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Abstract

Background: The ease at which influenza virus sequence data can be used to estimate antigenic relationships
between strains and the existence of databases containing sequence data for hundreds of thousands influenza
strains make sequence-based antigenic distance estimates an attractive approach to researchers. Antigenic mismatch
between circulating strains and vaccine strains results in significantly decreased vaccine effectiveness. Furthermore,
antigenic relatedness between the vaccine strain and the strains an individual was originally primed with can affect the
cross-reactivity of the antibody response. Thus, understanding the antigenic relationships between influenza viruses
that have circulated is important to both vaccinologists and immunologists.

Results: Here we develop a method of mapping antigenic relationships between influenza virus stains using a
sequence-based antigenic distance approach (SBM). We used a modified version of the p-all-epitope sequence-based
antigenic distance calculation, which determines the antigenic relatedness between strains using influenza
hemagglutinin (HA) genetic coding sequence data and provide experimental validation of the p-all-epitope
calculation. We calculated the antigenic distance between 4838 H1N1 viruses isolated from infected humans
between 1918 and 2016. We demonstrate, for the first time, that sequence-based antigenic distances of HIN1
Influenza viruses can be accurately represented in 2-dimenstional antigenic cartography using classic multidimensional
scaling. Additionally, the model correctly predicted decreases in cross-reactive antibody levels with 87% accuracy and
was highly reproducible with even when small numbers of sequences were used.

Conclusion: This work provides a highly accurate and precise bioinformatics tool that can be used to assess immune
risk as well as design optimized vaccination strategies. SBM accurately estimated the antigenic relationship between
strains using HA sequence data. Antigenic maps of HINT virus strains reveal that strains cluster antigenically similar to
what has been reported for H3N2 viruses. Furthermore, we demonstrated that genetic variation differs across antigenic
sites and discuss the implications.
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Background nucleotide per infected-cell [3], with thousands of cells

The Influenza A Virus (IAV) causes hundreds of thousands
of hospitalizations and tens of thousands of deaths each
year [1]. On average, about 5%—20% of the population will
be infected each year [2]. The mutation rate of the virus
genome is estimated to be 23x 107> mutations per
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infected during the course of the disease [4]. This high mut-
ability provides an evolutionary landscape that allows quick
adaption to its ever-changing environment (i.e. population
immunity). By mutating the proteins that cover the viral
coat, the virus can escape antibody-mediated neutralization
that occurs from antibodies binding to the surface of the
virus. The goal of vaccination efforts is to elicit antibodies
towards these neutralizing regions before exposure to the
virus occurs, therefore providing protection [5]. Annual re-
formulation of the influenza vaccine is an attempt to keep
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population immunity up-to-date against these ever-chan-
ging viruses.

In order to keep a population immune to emerging
strains, viruses are continuously sampled from the popula-
tion. Virus strains are selected for use in the annual vaccine
using both genetic and antigenic data [6]. The genetic data
is quickly available publically and spans over a hundred
years with data from tens to hundreds of viruses each year.
This rich data set allows a unique opportunity to explore
antigenic relatedness of the viruses that have circulated in
the human population since the emergence of the 1918
HIN1 pandemic and whose descendants have almost
continuously circulated in humans over the last century.

Although antigenic distances between vaccine strains
have been measured experimentally [7-9], these studies
use only a small fraction of the viruses that have been
isolated and do not include the many genetically unique
strains that circulate annually. Typically, measurement of
the antigenic relatedness between viruses involves produc-
tion of convalescent ferret antiserum and use of functional
antibody binding assays, such as the hemagglutination in-
hibition (HAI) assay. Although these techniques are still
the gold standard for vaccine choice, the cost and time in-
tensive nature make these assays impractical. In many
cases, ferret approaches are prohibitively expensive and
not practical as an antigenicity model for the vast majority
of laboratories worldwide. Graphical representation of
antigenic distances are typically done using a dimension
reduction approach known as antigenic cartography [8].
Antigenic cartography results in a two dimensional “map”
in which distances between viruses on the map represent
the antigenic distances between strains. These maps allow
intuitive understanding of the antigenic relationships
between large sets of viruses.

Few studies have provided comprehensive comparisons
of the antigenic relationships between HIN1 HA proteins
(including both pre- and post-2009 pandemic HINI1
strains). In recent years, HAI assay data produced annu-
ally by global health organizations (used to estimate anti-
genic distance between HA proteins) has become
publically available, but these assays mostly cover recent
isolates, and therefore antigenic measurements of older
strains is limited. Recently, Liu et al. 2015 created a
method to predict HIN1 antigenic clusters using a
machine learning approach [10], this method can predict
HALI based antigenic clusters, but its usability to predict
non-HAI assay data is not known. Furthermore, the Liu
et al. method provides only qualitative information
about antigenic relationships and does not provide
quantitative  antigenic  distance = measurements.
Fortunately, many studies have shown that antigenic
distances can be estimated using genetic sequence
data of the HA protein alone, but extensive validation
of these methods are lacking [11-22].
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Some sequence-based antigenic distance estimates have
indeed been validated both by experimentally derived anti-
genic distance measurements of influenza virus strains
[13, 19, 23], as well as by accurately predicting vaccine ef-
ficacy [11, 14, 22]. Other methods have been developed
that merge sequence information and immunological
assay data [7, 9, 12, 24, 25], but these approaches are lim-
ited to situations in which immunological assay data is
available. A comparison of sequence-based antigenic dis-
tance measurement approaches demonstrated that those
that focused on HA antigenic sites are most correlated
with ferret antiserum-based antigenicity measurements
[13]. Furthermore, most work regarding sequence-based
antigenic distance estimates has focused on H3N2 strains
and the correlation of antigenic distance estimates and
immunological measurements has not been determined.

Sequence variation maps similar to antigenic cartog-
raphy have been created previously [17, 21, 26], but
antigenic maps of HIN1 viruses based on sequence-
based antigenic distance calculations have not been
created. Antigenic maps are based on pivotal work by
Lapedes et al [27], Smith et al. [8], and are based on
theoretical work by Perelson et al. [28]. Once (anti-
genic) distances are determined, many methods exist
that can be used to reduced the dimensionality of the
data and construct a map [29], allowing easy
visualization and intuitive understanding of the anti-
genic relationships between viruses [8]. Here we use
classical (metric) multidimensional scaling developed
by Gower [30] to create an antigenic map of HINI1
viruses. We calculated and mapped sequence-based
antigenic distance estimates between thousands of
genetically unique HIN1 viruses that have circulated
since the 1918 HINI1 pandemic. We compared our
results to immunological measurements of relatedness
using traditional methods.

Methods

HA protein sequence acquisition

HA protein sequences were obtained using the Influenza
Resource Database [31]. Protein sequences were filtered
using the following criteria: Subtype: HIN1; Protein:
HA; and Host: human. Quality control was performed
on the sequences by removing sequences containing
missing or aberrant amino acids (i.e. “x”, “-”). Sequences
not containing the start (M) or terminal amino acids
(CI) and not containing the full coding sequence (565,
566 amino acids) were also removed. The first instance
(by submission date) was used when identical protein se-
quences were found. Filtering resulted in 4838 unique
HA sequences with lengths of 565 or 566 amino
acids. Sequences were then aligned using the muscle
algorithm [32].
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Antigenic distance estimation

An information theory based approach, p-all-epitope, de-
veloped by Deem et al. [11, 15] was used to calculated
antigenic distances. Additionally, these distances were
scaled to reflect a 20-dimensional immunological shape
space described by Smith [33]. In order to calculate anti-
genic distances between HA proteins, protein sequences
were aligned using the muscle algorithm [32]. This ap-
proach considers aligned amino acid sequences as char-
acter strings and computes the numbers of positions
that do not match. The resulting value is known as the
Hamming distance [34] between the amino acid se-
quences. For HIN1, these mismatches are only counted
if they occur in five canonical HIN1 HA antigenic sites
(Sa, Sb, Cal, Ca2, Cb) comprised of amino acid regions
(HIN1 numbering): Sa: 141-142, 170-174, 176-181; Sb:
201-212; Cal: 183-187, 220-222, 252-254; Ca2:
154-159, 238-239; Cb 87-92 [35], with numbering be-
ginning with the start codon methionine after muscle
alignment. Antigenic site-specific mismatches are then
divided by the total number of amino acids in the anti-
genic site and these percentages are then multiplied by
20 leading to distances on a scale from 0 to 20 repre-
senting a 20 dimensional immunological shape space
(equation 1). This value we will refer to as “epitopic” dis-
tance to distinguish it from antigenic distance, although
in reality the antigenic site probably consists of multiple
antibody binding sites. Antigenic distances were calcu-
lated by averaging the epitopic distances for each anti-
genic site. Hamming distance calculations were
implemented in a C program that takes a FASTA file
containing sequences as input, and outputs a matrix of
Hamming distances. The program was parallelized using
OpenMP and run on the BlueHive linux cluster main-
tained by the Health Sciences Center for Computational
Innovation and Center of Integrated Research Computing
at University of Rochester.

number of amino acid changes in antigenic site
iy = - . —————x20 (1)
total number of amino acids in antigenic site

EDs, + EDsy, + EDcg1 + EDcgy + EDg)
AD;, = :

(2)

Where i an y represent HA sequences from influenza
virus strains and ED,, represent antigenic sites: Sa, Sb,
Cal, Ca2, and Sb.

Dimension reduction

The antigenic distances between proteins are structured
into an 7 x n square-distance matrix (see Additional file 1).
Given that each HA protein is described by antigenic dis-
tances to 4838 HA proteins, the data must be reduced in
order for it to be graphed. Classic (metric) multidimen-
sional scaling (MDS) can be used to preserve the distances
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between a set of observations in a way that allows the dis-
tances to be represented in a two dimensional space. This
two dimensional space is similar to a topographical map,
where the distances on the map between two HA proteins
can be applied to a scale in order to obtain the antigenic
distance. These maps are useful when trying to under-
stand the antigenic relationships between a large set of
HA proteins. In this way, each HA protein can be
described using only a few values, allowing the data to be
graphed. MDS was performed as previously described by
Gower [30]. In short, MDS first constructs an n-
dimensional space using the distance matrix in which all
distances are conserved and Euclidian and then principal
component analysis is performed. Goodness-of-fit (GOF)
calculations were performed as previously described [36].
MDS and GOF were carried out using the cmdscale pack-
age in R. Color for each point in the antigenic maps was
determined using hierarchical clustering of the antigenic
distances used for Fig. 3. Hierarchical clustering was
performed using the hclust R-base function. The cutree
R-base function was used to subset hierarchical clustering
into groups and the number of groups was determined
empirically with 8 groups (k = 8) chosen. Vaccine/historical
strains were labeled on the map as such: A/Brisbane/59/
2007 (BRO7), A/Solomon Islands/3/2006 (SI06), A/New
Caledonia/20/1999 (NC99), A/Singapore/6/1986 (SI86), A/
Beijing/262/95 (BE95), A/Taiwan/1/86 (TA86), A/Chile/1/
83 (CHS83), A/USSR/90/77 (US77), A/Fort Monmouth/1/
1947 (FM47), A/Denver/1/1957 (Denv57), A/Marton/43
(MA43), A/Puerto Rico/8/34 (PR34), A/NWS/33 (WS33),
A/South Carolina/1/1918 (SC18), A/New Jersey/76 (N]76),
A/California/04/2009 (CA09).

Experimental validation

Mouse monoclonal antibodies were obtained from Influ-
enza Reagent Resource (Cat#:FR-503, FR-495, FR-505)
and BEI Resources (Cat# NR-13452). Ferret antiserum
was obtained from Influenza Reagent Resource (Cat#
FR-359, FR-388, FR-952, FR-953, FR-954, FR-955).
Recombinant HA proteins were obtained from Influenza
Reagent Resource (Cat#: FR-67, FR-692, FR-65, FR-180,
FR-699) and BEI Resources (Cat# NR-19240, NR-48873).
Chimera proteins were a gift from Dr. Florian Krammer
from Mount Sinai (NY).

Recombinant HA proteins were coated on MaxiSorb
96-well plates (ThermoSci; 439,454) overnight at 4 °C.
Plates were blocked with 3% bovine serum albumin
(BSA) in phosphate buffered saline (PBS) for 1 h at room
temperature. Ferret serum was diluted 1:1000 in PBS/
0.5% BSA/0.05% Tween-20. Monoclonal antibodies were
diluted to a concentration 15 pg/well. Diluted ferret
serum or monoclonal antibodies were incubated over-
night at 4 °C. Plates were washed and incubated with al-
kaline phosphatase (AP)-conjugated secondary antibody
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(Southern Biotech 1030-04 or LSBio LS-C61241) for
2 h at room temperature. Plates were washed and devel-
oped using AP substrate (ThermoSci 34,064). Mouse
monoclonal antibody titers for each HA were derived
from a standard curve created using C179 universally
HA binding monoclonal antibody (Takara).

HAI data was curated from the WHO Collaborating
Centre for Reference and Research on Influenza National
Institute for Medical Crick Institute data repository and
traditional antigenic distances were calculated [8]. To ac-
count for the abundance in coverage of new viruses and
lack of HAI data on older strains, HAI data was only
included where both recent and older stains were used in
the assay.

The SBM method was validated by correlation ana-
lysis. The association between antigenic distance mea-
surements and antibody titers were explored by Linear
regression, and confirmed by Spearman correlation ana-
lysis. P-values were determined using either linear re-
gression (Im stats package, R) or t-test (Ltest stats
package, R). P-values less than 0.05 were considered sig-
nificant. Spearman correlations were performed using
the base stats package in R. Further, ROC analysis was
applied to test the performance of the SBM method. By
validating the SBM against similarity mapping based on
antibody titers, we assessed its sensitivity, specificity and
the corresponding ROC curve. The RORC package in R
was used for the analysis.

Reproducibility

Reproducibility was determined by randomly sampling
sequences from the 4838 sequences used to create the
antigenic map in Fig. 3. This subset of sequences was
then used to create an antigenic map and the distances
between all points were calculated. The distances
between all points were summed and compared to the
summed distances of the same strains in the original
4838 sequence map. Fifty samplings were taken for each
condition and precision was reported as the mean
percentage. Reproducibility error for each condition was
estimated by calculating the standard deviation between
samplings.

Sensitivity was determined thropugh Receiver operating
characteristic (ROC) analysis for each antibody titer
measurement. Antibody binding data was converted into
binary variables by calculating the relative difference in
antibody titer or binding value (pg/ml, absorbance, titer)
between matched serum/antibody and virus/HA strains
(homologous value) and non-matches (heterologous
value). Values two-fold or less than the homogenous
values were considered as similar (value = 0) and those
greater than 2-fold lower were considered dissimilar
(value = 1). For HAI data, an additional definition of
similarity was used by defining serum titers greater

Page 4 of 11

than 1:40 (i.e. 1:80, 1:160, ...) were considered similar
(value = 0).

Antigenic distances were converted into binary values
by choosing a cutoff where values below that cutoff are
given a value of 1 and those above that cutoff are given a
value of 0. Sensitivity was calculated by dividing the
number of true positives by the total number of posi-
tives. Specificity was calculated by dividing the number
of true negatives by the by the total number of negatives.
Opverall accuracy at each cutoff was determined by divid-
ing the sum of the number of true positives and true
negatives by the sum of the number positive samples
and negative samples.

Results
Antigenic distance estimates
The antigenic distance (AD) between HA protein anti-
gens of HIN1 viruses were calculated for 4838 HA pro-
tein sequences (Additional file 1). The maximum
antigenic distance between the strains was 33 with a
mean antigenic distance between all strains of 10.4.
Antigenic distances were bimodally distributed with few
comparisons having antigenic distances between 4 and 8
and all antigens had similar mean values with similar
distributions (Additional file 2: Figure S1).

Antigenic distances between vaccine strains ranged from
0 to 29 (Additional file 3: Table S1) with an average of
15.18 AD. Antigenic distance between strains generally
correlated well with differences in the year of isolation be-
tween strains with the exception of the 2009 virus (CA09),
which had a long antigenic distance (26) to BR07 and a
shorter antigenic distance (10) to the 1918 virus (SC18),
suggesting distal ancestry. Moreover, early twentieth
century viruses generally had a lower AD to CA09
compared to late twentieth century and early twenty-first
century strains.

In vitro validation of antigenic distances

Since antigenicity differences are defined by differences in
antibody binding, antigenic distances can be used to pre-
dict antibody binding between two antigens. To this end,
data from three independent antibody binding assays were
analyzed to assess the ability of sequence-based antigenic
distances to predict antibody cross-reactivity. The stand-
ard antigenicity model used by the CDC and WHO is to
infect an animal model (typically ferret) with influenza
virus strain “X” and measure the resulting antiserum
reactivity towards strain “Y” wusing the functional
antibody-binding assay HAL The assay measures the min-
imal antiserum titer needed to disrupt binding of the virus
to sialic acid on red blood cells. In addition, antibody
binding data to recombinant HA was obtained by
enzyme-linked immunosorbent assay (ELISA) using both
mouse monoclonal antibodies specific for historical
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strains, as well as anti-influenza ferret antiserum. Linear
regression and both Pearson and Spearman correlations
were used to assess the relationship between sequence-
based AD and antibody binding. Spearman correlation is
similar in nature to Pearson correlation except is non-
parametric in that observations are ranked and correla-
tions are determined based on those ranks. In this way,
Pearson correlation determines the linear correlation be-
tween observations, while Spearman correlation deter-
mines the monotonic relationship between observations.

HAI data was curated from the WHO Collaborating
Center Crick Institute data repository. Data from 80 HAI
assays were used for comparison and traditional antigenic
distances were calculated. The HAI assay data includes
virus strains and antiserum from viruses that span from
1977 to 2009 including 2009 pandemic-like strains with
serum-strain/virus-strain antigenic distances ranging
from 0 to 26. HAI derived antigenic distance signifi-
cantly decreased linearly as sequence-based antigenic
distance increased (Fig. 1a) and HAI derived antigenic
distance and sequence-based antigenic distance was
highly correlated (Pearson CC=-0.66 p<0.0001;
Spearman CC =-0.55 p <0.0001).

Although HAI based antigenic distance estimates are
the standard, recent reports have demonstrated that these
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assays are affected by other characteristics besides antige-
nicity (e.g. RBC affinity, NA binding, etc). Additionally,
the HAI assays do not include virus strains that circulated
prior to 1977. Therefore, to further validate the sequence-
based antigenic distance calculations, we measured anti-
body binding using ELISA for strains that circulated from
1918 to 2009, including 1947 strains and 1977 strains cov-
ering most clusters and spanning the map with serum-
strain/HA-strain antigenic distances ranging from 0 to 27.
Plates were coated with recombinant HA (rHA) proteins
and antibody binding of ferret antiserum to each rHA was
determined. In these assays, rHA from each strain is
bound to a plastic and therefore not affected by Sialic acid
affinity of the virus or NA binding. Antibody titers signifi-
cantly decreased with sequence-based antigenic distance
measurements (Fig. 1b; Pearson CC=-0.8 p<0.0001,
Spearman CC = - 0.79 p < 0.0001).

Although the HAI and ELISA assay binding data indi-
cate that the sequence based method is valid, the lack of
matching ferret antiserum-rHA (as is done with the HAI
based method) does not allow us to account for differ-
ences in immune responses across the ferrets. Therefore,
we used monoclonal antibodies derived from B cells of
mice infected with various influenza strains isolated
from 1918 to 2009 including 2009-pandemic like strains,
1947 and 1977-like strains with serum-strain/virus-strain
antigenic distances ranging from 0 to 27. Standard
curves were created for each rHA to allow better quanti-
fication of the amount of mAb bound to each rHA. In
agreement with the HAI and ferret-ELISA assays, as
sequence-based antigenic distance between the rHA and
the infecting strain HA increased, the amount of anti-
body binding significantly decreased (Fig. 1lc; Pearson
CC=-.67 p<0.0001, Spearman CC=-0.41 p <0.0001).
Taken together, these results indicate that sequence-
based antigenic distance calculations correlate well with
immunological assay measurements of antigenicity,
regardless of assay, and therefore can be used to
estimate antibody cross-reactivity.

H1N1 antigenic cartography
Distances between a set of observations, such as antigenic
distances between HA antigens, can be visualized on a
2-dimensional graph using approaches known collectively
as dimension reduction. For distance matrixes (i.e.
dissimilarity matrix), classic MDS, also known as principal
coordinate analysis, is appropriate. MDS projects the dis-
tances into a Euclidean space in a lower number of dimen-
sions in a way that preserves the original distances [8].
Therefore, MDS was performed on the sequence-based
antigenic distance matrix in order to create an
antigenic map.

Not all distance matrixes can be represented in 2-di-
mensions without significant loss of the distance data.
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Therefore, the preservation of the antigenic distances
after MDS was determined. The R package for classical
multidimensional scaling (cmdscale) returns two GOF
statistics. One is the sum of the eigenvalues for the com-
ponents S divided by the sum of the absolute value of all
eigenvalues (Fig. 2, M1). The other is S divided by the
sum of all positive eigenvalues (Fig. 2, M2) [37]. Plotting
the GOF statistics as a function of k (the number of di-
mensions after MDS), it is possible to determine the
number of dimensions that are necessary to adequately
represent the data. In this way, a k is chosen when add-
ing more dimensions do not significantly improve the
goodness-of-fit. The GOF for a range of k values (k=1-
6) was determined (Fig. 2). The greatest increase in GOF
was seen when k increased from 1 to 2 and only in-
creased slightly thereafter. Two dimension (k-2) reduc-
tion lead to GOFs of 0.80 and 0.87 for the two methods
used. Increasing k to 3 or 4 only slightly increased the
GOF (0.82 & 0.89; 0.83 &0.90, respectively). Therefore,
multidimensional scaling using k = 2 was chosen for cre-
ating the antigenic map.

We constructed an antigenic map using the sequence-
based antigenic distance calculations for the 4838 viruses
and applied multidimensional scaling (Fig. 3). Viruses
generally cluster into distinct groups across the map.
There was a clear relationship with time from FM47 to
BR0O7, demonstrating the continuous antigenic evolution
of HIN1 viruses that has occurred during the last
50 years. Interestingly, SI06 and BR07 had a shorter anti-
genic distance (4 AD), but appeared to separate into
small, but distinct, clusters, although this discrimination
was not found using our hierarchical clustering-based
method to coloring clusters. There was also a general
separation between SC18-like, NJ76-like, and CA09-like
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virus strains and other viruses, consistent with phylogen-
etic analysis [38]. WS33 and PR34 strains separated from
both SC18-like strains and FM47-like strains, which may
indicate that antigenic changes have occurred as an
artifact of being generated in the laboratory. Additionally,
US77 and FM47 clustered together, consistent with the
belief that the FM47 virus has remained unchanged for
30 years and reemerged unnaturally causing the 1977 pan-
demic. Taken together, HIN1 viruses cluster into groups
on the map in a way that reflects what is known about the
antigenic relationships between historic strains.

To evaluate the overall performance of the antigenic
map, we first set out to determine how dependent the
map was on sequence sampling. Given the large number
of sequences used to create the map (4838) we determined
how the number of sequences used in the creation of the
map affects the antigenic distances on the map. To deter-
mine precision, maps were created for different number of
randomly sampled and distances between the original
map and the sequence sampling map were compared.
Overall, the precision of the model decreased (error
increasing) as the number of sequences used to make the
map decreased. Distances were well conserved, over 90%
agreement, when 10 or more sequences were used (Fig. 4a)
and over 80% agreement with 5 sequences were sampled.
Although the average agreement was over 75%, error was
increased. Therefore, the model is highly reproducible
when 10 or more sequences are used in the map creation.
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Next we studied the ability of the antigenic distances
predicting the similarity between strains determined by
the ELISA/HAI antibody binding data. In this way, we
can determine how accurate the map is at predicting
cross-reactive antibody titers. Since experimental varia-
tions of HAI titers within a 2-fold range are considered
similar [39], similarity of the antibody binding data
(mAb-ELISA, ferret serum-ELISA, HAI data) was de-
fined as titers/values 2-fold or less different than the
matched serum/antigen value. ROC curves were pro-
duced using the range of antigenic distance cutoffs
for the strains used in each assay. In this way, we can
determine the ability of the model to predict de-
creases in cross-reactive antibody levels. Additionally,
serum HALI titers of 1:40 have been shown to produce
a 50% reduction in susceptibility to infection [39].
Therefore as an additional estimate of similarity, virus
strains having a HAI titer of 1:40 or greater (e.g.
1:80, 1:160, ...) were considered as similar to the
serum strain.

The sensitivity (True positive rate) and specificity
(False positive rate) of the model was determined over
the entire range of antigenic distances using ROC
curves (Fig. 4b). The ability of AD predicting similar-
ity status was determined by calculating the area
under the curve (AUC) from the ROC analysis. Area
under the ROC curve can be used to evaluate the
overall performance of the model. In general, areas
between 0.5-0.7 are considered moderately useful,
areas 0.7-0.9 as a good test, and greater than 0.9 as
an excellent test [HajianTilaki:2013wh]. AUC varied
by assay, and was greatest for the ELISA based assays
(Fig. 4c). The AUC for the Ferret-ELISA data was
0.99 and mouse-ELISA was 0.82. For the HAI data,
the 2-fold criteria had an AUC of 0.78 with the 1:40
titer having a 0.82 AUC. Taken together, the model is
highly precise over a large range of input sequences

and has a high degree of predictive accuracy for all three
experimental measurements of virus antigenicity.

Epitope-specific antigenic mapping

Given that HA regions evolve at different rates [40], we
set out to establish if the pattern of antigenic relation-
ships in the antigenic map between strains was similar
for all epitopes. To do this, antigenic distance was calcu-
lated using only the amino acids of a single epitope for
each map. This resulted in 5 antigenic maps represent-
ing the 5 HA antigenic sites: Sa, Sb, Cal, Ca2, Cb
(Fig. 5a-e). GOF was similar for all antigenic site maps
(~0.8). Average antigenic distances for each epitope
(epitopic distance) were similar, with Sb and Cb having
the greatest antigenic variation (Fig. 3f). Overall, CA09
viruses clustered away from other strains with the excep-
tion of SC18 and NJ76, which were similar to the all-
antigenic-site map (see Fig. 2). Interestingly, for the Cal
antigenic site map CAO09 did not cluster with SC18 or
NJ76. Additionally, PR34 had a shorter antigenic
distance to CAQ9 for the Sb antigenic site map, but not
for the Sa map.

Strains isolated between 1947 through 2007 also
generally clustered together. Although general trends are
similar between antigenic site maps, many specific differ-
ences were found. For instance, NC99 and BRO7 had
similar distances in all antigenic site maps, while SI06
was similar in Sa, Cal, Ca2, Cb, but not Sb. Additionally,
CHB83 and TA86 were similar in all epitopes except Sb.
Interestingly, many strains had identical antigenic sites
despite decades of separation between when they circu-
lated. For example, WS33 had an identical Ca2 antigenic
site as TA86 despite circulating over 50 years later. This
may reflect uneven immune pressure against different
epitopes. Taken together, antigenic site specific differ-
ences can be found between strains, although common
patterns exist.
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Discussion

We present, for the first time, that an antigenic map of
HINT1 proteins can be created using HA protein sequence
data. We show that these sequence-based antigenic dis-
tance estimates correlate well with experimentally derived
antigenicity measurements and demonstrate that antige-
nicity differs depending on antigenic site. Overall, our
findings suggest that sequence-based antigenic distance
measurements can be used as a surrogate for immuno-
logical based approaches and as input for antigenic
cartography.

Previous work by Smith et al. [41] demonstrated that a
20 character Hamming distance space is best representative
of H3N2 influenza HA antigens in the immunological
shape space originally described by Perelson et al. [28].
This Hamming distance space is such that a 35% change in
antigen sequence equals an antigenic distance of 7, the
minimum distance between two HA proteins in which an
antibody that recognizes one HA will not recognize the
other. Therefore, in this 20-dimensional space, lower
distances (between 0 and 7) indicate overlap of the
recognizing antibodies, while larger distances (8—20) indi-
cate no overlap. Our experimental in vitro results suggest

that little binding occurs when distances are greater than
eight, consistent with their findings.

Additionally, recent investigations have addressed the
need to understand antigenic relationships between the
viruses to which one is exposed early in life, as well as
current vaccine strains, in order to predict immune re-
sponses [42, 43]. Consistent with these findings, we
found that the 2009 pandemic strain resides closest to
early twentieth century virus strains. The proximity of
CA09 and SC18 viruses is consistent with reports by us
[43] and others [44] showing that preexisting memory to
head epitopes was responsible for increased immunity in
individuals exposed to 1918 viruses. Furthermore, the
close proximity of the 2009 pandemic strains and the
New Jersey vaccine strain (NJ76) is consistent with in-
creased immunity to the pandemic strain in NJ76 vacci-
nated individuals [45]. The large distance between the
PR8 laboratory strain (PR34) and both CA09 and SC18
is likely due to accumulated mutations of this virus from
repeated propagation in culture and is consistent with
other reports that showed that low cross-reactivity
occurs between these viruses in serum from infected
animal models [46].
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The distances between virus strains that circulated
between 1977 and 2008 demonstrate continual antigenic
drift of the virus over this period. This finding is consist-
ent with reports for H3N2 viruses [8]. Additionally, pre-
vious work by Ren et al. used traditional antigenic
cartography to map the antigenicity of HIN1 viruses
that circulated from 1978 to 2008 [9]. Consistent with
our findings, Ren et al. found similar continual drift be-
tween strains over the years. Furthermore, work by Bedford
et al. integrated antigenic cartography and phylogenetic
analysis for HIN1 viruses from 1977 to 2006 and demon-
strated very similar clustering to that presented here,
although separate clustering by US77-like strains and
TA86-like strains was more pronounced using their
method [7]. Taken together, our map agrees with other
antigenicity studies of HIN1 viruses.

The comparison of antibody binding assay data and
antigenic distance calculations demonstrates both the val-
idity of our approach and the accuracy of the theoretical
relationship between epitopes and paratopes in immuno-
logical shape space. It should be noted that clustering
(gaps between groups of viruses) might occur due to lack
of surveillance during a specific period. Clustering is un-
doubtedly occurring in this data. The lack of sequences
between 1918 and 1933, despite documented circulation
of the virus, clearly demonstrates these sampling gaps.
Regardless, more recent strains also show clustering, dem-
onstrating that sampling error is not the only cause of
clustering in the data set. More studies are needed to
address the cause of this clustering and distinguish
clustering from sampling error.

Our method attempts to estimate shape differences be-
tween HA using changes in protein sequence instead of
traditional HAIT assays. HAI titers are a functional readout
of the epitope/paratope interaction and are sensitive to ex-
perimental conditions. HAI measurements are affected by
the affinity of the sialic-acid-binding-receptor on red
blood cells, and differences in HAI titer may reflect these
affinity changes [47]. Additionally, HAI titers are largely
dependent on antibodies that bind near the sialic acid
receptor-binding domain [48], and therefore these mea-
surements are biased towards specific epitopes. Unlike
these methods, the approach taken has not affected these
experimental nuances. Therefore, our approach, or a simi-
lar approach, may lead to greater accuracy in predicting
cross-reactive immunity, especially when differences in
affinity to sialic acid exist among the strains.

It is important to acknowledge that the exact distances
in the epitope-specific maps are sensitive to the amino
acids chosen to represent the epitope. The specific epitope
location on the HA protein, and therefore the amino acids
making up that epitope, may differ depending on host spe-
cies and genotype. Additionally, other studies have dem-
onstrated that post-translational modification affects
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antigenicity [49], which is currently not captured in our
method. Therefore, caution must be taken not to over in-
terpret the findings presented here. Additionally, it has
been demonstrated that changes in antigenic sites located
close to the sialic acid binding domain of the H3N2
influenza viruses largely account for HAI assay differences
[50, 51]. Therefore, future models may need to weight
HINT antigenic sites in order to better predict HAI titers.
Nonetheless, the fact that differences exist among epitopes
is in line with experimental studies demonstrating that
antibody mediated protection from virus is dependent on
the epitope similarity of circulating strains and a strain in
which the host was previously exposed [43, 44]. It is also
important to note that it was not possible to experimentally
validate individual epitopic distances. Future validation of
epitopic distance should include more extensive monoclo-
nal binding assays incorporating a panel of epitope specific
monoclonal antibodies representative of the B cells initiated
by infection or immunization. Taken together, these results
present a need to better understand relationships between
antigens at the epitope level. More estimates of the
antigenic differences at the epitope level will improve our
understanding of immunological shape space.

Conclusion

SBM can be used to accurately estimate antigenic relation-
ships across HIN1 influenza virus strains. HIN1 viruses
form distinct antigenic clusters similar to what has been
reported for H3N2 viruses. SBM correctly identified the
large antigenic distances between the 2009 seasonal vac-
cine strain and 2009 pandemic virus strains as well as cap-
tured the short distance to the 1918 pandemic strains.
Furthermore, we demonstrated that antigenic sites differ
in their conservation. Altogether, SBM provides an alterna-
tive approach to traditional immune assays for antigenic
distance estimates and can provide greater detail into the
intra-antigenic relationships of the hemagglutinin protein.
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