deal with the problem
of finding neighbours for linear combinations of leaves,
we map the discrete space of the set of leaves into an
Euclidean space of a priori chosen dimension, by asso-
ciating each leaf to a point P; in the Euclidean space
with variable Euclidean coordinates preserving the tree
distance as well as possible. The algorithm used for this
mapping is the metric Multidimensional Scaling (MDS)

Page 3 of 54

[16], whose use is allowed because the square root v/ dTree
of the patristic distance in Fig. 1 is euclidean [17], that is,
the matrix (P; - P)) is positive semidefinite. Thus, given a
linear combination of OTUs, it is possible to compute its
k-nearest neighbours as the k-nearest neighbours of the
corresponding linear combination of projected points P;:
in all experiments, the number of neighbours k is set to
16. The selected neighbours are then convolved with the
16 filters on the CNN. The Phylo-Conv is then repeated;
finally, the terminating layers of the Ph-CNN are a Max-
Pooling, then a Flatten layer and, finally, a Fully Connected
with 64 neurons (changed to 128 for the transfer learn-
ing experiments) and a 0.25 Dropout. Each convolutional
layer has a Scaled Exponential Linear Units (SELU) [33] as
the activation fuction and the dense layer in transfer learn-
ing experiments uses a sigmoid activation function. Adam
[34] is used as optimizer with learning rate 0.0005.

Experimental setup

To ensure predictive power and limit overfitting effect,
the experimental framework is structured following the
guidelines recommended by the US-FDA led studies
MAQC/SEQC [22, 23] that investigated the development
of predictive models for the analysis of high-throughput
data. In particular, the Ph-CNN (shown in Fig. 2) becomes
the core of an experimental setup designed according
to the DAP shown in Fig. 3, based on 10 repetitions
of a 5-fold cross validation. In detail, the dataset is
first partitioned into a non overlapping training set and
test set, preserving the original stratification, i.e., the
ratio between sample size across classes. In the exper-
iments described hereafter, the training set size is 80%
of the original dataset. Then the training set undergoes
10 rounds of 5-fold stratified cross validation, with Ph-
CNN as the classifier and k-Best as the feature selection

ROOT

Fig. 1 Patristic distance on a tree
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Fig. 2 The structure of Ph-CNN. In this configuration, Ph-CNN is composed by two PhyloConv layers followed by a Fully Connected layer before decision

algorithm, with ANOVA F-value as the ranking score.
At each round, several models are built for increasing
number of ranked features (in this case, 25%, 50%, 75%
and 100% of the total features) using Matthews Corre-
lation Coefficient (MCC) [25, 26] as the performance
measure. MCC is rated as an elective choice [22, 23] for
effectively combining into a single figure the confusion
matrix of a classification task, and hence for evaluating

classifiers’ outcomes even when classes are imbalanced.
Originally designed for binary discrimination, a multi-
class version has also been developed [27, 35]. MCC
values range between -1 and 1, where 1 indicates per-
fect classification, -1 perfect misclassification and 0 for
coin tossing or attribution of every samples to the largest
class. The lists of ranked features produced within the
cross-validation schema are then fused into a single
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ranked list using the Borda method [36-38]. The subset
of the fused list of ranked featured corresponding to the
higher MCC value is selected as the optimal set of dis-
criminating features for the classification tasks. The fused
list is further used to build the models for increasing num-
ber of features on the validation set (sometimes called the
external validation set, to avoid ambiguities with the inter-
nal validation sets created at each CV round). Finally, as
sanity check for the procedure, the same methodology is
applied several times on instances of the original dataset
after randomly permuting the labels (random labels in
Fig. 3) and picking up random features instead of select-
ing them on the basis of the model performances (random
features in Fig. 3): in both cases, a procedure unaffected by
systematic bias should return an average MCC close to 0.

The IBD dataset

The IBD dataset has been originally published in [28] for
a study aimed at investigating correlation between bac-
teria and fungal microbiota in different stages of Inflam-
matory Bowel Disease. IBD is a clinical umbrella term
defining a group of inflammatory conditions of the diges-
tive tract, induced by the interactions of environmental
and genetic factors leading to immunological responses
and inflammation in the intestine: Ulcerative colitis (UC)
and Crohn’s disease (CD) are the two main conditions.
The onset of bacterial dysbiosis of the gut microbiota
has recently been observed in patients affected by IBD:
a decrease in the abundance of Firmicutes phylum and
an increase for Proteobacteria phylum, albeit the exact
pathogenesis of IBD remains unknown [39, 40].

The IBD dataset includes both fungal and bacterial
abundances from faecal samples of 38 healthy subjects
(HS) and 222 IBD patient, collected at the Gastroenterol-
ogy Department of the Saint Antoine Hospital (Paris,
France). In the present study, we only consider the bac-
terial data subset on which we have a deeper analysis
experience.

IBD patients are divided in two classes according to
the disease phenotype UC and CD. Each disease class is
further characterized by two conditions: flare (f), if symp-
toms reappear or worsen, and remission (r), if symptoms
are reduced or disappear. Moreover, since CD can affected
different parts of the intestine we further partition the
data subset into ileal Crohn’s disease (iCD) and colon
Crohn’s disease (cCD). In Table 1 we summarize the sam-
ple distribution. In terms of learning tasks, we investigate
the six classification tasks discriminating HS versus the
six IBD partitions UCf, UCr, CDf, CDr, iCDf and iCDr, as
graphically shown in Fig. 4.

The bacterial composition is analysed using 16S rRNA
sequencing, demultiplexed and quality filtered using the
QIIME 1.8.0 software [41, 42]; minimal sequence length
was 200pb. Sequences are assigned to OTUs using the
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Table 1 Patient stratification in the IBD dataset
HS IBD patients
CDf CDr ucf UcCr
iCDf cCDf iCDr cCDr
38 44 16 59 18 41 44
14.6% 16.9% 6.1% 22.7% 6.9% 15.8% 16.9%

UCLUST [43] algorithm with 97% threshold pairwise
identity and taxonomically classified using Greengenes
reference database [44]. Samples with less than 10,000
sequences are excluded from analysis. The number of dif-
ferent OTUs found is 306: each OTU in the data sets
is associated to the sequences with the same taxonomy.
Among those sequences, the one with the highest median
abundance across samples is chosen as the OTU represen-
tative. Since many sequences are not in the Greengenes
database, OTUs can have an unassigned taxonomy: in this
case, the OTU is removed from the analysis. The actual
number of OTUs used in the analyses is 259: for some
discrimination tasks, however, the number of features is
smaller, since some of them are all zeros for all samples in
a class. The distance between the OTUs is inferred first
by aligning sequences using the NAST algorithm [45, 46]
and then by building the phylogenetic tree via the
RAxML algorithm [47]. In detail, RaxML has been used
in the rapid bootstrap mode with 100 runs, searching
for bestscoring Maximum Likelihood tree (best tree). No
statistical filter has been applied to the node/edge qual-
ity value of the obtained tree. Low supported branches
are used as they appear in the RaxML best tree out-
put. The phylogenetic tree for the IBD dataset result-
ing from the described procedure is shown in Fig. 5:
largest abundance values of gut microbiota belong to
Firmicutes (red), Bacteroidetes (green) and Proteobacte-
ria (blue), consistently with the published literature. As
pointed out already, uncertainties in topology may cre-
ate fake distances which will ultimately negatively affect
all downstream analyses, with software variability playing
a major role [20]. While our choice here is to follow the
processing pipeline in [28] to ensure data reproducibil-
ity, a stronger support in building the phylogenetic tree
can be obtained by using alternative algorithms, such as
the maximum-likelihood nearest-neighbor interchanges
implemented in FastTree2 [48]. Analogous considera-
tions can be formulated for all steps of the preprocessing
pipeline: for instance, QIIME is now at version 1.9.1, with
major release QIIME 2 scheduled for January 2018. More-
over, the Greengenes database is actually outdated, so
switching to another reference database, such as SILVA
[49], for the OTU definition would improve the reliability
of the process. Finally, the choice to exclude taxonom-
ically unclassified sequences from successive analysis is
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arbitrary: excluding OTU sequences after a chimera- § = {x = (xbxz, L. ,xp) c (]Ra‘)P with; Zf:l xj = 1},
removal procedure would result in a more precise set of
OTUs.

whose structure resembles the IBD data.

Note that the application of standard multivariate
statistical procedures on compositional data requires
The synthetic datasets adopting adequate invertible transformation procedures
The synthetic datasets are generated as compositional to preserve the constant sum constrain [50]: a stan-
data, i.e., vectors lying in the p-dim Aitchison simplex dard map is the isometric log ratio ilr [51], projecting
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Fig. 5 The phylogenetic tree for the IDB dataset
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Table 2 Dataset D: classification performance of Ph-CNN Table 3 Dataset D: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. UCf classification task ~ compared to other classifiers on Healthy vs. UCr classification task
ucf Ph-CNN LSVM Ucr Ph-CNN LSVM
p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
63 0.794 0.785 0.803 0.799 0.793 0.803 60 0.861 0.855 0.867 0.811 0.807 0.815
125 0.852 0.845 0.860 0.861 0.857 0.865 119 0.893 0.888 0.899 0.866 0.862 0.870
188 0.920 0916 0.925 0924 0.921 0.926 178 0.906 0.900 0.911 0.892 0.888 0.895
250 0.940 0.937 0.944 0.943 0.941 0.945 237 0.920 0916 0.924 0.917 0914 0.920
MLPNN RF MLPNN RF
p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
63 0.701 0.692 0.721 0.729 0.723 0.736 60 0.873 0.869 0443 0.797 0.792 0.801
125 0.838 0.834 0.842 0.843 0.837 0.849 119 0.877 0.873 0.877 0.799 0.794 0.803
188 0.865 0.861 0.869 0.902 0.899 0.906 178 0.859 0.855 0.880 0.791 0.787 0.794
250 0.898 0.894 0.901 0.903 0.900 0.907 237 0.849 0.844 0.854 0.790 0.786 0.795
The performance measure is MCC, with 95% studentized bootstrap confidence The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%} intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support of total number of features for each task. Comparing algorithms are linear Support

Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN) Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)
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Table 4 Dataset D: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. CDf classification task
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Table 6 Dataset D: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. iCDf classification task

CDf Ph-CNN LSYM iCDf Ph-CNN LSVYM

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
65 0.785 0.775 0.795 0.781 0.776 0.785 62 0.781 0.772 0.790 0.804 0.799 0.808
130 0.832 0.825 0.840 0.833 0.829 0.838 124 0.863 0.854 0871 0.861 0.858 0.865
195 0.896 0.891 0.901 0910 0.907 0912 186 0.922 0918 0.926 0921 0919 0.924
259 0927 0.924 0.930 0.920 0918 0923 247 0.944 0.941 0.947 0.941 0.939 0.942

MLPNN RF MLPNN RF

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
65 0.604 0.593 0614 0.764 0.760 0.769 62 0.845 0.840 0.849 0.748 0.743 0.753
130 0.821 0817 0.825 0.805 0.800 0.810 124 0.889 0.886 0.893 0.808 0.803 0814
195 0.830 0.825 0.836 0.863 0.860 0.867 186 0.879 0.875 0.883 0.880 0.877 0.883
259 0.858 0.854 0.862 0.880 0877 0.883 247 0.901 0.899 0.904 0.890 0.887 0.893

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

the p-dimensional Aitchison simplex isometrically to a
p — l-dimensional euclidian vector. Transforma-
tions like ilr allow using unconstrained statistics
on the transformed data, with inferences mapped
back to original compositional data through the
inverse map.

The construction of the synthetic data starts from the
IDB dataset, and in particular from the two subsets of
the HS and CDf samples (by abuse of notation, we use
the same identifier for both the class and the composi-
tional data subset). Classes HS and CDf are defined by

Table 5 Dataset D: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. CDr classification task

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min ClI, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

259 features (OTU), and they include 38 and 60 samples
respectively. The key step is the generation of the synthetic
HSY and CDfY subsets, sampled from multivariate normal
distributions with given covariances and mean.
Operatively, let HS' and CDf the ilr-transformed HS
and CDf subsets. Then compute the featurewise mean
wHS") = (n1(HS), ua(HS), ..., uasg(HS')) and T(HS')
the covariance matrix. Analogously compute p(CDf’) and
¥ (CDf). Consider now the matrix HS, defined by sub-
stracting to each row of HS' the vector of the means:
(HS&) = (HS);. — u(HS'), and define analogousy the

i

Table 7 Dataset D: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. iCDr classification task

CDr Ph-CNN LSVM iCDr Ph-CNN LSVM

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
65 0.714 0.705 0.723 0.740 0.734 0.746 65 0.753 0.744 0.763 0.773 0.769 0.779
129 0.799 0.793 0.806 0.802 0.798 0.808 129 0.830 0.823 0.837 0.834 0.830 0.837
193 0.850 0.844 0.856 0.860 0.857 0.864 193 0.884 0.878 0.889 0.893 0.891 0.896
257 0.890 0.884 0.895 0.880 0.877 0.882 257 0.910 0.905 0915 0.907 0.904 0.909

MLPNN RF MLPNN RF

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
65 0.498 0473 0.521 0.688 0.682 0.695 63 0.807 0.802 0.812 0.724 0.719 0.729
129 0.783 0.778 0.788 0.744 0.740 0.784 125 0.822 0816 0.827 0.794 0.788 0.800
193 0.766 0.759 0.773 0.762 0.756 0.767 188 0.831 0.827 0.835 0812 0.807 0.818
257 0.788 0.782 0.794 0.765 0.761 0.771 250 0.837 0.831 0.842 0.820 0.816 0.825

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)
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Table 8 Dataset D: classification performance of Ph-CNN
compared to other classifiers on the external validation dataset
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Table 10 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. UCr classification task

Task Ph-CNN LSYM MLPNN RF ucr Ph-CNN LSVM
ucf 0.946 0.934 0.898 0.869 p MCC min Cl max Cl MCC min Cl max Cl
Ucr 0.897 0.904 0.897 0756 60 0445 0375 0.517 0.509 0.221 0.384
CDf 0.926 0.935 0.884 0.859 119 0464 0.393 0.537 0.533 0.238 0357
CDr 0.888 0.888 0.821 0.722 178 0444 0372 0.520 0.519 0328 0.449
iCDf 0931 0.943 0.905 0863 237 0.346 0.283 0.536 0408 0.303 0420
iCDr 0.901 0910 0.846 0.778 MLPNN RF
p MCC min Cl max Cl MCC min Cl max Cl
matrix CDﬂ) by (CDfE))i. _ (CDF),’. _ /,L(HS/). Intro- 60 0415 0350 0476 0.508 0425 0.584
duce the projections Py = H86 . (,u(HS’) _ ,u(CDf’)) 119 0.528 0463 0.596 0.455 0.387 0.525
and Pepp = CDf6 . (M(HS/) — ,u(CDf’)), then define 178 0.538 0471 0610 0435 0.363 0.504
237 0489 0417 0.557 0.400 0337 0463

2 (Pug)?+ Y80 (Ppp)i—(1i(CDF) — 1 (HS')))2 and

now o =

38460
i w. Fix « € R} and define mys =
w(HS") _ n(CDf)
wt+ oo mey and mepe = i+ a0 cnpy- Then,

define HS'; as the dataset collecting nyg instances from
a multivariate normal distribution with mean myg and
covariance X (HS') and analogously CDf;. The two syn-
thetic data subsets HSY and CDf are defined by taking
ilr-counterimages: HS? = ilr~! (HS'Y) and CDf? =
ilr 1 (CDf";). Finally, the synthetic dataset D, is then
obtained as the union HSY U CDfY. Setting the parameter
a, we provide different complexity levels in the classifi-
cation task. For instance, for « = 0 the means of the
two classes in the synthetic dataset Dy are the same,
while for « = 1 the means of the two classes HS and
CDf are the same as in the IBD dataset; larger values

Table 9 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. UCf classification task

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

of a correspond to easier classification tasks. Principal
component analysis of the four datasets Dy, D1, Dy, D3
with same sample size as IBD dataset is displayed in
Fig. 6.

With the same procedure, a synthetic dataset D is cre-
ated with 10,000 samples and « = 1, preserving class size
ratios.

In practice, generation of the synthetic datasets was
performed using the R packages compositions [52] and
mvtnorm [53].

Table 11 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. CDf classification task

uct Ph-CNN LSVM CDf Ph-CNN LSVM

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
63 0.659 0.604 0.709 0.510 0.449 0573 65 0.613 0.555 0.665 0419 0.363 0472
125 0.668 0.595 0.734 0438 0.368 0.500 130 0.617 0.549 0.601 0326 0.252 0.394
188 0.650 0.599 0.707 0.541 0438 0.604 195 0.630 0.560 0.682 0.647 0.595 0.691
250 0.628 0.567 0.687 0.565 0.510 0.619 259 0572 0.501 0.620 0.595 0.545 0.642

MLPNN RF MLPNN RF

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
63 0.689 0.629 0.743 0.741 0.698 0.783 65 0610 0.549 0.666 0.677 0618 0.728
125 0.644 0.582 0.703 0.742 0.690 0.792 130 0.620 0.551 0.685 0.706 0.648 0.758
188 0.570 0.496 0.644 0.735 0.680 0.784 195 0.601 0.534 0.667 0.739 0.685 0.788
250 0.606 0.547 0.667 0.760 0.707 0.816 259 0.648 0.589 0.703 0.720 0.667 0.768

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)
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Table 12 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. CDr classification task
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Table 14 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. iCDr classification task

CDr Ph-CNN LSVM iCDr Ph-CNN LSVM

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
65 0.241 0.172 0311 0.138 0.073 0.198 65 0.537 0480 0.601 0338 0.277 0409
129 0.232 0.167 0.295 0.089 0.028 0.151 129 0.522 0453 0.595 0319 0.254 0.385
193 0.202 0.131 0.273 0.169 0.101 0.236 193 0.556 0492 0617 0377 0315 0437
257 0.218 0.158 0.278 0.178 0.107 0.251 257 0477 0411 0.544 0438 0378 0492

MLPNN RF MLPNN RF

p MCC min Cl max Cl MCC min Cl max Cl p MCC min Cl max Cl MCC min Cl max Cl
65 0.235 0. 0.306 0488 0437 0.541 63 0.526 0475 0.581 0.552 0492 0612
129 0.275 0.199 0.348 0432 0373 0485 125 0.558 0493 0.623 0.563 0516 0.609
193 0.243 0.172 0315 0402 0.341 0464 188 0459 0.388 0.527 0.566 0516 0616
257 0.233 0.160 0.305 0.398 0331 0464 250 0.529 0462 0.598 0.539 0482 0.596

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

Results and discussion

The 10 x 5—fold CV DAP has been applied on instances of
the synthetic datasets and on the IBD datasets, comparing
the performance with standard (and shallow) learning
algorithms such as linear Support Vector Machines (SVM)
and Random Forest (RF), and with a standard Multi Layer
Perceptron (MLPNN) [54]. As expected [55], no classifi-
cation task can be reliably tackled by Ph-CNN using the
IBD dataset alone: the very small sample size causes the
neural network to overfit after just a couple of epochs. To
overcome this issue we explore the potentialities of trans-
fer learning.

Table 13 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on Healthy vs. iCDf classification task

iCDf Ph-CNN LSVM

p MCC min Cl max Cl MCC min Cl max Cl
62 0.704 0.655 0.753 0.534 0484 0.583
124 0.702 0.642 0.760 0414 0.346 0.482
186 0.680 0.614 0.738 0.662 0.605 0.718
247 0.681 0.614 0.739 0.561 0.507 0.621

MLPNN RF

p MCC min Cl max Cl MCC min Cl max Cl
62 0.679 0.622 0.739 0.787 0.746 0.831
124 0.690 0.634 0.743 0.811 0.766 0.854
186 0.685 0.630 0.742 0.791 0.741 0.836
247 0.708 0.652 0.764 0.775 0.730 0.820

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min Cl, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

The performance measure is MCC, with 95% studentized bootstrap confidence
intervals (min ClI, max Cl). Models are computed for p = {25%, 50%, 75% and 100%}
of total number of features for each task. Comparing algorithms are linear Support
Vector Machines (LSVM), Random Forest (RF) and MultiLayer Perceptron (MLPNN)

As a first experiment, we apply the DAP on D. In
this case, the SELU activation function is used for every
layer. The results of the Ph-CNN DAP on D are listed
in Tables 2, 3, 4, 5, 6, 7 (internal validation) and Table 8
(external validation) on the six classification tasks Healthy
vs. {UCf, UCr, CDf, CDr, iCDf and iCDr}; MCC on DAP
internal validation is shown with 95% studentized boot-
strap confidence intervals [56].

The second experiment is based on a domain adapta-
tion strategy. The Ph-CNN is first trained on the synthetic
dataset D, then all layer but the last one are frozen, the
last layer is substituted by a 2-neurons Dense layer and
then retrained on the IBD dataset. Since only the last layer
is trained in the second step, the term domain adapta-
tion is best describing the methodology rather than the
more generic transfer learning. Here, the activation func-
tion is the ReLU for every layer. The results of the Ph-CNN
DAP together with the comparing classifiers are listed
in Tables 9, 10, 11, 12, 13, 14 (internal validation) and
Table 15 (external validation).

Table 15 Dataset D on IBD: classification performance of Ph-CNN
compared to other classifiers on the external validation dataset

Task Ph-CNN LSVM MLPNN RF

ucf 0.741 0.740 0.666 0.699
UCr 0.583 0.497 0.608 0.678
CDf 0.858 0.642 0.705 0.707
CDr 0.853 0.654 0.654 0.597
iCDf 0.842 0418 0.401 0.920
iCDr 0.628 0414 0414 0418
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iCDf Data
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As an observation, Ph-CNN tends to misclassify
more the samples in class Healthy, rather than those
in the other class, for each classification task. In

Fig. 7 we show the embeddings of the original fea-
tures at 6 different levels (after initial input and after
5 PhyloConv filters) for the iCDf task (IBD dataset)
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by projecting them in two dimensions via t-distributed
Stochastic Neighbor Embedding (t-SNE) [57] with per-
plexity = 5 and 5,000 iterations. While at input level
the problem seems hardly separable, the classes tend
to form distinct clusters during the flow through
convolutional filters applied on OTUs close in the
taxonomy.

Computational details The Ph-CNN is implemented as
a Keras v2.0.8 layer, while the whole DAP is written in
Python/Scikit-Learn [58]. All computations were run on
a Microsoft Azure platform with 2x NVIDIA Tesla K80
GPUs.

Conclusions

We introduced here Ph-CNN, a novel DL approach for the
classification of metagenomics data exploiting the hierar-
chical structure of the OTUs inherited by the correspond-
ing phylogenetic tree. In particular, the tree structure is
used throughout the prediction phase to define the con-
cept of OTU neighbours, used in the convolution process
by the CNN. Results are promising, both in terms of learn-
ing performance and biomarkers detection. Extensions of
the Ph-CNN architecture are addressing the testing of
different tree distances, optimization of neighbours detec-
tion and of the number of Phylo-Conv layers. Further,
different feature selection algorithms, either generic or
DL-specific can be adopted [59-61]. Improvements are
expected on the transfer learning and domain adaptation
procedures, such as learning on synthetic data and testing
on metagenomics, and applying to larger datasets. Finally,
beyond the metagenomics applications, we observe that
Ph-CNN is a general purpose algorithm, whose use can
be extended to other data for which the concept of near-
est features can be defined. This is true for all data types
that are metrizable, i.e. whenever an embedding exists of
the features into a metric space. As an example, we are
currently investigating the transcriptomics case, where a
grounded distance between genes can be defined by mix-
ing the data-independent Gene Ontology semantic simi-
larity with the correlation between gene expression in the
studied dataset [62] through a dedicated multilayer net-
work structure. From a general perspective, the metage-
nomics and transcriptomics case represent just the first
steps towards a more general strategy for effectively
exploiting the potential of CNNs, especially for omics
data.
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