
RESEARCH ARTICLE Open Access

The research on gene-disease association
based on text-mining of PubMed
Jie Zhou* and Bo-quan Fu

Abstract

Background: The associations between genes and diseases are of critical significance in aspects of prevention,
diagnosis and treatment. Although gene-disease relationships have been investigated extensively, much of the
underpinnings of these associations are yet to be elucidated.

Methods: A novel method integrates MeSH database, term weight (TW), and co-occurrence methods to predict
gene-disease associations based on the cosine similarity between gene vectors and disease vectors. Vectors are
transformed from the texts of documents in the PubMed database according to the appearance and location of
the gene or disease terms. The disease related text data has been optimized during the process of constructing
vectors.

Results: The overall distribution of cosine similarity value was investigated. By using the gene-disease association
data in OMIM database as golden standard, the performance of cosine similarity in predicting gene-disease linkage
was evaluated. The effects of applying weight matrix, penalty weights for keywords (PWK), and normalization were
also investigated. Finally, we demonstrated that our method outperforms heterogeneous network edge prediction
(HNEP) in aspects of precision rate and recall rate.

Conclusions: Our method proposed in this paper is easy to be conducted and the results can be integrated with
other models to improve the overall performance of gene-disease association predictions.
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Background
In the medical research, an understanding of the associ-
ation between genes and diseases is a crucial step toward
prevention, diagnosis, and therapy of diseases. Although
such gene-disease relationships have been investigated in
many studies, the complex mechanism from genotype to
phenotype and details of the genetic basis for diseases
are still unrevealed. Furthermore, identifying all possible
relationships by wet experimental methods are currently
too expensive and time-consuming to be a feasible ap-
proach in consideration. To fill this gap, the
bioinformatics-based approach may provide some candi-
date gene-disease linkages before employing large-scale
population based epidemiological analysis.
In the recent decades, data-mining approaches, in-

clude the graph, machine learning, and text mining

methods, had been proposed to study the gene-disease
association [1–8]. Based on graph theory, the graph
method constructs graphical models and several algo-
rithms have been proposed like neighbor association [1],
shortest path [2, 3], walking model [4], random surfer
model [5], and network propagation model [6]. However,
the power of the graph method may be limited in inves-
tigating less-studied genes or diseases [7, 8]. The ma-
chine learning method (MLM) explores associations
between characteristic vectors reduced from genes and
diseases. However, due to the specificity and structure of
the data format used in MLM, a high quality data is re-
quired. In addition, to our knowledge, there is no best
method for formatting or quantifying data, especially,
disease data. As a consequence, the general application
of MLM in deciphering gene-disease associations may
be limited due to the availability of source data.
Text mining method had been applied in studying

various biological problems like functional genomics [9],
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biological pathways [10], protein-protein interactions
[11], protein representation [12], drug-gene association
[13], comparative toxicogenomics [14, 15], neuropsychi-
atric disorder [16], and other areas in the biomedical do-
main [17] including large-scale bioinformatics analyses
[8, 18–32]. DISEASES predicted the association through
the co-occurrence method [21]. MimMiner [28] trans-
formed OMIM [29] text to a relationship matrix and
quantified the association among diseases using the term
frequency–inverse document frequency method (TF-
IDF). CATAPULT [8] and Heterogeneous Network Edge
Prediction (HNEP) [30] integrated the graphic model
and machine learning method, IMC [31] used a semi-
supervised machine learning method, and LGscore [32]
associated genes with disease through a Google search
engine to predict associations between genes and
diseases.
However, these methods did not integrate other valu-

able information that can be curated from other data-
bases, such as MeSH, to improve accuracy or efficiency
[27]. Moreover, the gene-disease co-occurrence ratio is
usually low and this leads to a huge amount of text
document sets needed to be curated to achieve the ef-
fective sample size. Therefore, in this study, we demon-
strate an efficient data mining approach of deciphering
gene-disease association by integrating the MeSH data-
base and TF-IDF methods (Fig. 1). We transformed key-
words in the dictionary to describe each of 3288 genes
and 445 diseases, respectively, in a vector form and mea-
sured associations between genes and diseases using co-
sine similarity. The prediction performance was
evaluated based on the accuracy and recall. Finally, our
method was compared with HNEP [30] (Fig. 2).

Methods
Public data sources
The gene-disease linkages, including genes’ ID and dis-
ease names were curated from OMIM. Among all genes
and diseases from OMIM, a total of 3288 genes and 445
diseases were also found in MeSH and used for analysis.

The dictionary and the text document set were con-
structed according to MeSH and the content of abstract
in PubMed, respectively. Although there were 16 cat-
egories at the first level of MeSH, we only used 5 cat-
egories, anatomy, organisms, diseases, chemicals and
drugs, and psychiatry and psychology, of gene-disease
associations relevant to construct the vector. Text files
which not related with genes or diseases were removed.
In total, the dictionary contained 27,453 keywords map-
ping to 56,341 nodes in MeSH. The text document set
contained 528,878 associated with 3288 genes and
1,435,091 text files associated with 445 diseases,
respectively.

Data preprocessing
The relationship between N keywords was represented
as the matrix form in N x N dimension and each elem-
ent represented the association strength between key-
words. The detailed steps are depicted schematically in
Fig. 2.

Text file vector construction
Each text file was transformed into three vectors, the
vector of title, the vector of sentences in the abstract,
and the vector of MeSH terms, respectively. The vectors
of title represented the frequency of keywords occurred
in the title. The vectors of sentences in the abstract rep-
resented sentences in the abstract. The vector of MeSH
terms was coded binary: 1, if the keyword occurred, and
0, if not. Three vectors were then combined into one
representative vector of the text file by the co-
occurrence method (Table 1). We assigned a higher
weight value for MeSH terms because these data had
already been carefully annotated with respect to gene-
disease relationships. Similarly, the gene-disease associ-
ation based on their co-occurrence in the title would be
stronger than the association based on sentences in the
abstract. To reduce the bias article length, we normal-
ized the representative vector by scaling the sum of all
values of the text vector to 1.

Fig. 1 Use of keywords in the dictionary to describe genes and diseases
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Term weight (TW) of keyword
We calculated the inverse document frequency (IDF) of
keyword (eq. 1)

IDFi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

P
wi

s

ð1Þ

in which i represents keyword and ∑wi represents the
sum of weighted values.
IDF was used to represent the importance of a key-

word in aspects of gene or disease. If a keyword oc-
curred more frequently among vectors, the IDF of this

keyword would be smaller. We calculate penalty weights
for keywords, PWKi, to weight the distance of a keyword
to the MeSH root as eq. 2:

PWKi ¼ 2Ti−5

1

�
Ti < 5ð Þ
Ti >¼ 5ð Þ ð2Þ

where Ti represents the depth of the keyword in the
MeSH tree.
If a keyword occurred at 5th or higher levels, no pen-

alty it was applied. Otherwise, the weight would decrease
to half in each level. The final weight value of the

Fig. 2 Flow chart representing the data processing steps

Table 1 Weight values for the vector combination in this study

Vectors Weight Weight of abstract vectors
with corresponding gene/disease
in sentence

Weight of abstract vectors
without corresponding gene/disease
in sentence

Weight of MeSH
terms vectors

In MeSH terms 3 3 2 3

In title 2 2 1 3

In abstract 1 2 1 2
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keyword was calculated as the product of IDF and PWK
(eq. 3):

TWi ¼ IDFi � PWKi ð3Þ

Constructions of gene and disease vectors and correlation
measurement
We transformed each gene into the vector form, Vg, and
the entry of the vector represented the association be-
tween the gene and the keyword in the dictionary (eq.
4). As a consequence, the dimension of a vector is the
number of keywords contained in the dictionary. For
each gene, the sum of values correspondent to keywords
in all text vectors was multiplied by TWi of keywords
corresponded to these genes. Disease vectors were trans-
formed in the same approach, Vd. A total of 3288 gene
vectors and 445 disease vectors were transformed and
used to predict gene-disease linkages.
The correlation between gene (Vg) and disease (Vd)

was measured by cosine similarity (eq. 4):

cos < Vg ;Vd >¼ Vg � Vd

j Vg j � j Vd j ð4Þ

The precision of prediction was defined as:

P xð Þ ¼ j g; dð Þ : cos < Vg ;Vd > ≥x
� �

∩ g; dð Þ : g; dð Þ∈Kf g j
j g; dð Þ : cos < Vg ;Vd > ≥x
� � j ; 0≤x≤1

In which, {(g, d) : cos <Vg,Vd > ≥ x}represents all
gene-disease pairs with angle smaller than x and {(g,
d) : (g, d) ∈ K}represents the union set of known gene-
disease linkages. As a consequence, P(x) represents the
proportion of known gene-disease linkages among all
gene-disease pairs with angle smaller than x.
The recall of prediction was defined as:

R xð Þ ¼ j g;dð Þ : cos < Vg ;Vd > ≥x
� �

∩ g; dð Þ : g;dð Þ∈Kf g j
j g;dð Þ : g; dð Þ∈Kf g j ; 0≤x≤1

R(x) represents the proportion of known gene-disease
linkages with angle smaller than x among all known
gene-disease linkages.

Results
The overall distribution of cosine similarity value
A total of 1,407,672 values of cosine similarity between
3288 gene vectors and 445 disease vectors were calcu-
lated. The distribution of cosine values was shown in the
Fig. 3. There were over 67% with cosine values < 0.01
and over 83% that were < 0.02. The distribution of co-
sine similarities of gene-disease pair showed that, in gen-
eral, most genes were not associated with diseases. This
distribution also demonstrated that for each disease,
only a few of genes might be related with it respectively.

Evaluating the performance of cosine similarity in
predicting gene-disease linkage
First, we investigated the relationship between cosine
similarity and precision rate. As results shown in the
Fig. 4a, the precision rate increased with increments in
cosine similarity. In addition, when cosine similarity was
greater than 0.5, the precision remained stable around
0.6. Among the gene-disease pairs with cosine similarity
greater than 0.5, over half of them were annotated in the
OMIM database. Furthermore, there were only 2 gene-
disease pairs with cosine similarity smaller than 0.9 and
both of them were also annotated as known linkages.
This demonstrated that the predictability of cosine simi-
larity in aspect of the gene-disease linkage. Fig. 4b showed
the proportion of labeled gene-disease associations with
cosine similarity greater than x among different cosine
similarity ranges. The proportion of OMIM-annotated
gene-disease associations increased with cosine similarity.
Figure 4c shows that the recall rate decreases with in-
creasing cosine similarity and it also demonstrated the
discriminant power of cosine similarity in predicting gene-
disease linkages. Figure 4d shows the tradeoff relationship
between precision rate and recall rate.

The effects of applying weight matrix, PWK, and
normalization
The effects of applying the weight matrix in the text
vectorization step were shown in Fig. 5a and b. Results
showed that the precision rate was marginally improved
with the weight matrix when cosine similarity value was
greater than 0.3 or recall rate was smaller than 0.4. Be-
cause the region with high precision rate or low recall

Fig. 3 The distribution of cosine similarity of gene-disease pairs. The
distribution of cosine similarities of 1,407,672 gene-disease pairs is
shown in the pie plot. Gene-disease pairs were binned according
their cosine similarities
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rate is more meaningful in aspect of gene-disease linkage
prediction, applying the weight matrix is meaningful in
improving the prediction performance.
The effects of applying PWK in penalizing the depth

of the keyword in the MeSH were shown in the Figs. 5c
and d. Keywords without specificity may introduce more
error while not information and, as a consequence, de-
creased the power and accuracy of prediction. PWK pe-
nalized keywords without specificity in terms of disease
association and decreased the effects of these keywords.
Although results also showed that without PWK penal-
ization the precision was marginally higher in gene-
disease pairs with higher cosine similarity, the precision
rate with PWK penalization was higher in the low recall
rate region, than the precision rate without PWK penal-
ization (Fig. 5d). Nevertheless, these findings show that
the PWK penalization does improve the overall perform-
ance of gene-disease association prediction in high pre-
cision rate and low recall rate regions.
Comparisons of TF normalization methods were

shown in the Fig. 5e and f. Although, the precision rate
of applying the standardized normalization method was
stochastically higher than the precision rate of applying
the log-transformation method, it was caused by the
standardized normalization method enlarged the effects
of text documents containing fewer keywords while de-
creased the effects of text documents containing more
keywords. This may introduce a bias of overweighting
short text documents. As a consequence, we concluded

that the log-transformation method outperformed stan-
dardized normalization method in high precision rate
and low recall rate regions (Fig. 5f ).

Comparison with HNEP
We compared our method with HNEP method [30].
HNEP is a method that integrates the graphic model
and MLM to predict gene-disease linkages based on lo-
gistic regression analysis. We found that the precision
rate of our method was significantly higher than the pre-
cision rate of HNEP when the recall rate higher than 0.1
and marginally higher when the recall rate lower than
0.1 and (Fig. 6). As a consequence, we concluded that
out method outperformed the HNEP method in predict-
ing gene-disease linkages.

Discussion
In this study, we predicted potential gene-disease link-
ages using text documents associated with gene names
or disease names in the PubMed, MeSH, and OMIM da-
tabases. We transformed keywords in the dictionary to
vectors to represent genes or diseases, respectively, and
then calculated the cosine similarity between gene vec-
tors and disease vectors. Although we took PubMed as
the source data, our method could be generalized to
other database fields with records described by nature
language.
One of the novelty of our method is to consider the

specificity of the keyword. Remarkably, our method not

Fig. 4 The relationship between precision rate, recall rate, and cosine similarity. a The precision rate increases with increasing cosine similarity. b
The proportion of labeled gene-disease associations among different cosine similarity ranges is shown. c The relationship between recall rate and
cosine similarity is shown. d The tradeoff between precision and recall is shown
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only adapts the concept of TF-IDF that bridges genes
and diseases through term frequencies in the dictionary
but also reweight the keywords according to the MeSH
tree. The main reason is to penalize those keywords
without specificity meaning such as “family” which may
not happen frequently and still have high value in the
IDF. PWK will penalize the words without specificity
meaning because they are very close to the root of the
MeSH tree.
Although the DISEASES study [21] investigated co-

occurrence of gene and disease in the text document, it
focused on analyzing known gene-disease linkages but
did not predict unknown gene-disease pairs. HNEP [30]
and CATAPULT [8] both provided prediction results but
they did not integrate text documents with their
methods. LGscore [32] focused on associations between
genes with less consideration about disease, limiting the

Fig. 5 The effects of applying weight matrix in the text vectorization step. The effects of applying weight matrix in the text vectorization step are
shown in the relationship between (a) precision rate and cosine similarity and (b) the precision and recall rates. The solid line represents results
obtained without using the weight matrix and the dashed line represents those obtained with the weight matrix. The effects of applying PWK in
penalizing the depth of the keyword in the MeSH are shown in the relationship between (c) precision rate and cosine similarity and (d) the
precision and recall rates. The solid line represents results obtained without PWK and the dashed line represents those obtained with PWK. The
effects of applying TF normalization are shown in the relationship between (e) precision rate and cosine similarity and (f) the precision and recall
rates. The solid line represents results obtained with TF normalization and the dashed line represents those without TF normalization

Fig. 6 Comparison with the Heterogeneous Network Edge Prediction
(HNEP) method. Our method was compared with the HNEP method
based on the precision-recall curve. The solid line represents the HNEP
method and the dashed line represents our method
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application LGscore in only some specific diseases. Our
prediction method of gene-disease linkage, described in
this study, not only utilized information from text docu-
ments in PubMed and keywords in MeSH, but also con-
sidered the keyword frequency distribution to adjust the
weight matrix. As a consequence, our method can be
readily adapted to predict more gene-disease linkages,
even in the case of diseases that have not been widely
studied.
Gene-disease pairs with higher association predicted

by our method tended to overlap known gene-disease
pairs annotated by OMIM. As a consequence, gene-
disease pairs with high cosine similarity, especially those
without known annotation, may be valuable for further
investigating their association. Furthermore, based on
our results, the importance of associated genes could be
ranked in one specific disease and this gene rank may do
help to disease-associated gene exploration in the dis-
ease of interest. Also, a similar protocol for prioritization
of diseases when studying the impact of specific genes
can be performed using our method.
One potential general application of our method is

that not only text documents in PubMed, but also re-
sults of other studies, can be integrated into the current
graphic model. Such integration may yield a better per-
formance for gene-disease association predictions. In
addition, one potential extension of our method is that
gene-gene or disease-disease associations could also be
inferred using our method.

Conclusion
In this study, we proposed a MLM of predicting poten-
tial gene-disease linkages by mining gene or disease re-
lated text documents and evaluated the performance of
prediction results by comparing the data with those of
another method, HNEP. Results of our prediction
method quantified potential gene-disease linkages. The
novelty of our method is based on the combination of
text mining and the graphic model. To our knowledge,
there is currently no graphic model involving the kind of
dataset described herein. As a consequence, our method
may provide new avenues for exploring gene-disease
linkages, improving prediction performance, and com-
bining widely-used current graphic models.

Abbreviations
HNEP: Heterogeneous Network Edge Prediction; IDF: Inverse document
frequency; MLM: Machine learning method; TF-IDF: Term frequency–inverse
document frequency
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