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Abstract

Background: Prioritizing disease genes is trying to identify potential disease causing genes for a given phenotype,
which can be applied to reveal the inherited basis of human diseases and facilitate drug development. Our motivation
is inspired by label propagation algorithm and the false positive protein-protein interactions that exist in the dataset.
To the best of our knowledge, the false positive protein-protein interactions have not been considered before in
disease gene prioritization. Label propagation has been successfully applied to prioritize disease causing genes in
previous network-based methods. These network-based methods use basic label propagation, i.e. random walk, on
networks to prioritize disease genes in different ways. However, all these methods can not deal with the situation in
which plenty false positive protein-protein interactions exist in the dataset, because the PPI network is used as a fixed
input in previous methods. This important characteristic of data source may cause a large deviation in results.

Results: A novel network-based framework IDLP is proposed to prioritize candidate disease genes. IDLP effectively
propagates labels throughout the PPI network and the phenotype similarity network. It avoids themethod falling when
few disease genes are known. Meanwhile, IDLP models the bias caused by false positive protein interactions and other
potential factors by treating the PPI network matrix and the phenotype similarity matrix as the matrices to be learnt.
By amending the noises in training matrices, it improves the performance results significantly. We conduct extensive
experiments over OMIM datasets, and IDLP has demonstrated its effectiveness compared with eight state-of-the-art
approaches. The robustness of IDLP is also validated by doing experiments with disturbed PPI network. Furthermore,
We search the literatures to verify the predicted new genes got by IDLP are associated with the given diseases, the
high prediction accuracy shows IDLP can be a powerful tool to help biologists discover new disease genes.

Conclusions: IDLP model is an effective method for disease gene prioritization, particularly for querying phenotypes
without known associated genes, which would be greatly helpful for identifying disease genes for less studied
phenotypes.

Availability: https://github.com/nkiip/IDLP
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Background
Disease gene prioritization aims to identify potential dis-
ease causing genes for a query phenotype. The accurate
identification of corresponding disease genes is the first
step toward a systematic understanding of the molecular
mechanisms of a complex disease. Also, it is essential to
know disease-related genes for diagnosis and drug devel-
opment [6]. However, identifying disease-related genes is
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not an easy work, which is still one of the major challenges
in the field of bioinformatics.
With the accumulation of studies on system biology,

researches have shown genes that are physically or func-
tionally close to each other tend to be involved in the same
biological pathways and have similar effects on pheno-
types [9, 22]. Based on such assumption, many network-
based prioritization approaches have been developed to
prioritize candidate genes [12, 13, 16, 26, 30, 31]. Early
algorithms prioritize candidate genes based on their sim-
ilarity to known disease genes [13, 26]. Though such type
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of methods perform well, they still have two limitations.
The first limitation is caused by the fact that these meth-
ods only consider label propagation on homogeneous net-
work (i.e. the PPI network). Thus, thesemethods easily fail
when few disease-related genes are known. Later, methods
that integrate heterogeneous networks have been pro-
posed. By propagating label on both PPI network and
phenotype similarity network [12, 16, 31], the predic-
tion results have been boosted. Nevertheless, there is
another limitation. As we know, high-throughput tech-
nologies have produced vast amounts of protein-protein
interaction data. However, imprecise measuring technol-
ogy brings a large number of false-positives in current
available protein-protein interaction data [19, 20, 28]. Due
to the alternating iterative learning approach adopted by
previous methods [12, 16, 31], the PPI network can only
be used as a fixed input, the false positive interactions
between proteins in the PPI network will introduce a bias,
and these noisy data are likely to result in less satisfying
performance.
To tackle these challenges, we propose an Improved

Dual Label Propagation (IDLP) method. Our motivation
is inspired by label propagation [34] and the false positive
protein-protein interactions in PPI network. Label prop-
agation on homogeneous network and the associations
between genes and phenotypes inspire us to construct
the dual label propagation framework on heterogeneous
network, and the false positive protein-protein interac-
tions inspires us to regard the PPI network as a variable
needed to be learnt rather than a fixed input. We con-
struct a heterogeneous network by connecting the gene
network and the phenotype similarity network with gene-
phenotype associations. The basic label propagation (LP)
[34] framework is extended from the homogeneous net-
work to dual label propagation on the heterogeneous net-
work. Query disease phenotypes and query disease genes
are selected as seed nodes alternatively to propagate labels
on the heterogeneous network. After that, an improved
dual label propagation (IDLP) framework is proposed
to reduce the bias introduced by false positive protein-
protein interactions. The PPI network adjacent matrix is
considered as a variable to be learnt under IDLP frame-
work, its values are amended from noises by optimizing
the loss function of IDLP. In case of overfitting to the
training data, an additional regularization term is intro-
duced to constrain the values in the PPI network matrix
to be consistent with its initial values. The same regu-
larization term is introduced to the phenotype similarity
network as well. The objective matrices are optimized by
minimizing the loss function. Furthermore, we propose
an effective closed-form solution to improve calculation
efficiency.
Our contribution can be summarized in the follow-

ing two parts. 1) It’s the first time that the basic label

propagation is extended from homogeneous networks
to heterogeneous networks by directly modeling the
loss function between labeled data and unlabeled data,
through which it’s possible for us to take additional
constraints into the loss function. On the contrary, alter-
nating iteration strategy adopted by almost all previ-
ous works cannot deal with constraints efficiently. 2)
It’s the first time that false positive PPIs have been
taken into consideration, this bias regularization term
greatly helps us to reduce the disturbance of data and
improves the prediction accuracy in gene-phenotype
prediction task.

Methods
Materials
We downloaded two versions (Aug-2015 version and
Dec-2016 version) of human gene-phenotype associations
fromOMIMdatabase [10]. The Aug-2015 version consists
of 5117 associations between 4392 phenotypes and 3400
genes, and the Dec-2016 version contains 5465 associa-
tions between 4741 disease phenotypes and 3638 genes.
The human protein-protein interaction (PPI) network was
obtained from BioGRID [5] in August 2015. The PPI net-
work contains 356,720 binary interactions between 19,511
genes. The disease phenotype network is an undirected
graph with 8004 vertices representing OMIMdisease phe-
notypes, the disease phenotype similarity between two
phenotypes is calculated by text mining [25]. After fil-
tering out isolated genes and disease phenotypes, we
obtained 4,678/4,801 associations (Aug-2015/Dec-2016)
between 4120 disease phenotypes and 3292 genes, cor-
responding PPI network and disease phenotype simi-
larity network are extracted as well. More information
about the data used in experiments is described in
Table 1.

Table 1 Statistics of Data in Experiments

Statistics Value

Number of genes 3292

Number of phenotypes 4120

Number of gene phenotype associations 4,678/4,801
(Aug-2015/Dec-2016)

Average number of genes per phenotype 1.1354/1.1653
(Aug-2015/Dec-2016)

Average number of phenotypes per gene 1.4210/1.4584
(Aug-2015/Dec-2016)

Percentage of phenotypes that have only 91.87%/94.10%

one disease gene (Aug-2015/Dec-2016)

Percentage of genes that have only one 66.22%/66.74%

interaction phenotype (Aug-2015/Dec-2016)

Sparsity of the PPI matrix (Aug-2015) 99.74%
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Notations
Let n be the number of genes, m be the number of phe-
notypes, W 1 ∈ R

n×n be the binary PPI network, and
W 2 ∈ R

m×m be the phenotype similarity network. W 1
and W 2 are used to construct normalized networks S̄1 =
D− 1

2
1 W 1D

− 1
2

1 and S̄2 = D− 1
2

2 W 2D
− 1

2
2 , and Di (i=1,2) is

a diagonal matrix with the row-sum of corresponding
W i (i=1,2) on the diagonal entries. The known gene-
phenotype associations are represented by a binarymatrix
Ŷ (n×m) with 1 for entries of known associations and 0 oth-
erwise. Let Y be the gene-phenotype associations matrix,
S1, S2 be weighted PPI network and weighted phenotype
similarity network, respectively. Y , S1, S2 are the variables
needed to be learnt. The notations used in the models are
summarized in Table 2.

Problem definition
The goal of disease gene prioritization is trying to iden-
tify potential disease causing genes for a given phenotype.
In our paper, we use variable Y as the gene-phenotype
association matrix to be predicted. When finishing the
optimization of the loss function, the genes with higher
values in Y are predicted to be the potential disease
causing genes for the given phenotype.

Overall objective function
The overall objective function of IDLP is given in Eq. (1),
and it includes �1(Y , S1) and �2(Y , S2), where �1(Y , S1)
is the objective function when label propagation is per-
formed on the PPI network for all query phenotypes by
considering the noises in the PPI network.�2(Y , S2) is the
objective function when label propagation is performed
on the phenotype similarity network for all query genes

Table 2 Notations

NOTATION DESCRIPTION

n Number of genes

m Number of phenotypes

X i• i-th row of matrix X

X•j j-th column of matrix X

W 1 ∈ R
n×n Binary PPI network

W 2 ∈ R
m×m Phenotype similarity network

S̄1 ∈ R
n×n Normalized PPI network

S̄1 = D− 1
2

1 W 1D
− 1

2
1

S̄2 ∈ R
m×m Normalized phenotype similarity network

S̄2 = D− 1
2

2 W 2D
− 1

2
2

Ŷ ∈ R
n×m Known binary gene-phenotype associations for training

Y ∈ R
n×m Gene-phenotype associations matrix to be learnt

S1 ∈ R
n×n Weighted PPI network to be learnt

S2 ∈ R
m×m Weighted phenotype similarity network to be learnt

by considering the noises in the phenotype similarity
network.

L(Y , S1, S2) = �1(Y , S1) + �2(Y , S2)

= tr
(
YT (I − S1)Y

)
+ tr

(
Y (I − S2)YT

)

+ (μ + ζ )||Y − Ŷ ||2F + ν||S1 − S̄1||2F
+ η||S2 − S̄2||2F .

(1)

where μ > 0, ζ > 0, ν > 0, η > 0. In the following sub-
sections, we will explain how �1(Y , S1) and �2(Y , S2) are
derived step by step. We also present a simple and descent
solution of IDLP. Please note the algorithm of IDLP does
not optimize the overall objective function directly, since
variable Y can only be updated by gradient descend,
and it’s very time consuming. In this paper, we optimize
�1(Y , S1) and �2(Y , S2) alternatively to find a suboptimal
solution, by which each variable can be updated with a
closed-form solution.

Dual label propagation on heterogeneous network
We introduce the conventional label propagation algo-
rithm [34]. With a given query phenotype p and the PPI
networkW 1, the objective of label propagation is to learn
an assignment score for each gene with the query phe-
notype p. The score shows how close each gene is to the
query phenotype p. Let ŷ = Ŷ •p, i.e. the p-th column of
the known association matrix Ŷ . The non-zero elements
in ŷ are the initial labels on PPI network for query pheno-
type p. Let y = Y •p, i.e. the p-th column of the association
matrix Y . y is the label score vector of genes for query phe-
notype p needed to be learnt. Label propagation assumes
that genes should be assigned with the similar label scores
if they are connected in the PPI network, which leads to
the following objective function,

�(y) = ∑
i,j

(W 1)ij

(
yi√
Dii

− yj√
Djj

)2
+ μ

∑
i
(yi − ŷi)2

= yT (I − S̄1)y + μ||y − ŷ||2,
(2)

where yi is the i-th element of vector y, ŷi is the i-th
element of vector ŷ. There are two terms in Eq. (2), μ

(μ > 0) is a parameter to balance the contributions of
the two terms. The first term is the Laplacian graph con-
straint, which encourages consistent labeling in the PPI
network. The second term is the regularization term to
keep each node’s label value similar to its initial label value.
Eq. (2) can be extended to predict associations for all the
phenotypes as follows,

�1(Y ) = tr
(
YT (I − S̄1)Y

)
+ μ||Y − Ŷ ||2F . (3)
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On the other hand, with a given query gene g and
phenotype similarity network W 2, the objective of label
propagation is to assign a score for each phenotype with
query gene g, the score shows how close each phenotype is
to gene g. Phenotypes should be assigned with the similar
labels if they have a high score in the phenotype similarity
network for a given gene. Let ẑ = Ŷ g•, i.e. the g-th row of
the known association matrix Ŷ . The non-zero elements
in ẑ is the initial labels on phenotype similarity network
for query gene g. Let z = Y g•, i.e. the g-th row of the
association matrix Y . z is the label vector for query gene g
needed to be learnt. Label propagation on phenotype sim-
ilarity network for a given query gene g can be expressed
as follows,

�(z) = ∑
i,j

(W 2)ij

(
zi√
Dii

− zj√
Djj

)2
+ ζ

∑
i
(zi − ẑi)2

= z(I − S̄2)zT + ζ ||z − ẑ||2,
(4)

where zi is the i-th element of vector z, ẑi is the i-th ele-
ment of vector ẑ. ζ (ζ > 0) is a parameter to balance
the contributions of the two terms in Eq. (4). Similar to
the extension of Eqs. (2), (4) can be extended to predict
associations for all the genes as follows,

�2(Y ) = tr
(
Y (I − S̄2)YT

)
+ ζ ||Y − Ŷ ||2F . (5)

Improved dual label propagation on heterogeneous
network
The false positive protein interactions in the PPI network
indicate that S̄1 contains noises. Therefore an intuitive
idea is to introduce a variable S1, trying to capture the
real interaction relationship of genes. We replace the con-
stant matrix S̄1 with a variable matrix S1 in Eq. (2), we
can get the transformed Laplacian constraint term yT (I −
S1)y, then introduce the regularization term

∑
i,j((S1)ij −

(S̄1)ij)2 to keep the interaction values similar to its initial
values. The noises can be removed by optimizing these
two components in terms of S1. This leads to the following
loss function for a given query phenotype p,

�(y, S1) =yT (I−S1)y+μ||y−ŷ||2+ν
∑
i,j

((S1)ij − (S̄1)ij)2

= yT (I − S1)y + μ||y − ŷ||2 + ν||S1 − S̄1||2F ,
(6)

Eq. (6) can be extended to predict associations with all
the phenotypes as follows,

�1(Y , S1) = tr
(
YT (I − S1)Y

)

+ μ||Y − Ŷ ||2F + ν||S1 − S̄1||2F .
(7)

To minimize the loss function in Eq. (7), an alternative
iterative schema is adopted. It solves the problem with

respect to one variable while fixing other variables. The
loss function in Eq. (7) is not convex on Y and S1 jointly,
but it is convex on one variable with the other fixed.
In terms of Eq. (7), the closed form solutions of Y and

S1 can be expressed as,

Y ∗ = β(I − αS1)−1Ŷ

α = 1
1+μ

, β = μ
1+μ

S∗
1 = S̄1 + γYYT , γ = 1

2ν

(8)

After the label propagation on the PPI network with
modeling the noises, the result is shown in Fig. 1b. Besides
the values of Y , the weight of each edge in the PPI network
S1 has been updated as well.
The phenotype similarity matrix S̄2 can also be consid-

ered as inaccurate similarity relationships of phenotypes.
Then we introduce a variable S2, trying to capture the real
relationships of phenotypes. At first, we replace the con-
stant matrix S̄2 with a variable matrix S2 in Eq. (4), we
can get the transformed Laplacian constraint term z(I −
S2)zT , then introduce the regularization term

∑
i,j((S2)ij−

(S̄2)ij)2 to keep the predicted similarity values similar to
its initial values. The noises can be removed by optimiz-
ing these two components in terms of S2. This leads to the
following loss function for a given query gene g,

�(z, S2) =z(I − S2)zT+ζ ||z−ẑ||2+η
∑
i,j

(
(S2)ij−(S̄2)ij

)2

= z(I − S2)zT + ζ ||z − ẑ||2 + η||S2 − S̄2||2F ,
(9)

Eq. (9) can be extended to predict associations for all the
genes as follows,

�2(Y , S2)= tr(Y (I−S2)YT )+ζ ||Y−Ŷ ||2F+η||S2 − S̄2||2F .
(10)

In terms of Eq. (10), the closed form solutions of Y and
S2 can be expressed as,

Y ∗ = β
′ ˆxY (I − α

′S2)−1

α
′ = 1

1+ζ
, β

′ = ζ
1+ζ

S∗
2 = S̄2 + γ

′YTY , γ
′ = 1

2η

(11)

Figure 1d shows the result after the label propaga-
tion on phenotype network by considering the noises
in the phenotype similarity network. Besides the val-
ues of Y , the phenotype similarity network S2 has also
been updated. The illustration of the IDLP is shown
in Fig. 1. The algorithm details of IDLP are shown in
Algorithm 1.
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Fig. 1 Illustration of the IDLP framework. Square nodes represent phenotypes, all pairwise phenotype similarity relationships make up the
phenotype similarity network. Circular nodes represent genes, all pairwise gene interactions make up the PPI network. Nodes surrounded by oval
are query phenotypes (or genes), Nodes surrounded by triangle are seed genes (or phenotypes). a For a query phenotype p, the corresponding
related genes are selected as seed nodes. b By modeling the noises in the PPI network, the interactions between gene nodes have been changed.
In order to better explain the situation, we consider two extreme cases here, i.e., edge deletion and edge addition. During the optimization of IDLP,
the interaction between gene g and f has been added, the interaction between gene d and e has been removed. The changes of the PPI network
result in a high score on gene g, because gene g directly receive score from seed gene f. What’s more, gene d no longer receives scores from gene e,
which indirectly results in gene d receives more support from gene e. c For a query gene g, the corresponding related phenotypes are selected as
seed nodes. d By modeling the noises in the phenotype network, the similarity scores between phenotypes have been changed. The edge addition
between phenotype r and p and edge deletion between phenotype r and t result in a high score on phenotype p

Algorithm 1 IDLP
Input:

Ŝ1: normalized PPI network
Ŝ2: normalized phenotype similarity network
Ŷ : known binary gene-phenotype associations for
training
Y : initialized with random values
α, β , γ , α′ , β ′ , γ ′ : hyper-parameters

Output: model parameters Y , S1, S2
1: repeat
2: S1 ← S̄1 + γYYT

3: Y ← β(I − αS1)−1Ŷ
4: S2 ← S̄2 + γ

′YTY
5: Y ← β

′ Ŷ (I − α
′S2)−1

6: until convergence

Discussion about the Algorithm
Based on the Kurdyka-Lojasiewicz inequality [2] and the
convexity of multi-variable objective function, when con-
centrating only on one of the variables at a time, our
algorithm is convergent. Mostly it’s necessary to use the
alternative iterative method, also known as “block coordi-
nate descent” [18], to find the solution of multi-variable

objective function. The objective function described in
the manuscript is convex with concentrating exclusively
on only changing one of the variables at a time, while
the remaining variables are held fixed. This convex
optimization problem satisfies the convergence condi-
tion for multi-variable objective function [32], and the
Kurdyka-Lojasiewicz inequality [2] is used to prove the
convergence.
There is one thing about inverse matrix we should

notice. The computation of inverse matrix is a com-
mon step in optimization problems [7, 33]. In general,
it’s time-consuming to compute inverse matrix with the
adjugate-determinant method. In order to improve the
efficiency of our algorithm IDLP, the inverse matrix
is achieved by using Gaussian elimination. It is two
times faster with Gaussian elimination in the experi-
ments. It’s much more accurate and efficient with Gaus-
sian elimination even when the matrix becomes very
large.
Please be aware that the order of updating S1 and S2

can be exchanged, because the order does not change the
convergence of the objective function. Besides the algo-
rithm presented in the “Algorithm 1”, it’s also a feasible way
to start the algorithm with the updates of S2 and Y , and
then it comes with the updates S1 and Y . No matter which
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one comes first, they both result in reducing the objective
function to the convergence.

Theoretical analysis
BiRW is a special case of IDLP
BiRW [31] iteratively extends the phenotype path and the
gene path by bi-random walk on both phenotype net-
work and gene network to evaluate potential candidate
associations. BiRW uses “Left Walk” and “Right Walk”
alternatively to introduce additional steps on phenotype
network and gene network. However, the loss function
introduced by BiRW is rather misleading, which makes it
impossible to get results by optimizing the loss function.
The basic update rule for BiRW is:
Left walk on PPI network:

Y t = αS1Y t−1 + (1 − α)Ŷ . (12)

Right walk on phenotype network:

Y t = αY t−1S2 + (1 − α)Ŷ . (13)

After sufficient left and right walks:

Y ∗
left = β(I − αS1)−1Ŷ

Y ∗
right = βŶ (I − αS2)−1,

(14)

where β = 1−α. Note that the solutions in (14) are exactly
the same as in (8) and (11) when only the label propagation
on heterogeneous network is considered without model-
ing the noise in data source. It shows that BiRW is a special
case of IDLP. The final loss function for BiRW is as follows,

LBiRW (Y ) = tr
(
Y (I − S2)YT) + tr

(
YT (I − S1)Y

)
+μ||Y − Ŷ ||2F + ζ ||Y − Ŷ ||2F .

(15)

Software package
AMATLAB software package is available through GitHub
at https://github.com/
nkiip/IDLP, containing all the source code used to
run IDLP. The package allows the execution of cross-
validation for parameter selection andmodel training with
the selected optimal parameters to reproduce the results.

Results
Baselines
We compare our methods to both classic and the state-of-
the-art network-based algorithms. We give a brief intro-
duction to the baselines used in our experiments. CIPHER
employs the regression model to quantify the concor-
dance between the candidate gene and the query pheno-
type, then candidate genes are ranked by the concordance
score [30]. RWR and DK (Diffusion Kernel) prioritize can-
didate genes by use of random walk from known genes
for a given disease [13]. RWRH extends RWR algorithm

to the heterogeneous network, it makes better use of
the phenotypic data by using the query phenotypes and
corresponding genes as seed nodes simultaneously [16].
PRINCE uses the known disease relationships to decide
an initial set of genes that are associated with a query
disease phenotype, then it performs label propagation on
the PPI network to prioritize disease genes [26]. MIN-
Prop is based on a principled way to integrate three
networks in an optimization framework and performs
iterative label propagation on each individual subnet-
work [12]. BiRW performs random walk on PPI network
and phenotype similarity network alternatively to enrich
genome-phenome associationmatrix, then prioritizes dis-
ease genes based on the enriched association matrix [31].
Besides the methods introduced above, two variants of
IDLP are also introduced, i.e., IDLP-G and IDLP-P. In
specific, IDLP-G assumes only the PPI network is noisy,
where we set η to 0 in Eq. (10). IDLP-P assumes only the
phenotype similarity network is noisy, where we set ν to 0
in Eq. (7).

Experimental settings
IDLP has four parameters, i.e. α, γ , α′ , γ ′ . Since the con-
straint α + β = 1 and α

′ + β
′ = 1, the value of β and

β
′ are fixed when α and α

′ are chosen. For the data of
training in cross-validation, we select parameter values by
using a usual manner of (5-fold) cross-validation: only a
part (four folds) of the training dataset is used for getting
model results of IDLP, meanwhile the rest (one fold) for
validation, this is done five times with each fold as vali-
dation set in turns. The average results of the five folds
are used for choosing best parameters. In parameter selec-
tion, we consider all combinations of the following values:
{0.0001, 0.001, 0.01, 0.1, 1} for α and α

′ , {1, 10, 100, 1000,
10000} for γ and γ

′ .
We implement all the baselines according to the descrip-

tions in their papers. CIPHER doesn’t have any parameters
to tune, so it is applied to the test set directly. For RWR,
DK, and PRINCE, they are network-based methods only
walk on gene interaction network, the parameter α is cho-
sen from {0.1, 0.3, 0.5, 0.7, 0.9} by 5-fold cross-validation.
For RWRH, MINProp and BiRW, they perform a random
walk on a heterogeneous network of gene interactions
and human diseases (i.e. OMIM phenotypes similarity
network). We use the average version of BiRW which is
shown to be the best among the three versions of BiRW
proposed by Xie [31], and the left and right walk step
are set to 4 as suggested by Xie. There is one parame-
ter in BiRW, which is chosen from {0.1, 0.3, 0.5, 0.7, 0.9}
by cross-validation. There are two parameters in MIN-
Prop, which are chosen from {0.1, 0.3, 0.5, 0.7, 0.9} by
grid through cross-validation.There are three parameters
in RWRH, which are all chosen from {0.1, 0.3, 0.5, 0.7, 0.9}
by grid search.
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Evaluation
We evaluated the ranks of the tested genes with two met-
rics: (i) we calculated the area under the curve (AUC)
[8, 11] for each method. “AUC” refers to the area under a
Receiver Operating Characteristic (ROC) Curve, and the
result is a plot of true positive rate against false positive
rate. (ii) we calculated the average precision and recall on
test set at top-k positions (k=20, 50, 100). The two metrics
are complimentary: the AUC evaluates the entire rank of
genes, while the top-k precision and recall emphasize the
top-ranked genes.
Since the accuracy of top-ranked genes is more impor-

tant than that of the lower ranked genes, we highlight a set
of false positive cutoffs for the ROC curves and compare
the corresponding average AUCs between methods. The
higher the AUC score, the better the performance.
Conventional cross-validation evaluation strategy, such

as leave-one-out cross-validation strategy, does not neces-
sarily reflect the property of novel gene-phenotype asso-
ciations prediction. To address such cases, we adopt the
strategy that has been utilized by [21, 23, 31], i.e. two
versions of data are used in the experiments, the Aug-
2015 version data are used as validation set to train the
model, the newly added data accumulated between Aug-
2015 and Dec-2016 are used as test set to measure the
performance of the model. In the experiment, we split
the known gene-disease associations of Aug-2015 version
data into five folds. After doing 5 folds cross-validation,
the average results of the five folds are used for select-
ing parameters for each method. Then, the methods are
applied to predict the associations in an independent set
of associations added into OMIM between Aug-2015 and
Dec-2016.

Performance evaluation
To quantitatively evaluate IDLP and other baseline meth-
ods, i.e. CIPHER, RWR, DK, RWRH, MINProp, BiRW,
and PRINCE, these algorithms are applied to predict the
disease genes for each phenotype.
The performance of IDLP and baseline methods on test

set and cross-validation set are shown in Table 3. We have
conducted Student’s t-test [3] with p < 0.05 on the results
of IDLP and other baselines on test set. If IDLP outper-
forms one baseline significantly under AUC metric, we
put a “*” behind the performance value in Table 3. The per-
formance results on cross-validation are used for choos-
ing parameters for each method. RWRH gets the best
results on cross-validation set. However, the performance
of RWRH on test set dramatically falls compared with
that of IDLP. RWRH heavily depends on the completeness
and correctness of PPI network and phenotype similar-
ity network, which brings the serious overfitting. It can
be seen that IDLP achieves the best performance under
AUC20 andAUC50 on test set, whichmeans the proposed

Table 3 Average AUCs scores of gene prioritization on test set
and validation set

Performance on test set Performance on validation set

AUC20 AUC50 AUC100 AUC20 AUC50 AUC100

CIPHER_SP 0.0029* 0.0046* 0.0066* 0 0 0

CIPHER_DN 0.0015* 0.0027* 0.0042* 0 0 0

RWR 0.0075* 0.0178* 0.0283* 0.0233 0.0358 0.0475

DK 0.0192* 0.0255* 0.0294* 0.0211 0.0306 0.0399

RWRH 0.0916* 0.1250* 0.1664* 0.2009 0.2724 0.3288

MINProp 0.0771* 0.1266* 0.1799* 0.1963 0.2625 0.3104

BiRW 0.0421* 0.0780* 0.1142* 0.1544 0.2180 0.26672

PRINCE 0.1117 0.1468 0.2088 0.1433 0.2137 0.2715

IDLP-G 0.0040* 0.0076* 0.0166* 0.0189 0.0348 0.0519

IDLP-P 0.1051* 0.1457 0.1897 0.2003 0.2592 0.3010

IDLP 0.1123 0.1492 0.1909 0.2004 0.2572 0.2990

We compared AUCs when the number of false positive genes are up to 20, 50, 100
*indicates IDLP significantly outperforms the baseline with p < 0.05 using Student
t-test

IDLP can predict newly discovered gene-phenotype asso-
ciations well. By introducing the dual label propagation
framework and modeling the bias in the PPI network and
phenotype similarity network into the framework, it suc-
cessfully utilizes the information in the heterogeneous
network and overcomes the interference of the noises in
data source. This demonstrates the advantage of IDLP
over other baselines.
It can be observed that IDLP-P has a distinct advan-

tage over IDLP-G in terms of AUC values on test set,
which demonstrates the noises in the phenotype simi-
larity network are serious, whether modeling the noises
in the phenotype similarity network would greatly affect
the results. We can also observe that IDLP-G performs
worse thanmost of the baselines, which demonstrates that
only modeling the noises in the PPI network will bring
more noises to the model. The phenotype similarity net-
work is constructed by calculating the similarity scores
between phenotypes through text mining [25]. The cal-
culation of the similarity scores depends on the terms
of the descriptions of phenotypes, term frequencies, sen-
tence expressions, etc. The integrity and the accuracy of
the descriptions of phenotypes can greatly affect the sim-
ilarity scores between phenotypes, hence the similarity
scores are subjective and the phenotype similarity con-
tains much noises. As for the PPI network, much of the
data in it are collected from in vitro experiments. Thought
imprecise measurement introduces false positives, there
are still lots of true interactions between proteins. The
data in the PPI network are more objective and con-
tain less noises. Another reason that causes the difference
between IDLP-G and IDLP-P is that the PPI network
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is a sparse network, and the phenotype similarity net-
work is a dense network. The sparse network is more
sensitive to changes in the network. The results compar-
ison between IDLP and its two variants demonstrate that
modeling the noises on both PPI network and phenotype
similarity network is better than modeling the noises only
on PPI network or phenotype similarity network. It indi-
cates modeling the noises on both networks has a mutual
enhancement to the results. Based on this fact, we will
focus on IDLP and ignore its two variants in the following
discussion.
In order to understand IDLP further, we give an anal-

ysis of the constitution of the data. Figure 2a shows the
phenotype distribution of the two versions according to
the disease genes they associate with. More specifically,
there are 3785 phenotypes associated with one disease
gene in Aug-2015 version data, the number of phenotypes
increases to 3877 in Dec-2016 version data; the numbers
of phenotypes which have been found with more than one
disease genes change slightly. There are 123 newly added
gene-phenotype associations. More specifically, as shown
in Fig. 2b, 100 phenotypes are newly added to Dec-2016
version data, which means there are 100 phenotypes with
unknown disease genes in Aug-2015 version data. The
remaining 23 associations can be divided into 2 categories,
19 phenotypes with known disease genes being added
with one more disease gene and 1 phenotype with known
disease genes being added with 4 new disease genes.
From Fig. 2a and b, we know the phenotypes involved in
newly added gene-phenotype associations between Aug-
2015 version and Dec-2016 version are mostly phenotypes
with unknown disease genes in Aug-2015 version. Here
we define these phenotypes without any known disease
genes as singleton phenotypes. Since the number of sin-
gleton phenotypes accounts for a large percentage, it is
important and necessary to explore the performance on
singleton phenotypes.
Figure 2c shows the results when different associations

are used as test set. The left histogram in Fig. 2c shows
the performance when 23 associations with none single-
ton phenotypes are used as test set. The right histogram in
Fig. 2c shows the performance when 100 associations with
only singleton phenotypes are used as test set. Because the
results of CIPHER_SP and CIPHER_DN are too small in
the histogram, we ignore them in this discussion. Com-
paring these two histograms in Fig. 2c, we can observe
that predictions on phenotype queries that have known
disease genes are more precise than phenotype queries
that have non disease genes for each method. It is con-
sistent with the intuition that enriched phenotypes (i.e.
phenotypes with at least one known disease gene) are
easier to find disease genes. RWRH, PRINCE, and IDLP
have relatively high AUC20 scores on enriched pheno-
type queries. On the contrary, it’s hard to identify disease

a

b

c

Fig. 2 Data Analysis. a The phenotype distribution based on the
genes it associates with. b The distribution of newly added
phenotypes based on whether they have known disease causing
gene(s). c The AUC20 scores of different methods in two situations: 1.
phenotypes with known disease genes are used as queries (left); 2.
phenotypes with unknown disease genes are used as queries (right)

genes for singleton phenotypes, because no known dis-
ease genes are discovered for these singleton phenotypes.
That’s why RWR and DK decrease to zero. Meanwhile,
IDLP achieves best at this situation, which demonstrates
IDLP’s effectiveness on singleton phenotypes.
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Noises discussion
Generally, there is no prior information on how the noises
are in the data sources. When dealing with unknown
imbalanced noises in the networks, a good algorithm
can automatically choose proper penalty values on the
noises. The proper penalty values are determined by the
noise situations in the two networks, which means heavy
noises correspond to big penalty value and small noises
correspond to small penalty value. In IDLP, the algo-
rithm is adaptive to imbalanced noises, and it can choose
proper hyper parameters automatically by grid search of
parameters on validation set.
Please note that IDLP may not work under some situa-

tions. IDLP may fail when data contain little noises. IDLP
is designed for dealing with noise data, however unneces-
sary learning of variables from noises would deviate the
model from clean data. That probably causes performance
decline of the algorithm on test set. To avoid the fail-
ure, we’d better acquire some basic information about the
data noises and decide whether to model the noises before
applying IDLP.

Top-k precision and recall evaluation
We also evaluate IDLP and baselinemethods by using pre-
cision and recall measurement. Calculating precision and
recall at each top-k position tells a more strict and detailed
comparison between different methods. Precision mea-
sures the fraction of true positives (genes) recovered in
the top-k predictions for a phenotype. Recall is the ratio
of true positives recovered in the top-k predictions for a
phenotype to the total number of true positives in the test
set. The plot of top-k precision and recall rates for dif-
ferent values of top k positions ranging 1 ≤ k ≤ 25 is
presented in Figs. 3 and 4 respectively. The value at a given
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Fig. 3 Average precision on all query diseases of test set at each top-k
position
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Fig. 4 Average recall on all query diseases of test set at each top-k
position

k is averaged over all the phenotypes. Note that IDLP out-
performs other baselines, especially when 1 ≤ k ≤ 5. For
example, in Fig. 3 the precision at top 1 position of IDLP
is 0.05, it’s twice as much as the second best precision
0.025 of PRINCE and MINProp. In Fig. 4, the recall at top
1 position of IDLP is 0.05, and that’s also twice as much
as the second best recall 0.025 of PRINCE and MINProp.
IDLP outperforms on both precision and recall when k is
less than 5, especially at top 1 position. The superiority of
IDLP at top-k precision and recall demonstrates the effec-
tiveness of modeling the bias and denoising through dual
label propagation framework.

Discussion
Sensitivity of parameter α and γ

Figure 5 shows the effects of the parameters. AUC20 is
used as a measurement of performance. For IDLP, we fix
γ = 1000 when varying α and fix α = 0.1 when varying γ .
The performance of other methods is also presented for
reference. We observe that IDLP is not sensitive when γ

becomes large. Large γ will raise effect of YYT and reduce
the effect of S̄1 on updating S1, when γ becomes large
enough, the effect of S̄1 disappears. In our experiments,
we set α = α

′ = 0.1 and γ = γ
′ = 1000 for IDLP.

Robustness evaluation of IDLP
We check the AUC20 performance result for eachmethod
under four disturbed PPI networks: 1) randomly delete
10% PPI data; 2) randomly delete 10% PPI data and add
10% PPI data; 3) randomly delete 20% PPI data; 4) ran-
domly delete 20% PPI data and randomly add 20% PPI
data. The best and the worst performance of these four
situations are drawn as error bars on the histogram.
Figure 6a shows the result when choosing all disease phe-
notypes as test set, and we can see that IDLP has a
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a

b

Fig. 5 Effects of parameters on the performance of IDLP (a)
Performance of AUC20 w.r.t α. b Performance of AUC20 w.r.t γ

greatly stable performance under all kinds of disturbance.
Figure 6b shows the result when total new disease pheno-
types are chosen as test set. The advantage has become
more obvious when we only consider the total new phe-
notypes (i.e. singleton phenotypes defined above) as test
set. From the results in Fig. 6, we can conclude that IDLP
has a good robustness.
The robustness comes from the design of the loss func-

tion of IDLP. More specifically, the update mechanism
determines the robustness of IDLP. Let us go over the first
two steps of Algorithm 1. At first, S1 is updated by S1 ←
S̄1 + γYYT , then the gene-phenotype associations matrix
Y is updated by Y ← β(I − αS1)−1Ŷ . After sufficient
iterative update, γYYT has much influence on S1 and the
influence is even stranger when γ becomes a large value.

Predicting new genes for Parkinson’s disease
Predictions of new genes for specific diseases are exam-
ined to check the prediction accuracy of IDLP. In the
data we obtained, there are 30 genes known to be

a

b

Fig. 6 Robustness of IDLP. Four disturbed PPI networks are applied
into each algorithm: 1. randomly delete 10% PPI data; 2. randomly
delete 10% PPI data and add 10% PPI data; 3. randomly delete 20%
PPI data; 4. randomly delete 20% PPI data and add 20% PPI data. The
best and the worse performance of these four situations are drawn as
error bar on the histogram. a It shows the results when all diseases
are chosen as test set. b It shows the results when totally new
diseases are chosen as test set

associated with Parkinson’s Disease (PD) on OMIM till
December 2016. Apart from the known 30 disease genes
for Parkinson’s Disease in OMIM data, other top 10 pre-
dicted genes are supposed to be most closely associated
with PD according to the scores got from our proposed
IDLP. We searched the literatures to support our predic-
tions, the results are showed in Table 4. 8 (80%) of the
top 10 genes have supporting evidence giving a prediction
precision of 80% for this particular disease.
The 10 genes listed in Table 4 have not been recorded

in OMIM dataset. However, according to the calcula-
tion results by IDLP, they are highly PD related can-
didate genes. We search the literatures and try to find
the connections between these genes and Parkinson’s
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Table 4 Predicted top 10 new genes for Parkinson’s disease by
IDLP

Gene Score Evidence of Support

DNAJC13 0.7016 DNAJC13 mutations in Parkinson disease [27].

CYP2D6 0.5796 CYP2D6 phenotypes and Parkinson’s
disease risk: a meta-analysis [17].

DRD4 0.5667 Lack of allelic association of dopamine D4
receptor gene polymorphisms with
Parkinson’s disease in a Chinese
Population [29].

RAB39B 0.5421 Loss-of-function mutations in RAB39B are
associated with typical early-onset
Parkinson disease [15].

TRPM7 0.3101 TRPM7 and its role in neurodegenerative
diseases [24].

SNCB 0.2342 Beta-synuclein gene variants and
Parkinson’s disease: a preliminary
case-control study [4].

DCTN1 0.1791 A Novel DCTN1 mutation with late-onset
parkinsonism and frontotemporal atrophy [1].

ATP6AP2 0.1562 Altered splicing of ATP6AP2 causes X-linked
parkinsonism with spasticity (XPDS) [14].

WDR45 0.1415 -

PSEN2 0.1401 -

Disease. Specifically, Vilarino discovered that idiopathic
Parkinson’s disease subtle deficits in endosomal receptor-
sorting/recycling are highlighted by the discovery of
pathogenic mutations DNAJC13 [27]. Lu demonstrated
that the poor metabolizer phenotype of CYP2D6 confers
a significant genetic susceptibility to Parkinson’s disease
in Caucasians [17]. Wan conducted experiments to test
the hypothesis that the DRD4 polymorphism is associ-
ated with the susceptibility to Parkinson’s disease [29].
Lesage reported an additional affected man with typical
Parkinson’s disease andmildmental retardation harboring
a new truncating mutation in RAB39B [15]. Sun found the
discrepancy in TRPM7 channel function and expression
leads to Parkinson’s disease [24]. Laura’s study suggested
that the SNCB locus might modify the age at onset of
PD [4]. Araki found DCTN1 mutations may contribute to
disparate neurodegenerative diagnoses, including familial
motor neuron disease, parkinsonism, and frontotemporal
atrophy [1]. Korvatska reported that X-linked parkinson-
ism with spasticity (XPDS) presents either as typical adult
onset Parkinson’s disease or earlier onset spasticity fol-
lowed by parkinsonism [14]. We briefly list all the top 10
predicted genes, prediction scores by IDLP and literatures
evidence for Parkinson’s disease in Table 4.

Conclusions
We propose an Improved Dual Label Propagation
(IDLP) algorithm, which is based on optimizing the

regularization framework, rather than alternating itera-
tion used by previous works, to globally prioritize disease
genes for all phenotypes. IDLP performs label propagation
on the protein-protein interaction (PPI) network and the
phenotype similarity network alternatively. Meanwhile, it
models the noise disturbance of the false positive PPIs in
the data source to get a better result. By amending the
noise in training matrices, it improves the performance
results significantly. We also give a closed-form solution,
which makes the algorithm more efficient. In our experi-
ments, we find that IDLP has an outstanding performance
for ranking top genes and a good robustness to deal with
the noise in PPI network, which makes IDLP a better gene
prioritization tool for biologists.

Acknowledgements
Not applicable.

Funding
This work is supported by the National Natural Science Foundation of China
(No. 61702367, 61300972). The Research Project of Tianjin Municipal
Commission of Education (No.2017KJ033).

Availability of data andmaterials
All data used in this paper is downloaded from open access datasets. A
MATLAB software package is available through GitHub at
https://github.com/nkiip/IDLP, containing all the source code used to run IDLP.

Authors’ contributions
YGZ originally design the model. YGZ worked on the method, experiment,
analyses, and writing of the manuscript. JHL, XHL, XF and YXH contributed to
the experiment. YW, MQX and YLH contributed to the writing of the
manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Software, Nankai University, 300350 TianJin, China. 2School of
Computer Science and Information Engineering, Tianjin University of Science
and Technology, 300222 TianJin, China.

Received: 30 June 2017 Accepted: 24 January 2018

References
1. Araki E, Tsuboi Y. A Novel DCTN1 mutation with late-onset parkinsonism

and frontotemporal atrophy. Mov Disord. 2014;29(9):1201–4.
2. Bolte J, Daniilidis A, Ley O, Mazet L. Characterizations of Lojasiewicz

inequalities and applications. Trans Am Math Soc. 2012;6:3319–63.
3. Box JF. Guinness, Gosset, Fisher, and Small Samples. Stat Sci. 1987;2(1):

45–52.
4. Brighina L, Okubadejo NU. Beta-synuclein gene variants and Parkinson’s

disease: a preliminary case-control study. Neurosci Lett. 2007;420(3):
229–34.



Zhang et al. BMC Bioinformatics  (2018) 19:47 Page 12 of 12

5. Chatr-Aryamontri A, Breitkreutz B-J. The BioGRID interaction database:
2015 update. Nucleic Acids Res. 2015;43:D470–8.

6. Chen Y, Li L. Phenome-driven disease genetics prediction toward drug
discovery. Bioinformatics. 2015;31(12):i276–i283.

7. Ezzat A, Zhao P, Min W, Li X-L, Kwoh C-K. Drug-Target Interaction
Prediction with Graph Regularized Matrix Factorization. IEEE/ACM Trans
Comput Biol Bioinforma. 2017;14(3):646–56.

8. Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett.
2006;27(8):861–74.

9. Gandhi TKB, Zhong J. Analysis of the human protein interactome and
comparison with yeast, worm and fly interaction datasets. Nat Genet.
2006;38(3):285–93.

10. Hamosh A, Scott AF. Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic Acids
Res. 2004;33(Database issue):D514–D517.

11. Hoehndorf R, Schofield PN. Analysis of the human diseasome using
phenotype similarity between common, genetic, and infectious diseases.
Sci Rep. 2015;5:10888.

12. Hwang T, Kuang R. A heterogeneous label propagation algorithm for
disease gene discovery. In: Proceedings of the 2010 SIAM International
Conference on Data Mining; 2010. p. 583–94.

13. Köhler S, Bauer S. Walking the Interactome for Prioritization of Candidate
Disease Genes. Am J Hum Genet. 2008;82(4):949–58.

14. Korvatska O, Strand NS, Berndt JD. Altered splicing of ATP6AP2 causes
X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet.
2013;22(16):3259–68.

15. Lesage S, Bras J. Loss-of-function mutations in RAB39B are associated
with typical early-onset Parkinson disease. Neurol Genet. 2015;1(1):e9.

16. Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by
walking on the heterogeneous network. Bioinformatics. 2010;26(9):
1219–24.

17. Lu Y, Peng Q. CYP2D6 phenotypes and Parkinson’s disease risk: A
meta-analysis. J Neurol Sci. 2014;336(1-2):161–8.

18. Marco Sciandrone Luigi Grippo. Globally Convergent Block-coordinate
Techniques for Unconstrained Optimization. Optim Methods Softw.
1999;10(5):587–637.

19. Montanez G, Cho Y-R. Predicting False Positives of Protein-Protein
Interaction Data by Semantic Similarity Measures. Curr Bioinforma. 2013;8:
339–46.

20. Nguyen TN, Goodrich JA. Protein-protein interaction assays: eliminating
false positive interactions. Nat Methods. 2006;3(2):135–9.

21. Ni J, Koyuturk M. Disease gene prioritization by integrating tissue-specific
molecular networks using a robust multi-network model. BMC
Bioinformatics. 2016;17(1):453.

22. Oti M, Brunner HG. The modular nature of genetic diseases. Clin Genet.
2006;71(1):1–11.

23. Petegrosso R, Park S. Transfer learning across ontologies for
phenome-genome association prediction. Bioinformatics. 2016;25:
btw649.

24. Sun Y, Sukumaran P. TRPM7 and its role in neurodegenerative diseases.
Channels. 2015;9(5):253–61.

25. van Driel MA, Bruggeman J. A text-mining analysis of the human
phenome. Eur J Hum Genet. 2006;14(5):535–42.

26. Vanunu O, Magger O. Associating Genes and Protein Complexes with
Disease via Network Propagation. PLoS Compu Bio. 2010;6(1):e1000641.

27. Vilarino-Guell C, Rajput A, Milnerwood AJ. DNAJC13 mutations in
Parkinson disease. Hum Mol Genet. 2014;23(7):1794–801.

28. von Mering C, Krause R. Comparative assessment of large-scale data sets
of protein-protein interactions. Nature. 2002;417(6887):399–403.

29. Wan C, Law K. Lack of allelic association of dopamine D4 receptor gene
polymorphisms with Parkinson’s disease in a Chinese population. Mov
Disord Off J Mov Disord Soc. 1999;14(2):225–9.

30. Xuebing W, Jiang R. Network-based global inference of human disease
genes. Mol Syst Biol. 2008;4:189.

31. Xie M, Hwang T, Kuang R. Prioritizing Disease Genes by Bi-RandomWalk.
PAKDD 2012: Adv Knowl Discov Data Min. 2012;7302:292–303.

32. Yangyang X, Yin W. A Block Coordinate Descent Method for Regularized
Multiconvex Optimization with Applications to Nonnegative Tensor
Factorization and Completion. SIAM J Imaging Sci. 2013;6(3):1758–89.

33. Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization
with multiple similarities for predicting drug-target interactions. In:
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’13. New York: ACM Press
page; 2013. p. 1025.

34. Zhou D, Bousquet O. Learning with local and global consistency. NIPS.
2004;1:595–602.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusions
	Availability
	Keywords

	Background
	Methods
	Materials
	Notations
	Problem definition
	Overall objective function
	Dual label propagation on heterogeneous network
	Improved dual label propagation on heterogeneous network
	Discussion about the Algorithm
	Theoretical analysis
	BiRW is a special case of IDLP

	Software package

	Results
	Baselines
	Experimental settings
	Evaluation
	Performance evaluation
	Noises discussion
	Top-k precision and recall evaluation

	Discussion
	Sensitivity of parameter  and 
	Robustness evaluation of IDLP
	Predicting new genes for Parkinson's disease

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

