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Abstract

Background: Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor
and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density
(MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed
of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding
immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to
their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive
task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated
microvessel-detection algorithms in H&E stained pathology images for clinical association analysis.

Results: In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The
feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images.
Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes.

Conclusions: This is the first study to develop an algorithm for automated microvessel detection in H&E stained

pathology images.
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Background

The tumor microenvironment includes tumor cells, the
blood and lymphatic vasculatures, stroma, nerves, and cells
of the immune system [1]. Currently, many studies are
focusing on the interactions of tumor cells and immune
cells due to the emerging significance of immunotherapy.
Moreover, tumor vasculatures have also long been a thera-
peutic target of anti-angiogenesis [2]. Angiogenesis refers to
the formation of new blood vessels from the endothelium
of the existing vasculature. Some anticancer medicines aim
to cut down the growth of micro blood vessels in order to
kill tumor cells or make ill-formed vessels into normal ones
(vessel normalization) to channel anticancer medicine into
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tumor cells and kill them [3]. Thus, it is essential to explore
the role of micro blood vessels in the tumor micro-
environment.

Microvessel density (MVD) is commonly used as a
surrogate measure for angiogenesis. Many studies have
shown that MVD is an important prognostic factor in
various types of cancers, including lung, breast, colon,
cervix, melanoma, and head and neck cancers [4—11].
More importantly, MVD could be a potential indicative
factor for predicting chemotherapy response. Further-
more, a very recent study showed that the mechanisms
of vessel normalization are correlated with immunother-
apy response [12]. Therefore, it is important to quantify
the fine architectural features of micro vessels and inves-
tigate their role in tumor progression and treatment
response. Finally, a convenient and accurate measure of
MVD before treatment could serve as a potential
biomarker for personalized treatment for individual
patients. Although in clinical pathology practice it is not
difficult to detect micro blood vessels under microscopic
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observation, it is hard to quantify MVD by the naked eye.
Recent studies have developed computerized algorithms
to extract tumor morphological features from H&E slides,
and correlate these features with patient outcomes for
breast cancer [13, 14] and lung cancer [15, 16]. In this
paper, we aim to develop computerized algorithms to
automatically detect micro blood vessels in H&E stained
image slides, and to study the association between MVD
and patient outcomes.

In biomedical research, immunohistochemistry (IHC)
staining of cluster determinant 31 (CD31) or 34 (CD34)
are the most commonly used methods to identify micro-
vessels in tissue slides [17, 18]. In CD31/CD34 stained im-
ages, microvessels appear in a specific color, depending on
the stain used (e.g., brown with DAB). These slides are
then examined by pathologists. Moreover, because CD31/
CD34 staining is specific to studying microvessels, IHC-
stained images are rarely available in any existing public
datasets, such as The Cancer Genome Atlas (TCGA),
which greatly hinders research into the role of microves-
sels in tumor progression and response to treatment.

Hematoxylin and eosin (H&E) staining images are
widely used by pathologists. The hematoxylin stains nu-
clei in a dark blue color and eosin stains other structures
as a pink color [19-22]. The H&E-stained images can fa-
cilitate morphological feature analysis derived from cell
nuclei. Several studies have shown that the H&E-stained
image features could predict patient outcome in differ-
ent types of cancers [23-26]. There are many H&E-
stained pathology images in public databases such as
TCGA and the National Lung Screening Trial (NLST).
Some microvessels shown in H&E-stained images from
the TCGA dataset are illustrated in Fig. 1. However,
manually identifying microvessels by a pathologist is a
labor-intensive and subjective task because of the com-
plexity and heterogeneity of microvessels’ appearance in
H&E-stained histopathology images. Therefore, it is im-
portant to develop automated microvessel identification
methods based on H&E-stained pathological images. At
present, however, there is no current research on detect-
ing microvessels from H&E-stained images.
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In recent years, deep learning has shown its power in
image processing and computer vision with the advent
of big data, parallel computing and optimization algo-
rithms [27-29]. Deep learning algorithms such as convo-
lutional neural networks (CNN), fully convolutional
neural networks (FCN), and region-based convolutional
neural networks have been widely used in image seg-
mentation, object classification and recognition, tracking
and annotation [30-41]. To some extent, the prediction
results from deep learning algorithms have better accur-
acy than human predictions [27-29]. In comparison,
traditional machine learning algorithms trained based on
handcrafted features are designed by humans and
require some prior knowledge on the specific problem.
Deep learning algorithms can build the features and
select the discriminating feature set using a data-driven
method. Deep learning methods have achieved promis-
ing results on complex data such as image, voice and
text, where handcrafted features are not easily defined
for high-level analyses such as segmentation, recogni-
tion, and classification. In this study, we aim to develop
an automated method for microvessel detection in
H&E-stained histopathology images using an FCN tech-
nique, which is an end-to-end image training method. It
is also expected that some other recently developed deep
learning algorithms such as U-Net [39], SegNet [40] and
fully convolutional DenseNets [41] that are based on
FCNs can be applied to microvessel analysis. In this
study, a pathologist manually labelled some microvessels
in H&E-stained images, which were then used as a train-
ing set. All the labelled microvessels were also checked
and agreed upon by a second pathologist. Then, an FCN
was trained with its parameters initialized from these
values in a pre-trained deep learning model. Finally, the
fine-tuned FCN was applied to detect the microvessels
in a new set of H&E-stained images. To the best of our
knowledge, this is the first study to detect microvessels
in H&E-stained pathology images using a deep learning
algorithm. Experimental results have shown the feasibil-
ity of the proposed algorithm. The paper is organized as
follows: In Section II, we present the proposed algorithm

Fig. 1 lllustration of microvessels in H&E-stained histopathological images
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for microvessel prediction. In Section III, the experimental
results are shown. In Section IV, the conclusions and future
work are discussed.

Methods

FCNs are evolved from CNNs [31] and have been the
mainstream approach in the field of semantic segmenta-
tion since good performance was achieved in [34]. The
ECN algorithm can produce end-to-end image training
and achieve pixel-wise prediction. Different from other
deep learning algorithms such as CNNs, the input image
size for FCNs can be arbitrary. FCNs have been widely
applied to biomedical images such as MRIs and CT
scans, with promising results [42-45]. Many new ap-
proaches based on FCNs in specific scenarios have been
also proposed and studied in image segmentation, classi-
fication, and tracking [39-41, 46-48].

FCNs are a specific type of CNN using only size-
agnostic layers (e.g. convolutional, pooling). The network
architecture of the FCNs used in this study is shown in
Fig. 2. This network is constructed with five basic layers,
which are Convolution (Conv), Pooling (pool), Rectified
linear units (Relu), Deconvolution (deConv), and Soft-
maxWithLoss [27, 34]. The convolution layer [46] refers
to the convolution operation between image (feature
map) and kernel (filter) that is expressed as the following
equation:

output|x,y| = input(x,y| ® kernela, b]
= Z(meilzzsilinput(x—a, y-b)
kernal(a,b)
(1)

where input[x, y] denotes the input image or feature
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Fig. 2 The FCN structure used in this study
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maps within the network, kernelfa, b] represents the fil-
ter, rows and columns mean the size of the kernel (filter)
in vertical and horizontal rows respectively, and out-
putfx, y] is the output of the convolution operation.
Neurons of a given image or feature map share their
weights on kernels but have different input fields. The
pooling [46] operation in this FCN mainly refers to max
pooling that simply takes a k x k region and outputs a
single value, which is the maximum value in that region.
Max-pooling has the advantage of leading to a faster
convergence rate by selecting superior invariant features
that can improve generalization performance. Relu [46]
is an activation function that brings non-linearity into
networks and has been widely used in deep learning al-
gorithms in the last few years. Compared with other
common activation functions that involve expensive op-
erations, such as sigmoid and tanh [49, 50], Relu can be
implemented by simply thresholding a matrix of activa-
tions at zero. Moreover, it is reported that Relu can
greatly accelerate the convergence of stochastic gradient
descent compared to the sigmoid or tanh functions [49,
50]. Deconvolution [46] is simply viewed as the combin-
ation of up-pooling and convolution. Similar to a normal
convolutional layer, the kernel used in a deconvolutional
layer is learned during the training step. The deconvolu-
tional layer in an FCN algorithm is mainly used to make
the size of the output image the same as that of the in-
put image. Consequently, the FCN algorithm can handle
images with arbitrary sizes during both training and pre-
diction steps. The SoftmaxWithLoss layer [46] computes
the multinomial logistic loss for a one-of-many classifi-
cation task, passing real-valued predictions through a
softmax [46, 49, 50] to get a probability distribution over
classes. This layer is fundamental to the training phase,
because the loss function contributes to the update of
network parameters. The SoftmaxWithLoss layer is the
combination of softmax and multinomial logistic loss.
All parameters used in FCN are learned during the
training phase by minimizing the loss function using the
backpropagation algorithm [49, 50]. During the testing
phase, the SoftmaxWithLoss layer can be replaced by a
Softmax Layer [46].

The FCN structure of this study in Fig. 2 is different
from that used in [34]. There are only four max pooling
layers (Although there are five boxes denoting max pool-
ing in Fig. 2, one is operated within a 1 x 1 region, which
means nothing has been done) in our FCN structure,
and the last two convolutional layers in [34] (the fully
connected layers used in CNN) were not included in
order to reduce the length of the networks. Therefore,
the efficacy in learning and inference can be improved.
Moreover, the prediction results in this FCN structure
are only 2x upsampled from the previous layers, which
have fused information from all max pooling layers,
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while the prediction results in [34] are at least 8x
upsampled from previous layers that have more coarse
values.

In this study, we developed the model using a training
set (with 300 images at a size of 384 x 384 pixels, ex-
tracted from 10 H&E pathology slides), a validation set
(with 50 images at a size of 384 x 384 pixels, extracted
from another 5 slides) and a testing set (with 35 large
images at a size of 1600 x 1600 pixels, extracted derived
from 5 new slides). All the image slides were derived
from different patients. The training images were first
normalized with a standardization method [46] based on
the population statistics of the training dataset. In this
study, we initialized all weights in the algorithm with a
pre-trained neural network and then fine-tuned the
weights using images from the training set. In order to
prevent the algorithm from over-fitting, we used a valid-
ation set to determine the iteration number and a stop-
ping criterion. Then, the prediction performances of the
model were evaluated in the testing set. After the model
was developed, we applied the model to identify the mi-
cro vessels in the pathology images of 88 lung adenocar-
cinoma patients from the Chinese Academy of Medical
Sciences (CHCAMS) cohort to study the association be-
tween MVD and patient survival outcomes (see Fig. 4
for more details).

Results

In this paper, all of the results were obtained from the
computer experiment using the interface of Python 3.0
based on a Caffe deep learning framework [51], which
was installed and executed on a server with Linux ver-
sion 3.16.0-69-generic and Ubuntu 4.8.2-19 in 64 bits.
This server also includes two Intel(R) Xeon(R) CPU E5-
2680 v3 processors of 2.50 GHz and a 30 Mb Cache,
where each processor has 12 cores and the total number
of logical CPU cores is 48. The server has 132 Gb RAM
and an NVIDIA Tesla K40 m GPU with 2880 stream
cores, 12 Gb maximum memory, 288 Gigabytes/s max-
imum memory bandwidth, and 6GHz memory clock
speed.

The H&E stained histology images for lung adenocar-
cinoma (ADC) patients were from the National Cancer
Center/Cancer Hospital, CHCAMS and Peking Union
Medical College, China. These slide images were at 20X
magnification with a resolution of 0.5 pum/pixel. 300 im-
ages at a size of 384 x 384 (pixels) were extracted from
10 H&E stained pathology slide images and were used
for algorithm training. Another 50 images at a size of
384 x 384 (pixels) were extracted from 5 new slides and
used as a validation dataset. In order to improve the ac-
curacy of the manually labelled microvessels, we had
two pathologists, Drs. Lei Guo and Lin Yang, label the
blood vessels independently, and used the blood vessels
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that both pathologists agreed on as the ground truth for
evaluating the performance of the algorithms (the overall
agreement between the two pathologists was around
85%). The pixels within the microvessels were labelled as
foreground (with value equals to 1) while other regions
were denoted as 0 s. All these labelled microvessels were
checked and agreed on by another pathologist. Two ex-
emplary H&E stained images with labelled microvessels
are shown in Fig. 3. Finally, 35 large images with size of
1600 x 1600 (pixels) were extracted from 5 new H&E
stained pathology slide images and used as testing im-
ages to evaluate the performance. The training, testing
and evaluation strategy is summarized in Fig. 4.

The FCN structure was developed using a Caffe [51]
framework and conducted on a GPU. Some layers of the
FCN structure from this study are similar to those in the
VGG-16 networks [52], and some layers are not. The pa-
rameters of the layers of this network that were the same
as the VGG-16 networks were initiated from a pre-
trained VGG-16 Caffe model, while the parameters in
layers that were different from VGG-16 networks were
initialized with a Xavier algorithm [53]. Then, this FCN
network was fine-tuned using the training images while
the size of min-batch was set as 5. For the FCN training,
a stochastic gradient descent algorithm was applied to
optimize the loss function in order to fine-tune the FCN
model. The momentum value was given as 0.99 and the
weight decay, which is used to regularize the loss

.‘l’

/

c d

Fig. 3 lllustration of two H&E stained images with microvessels
labelled. a & b two H&E stained images. ¢ & d the corresponding
microvessel masks of images in (a) & (b)
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Fig. 4 Flowchart of the training, testing and evaluation strategy
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function, was set as 0.0005. Further, the learning rate
was initialized as 0.01 and decreased by a factor of 10
every 1000 iterations.

The loss values during the FCN training phase based
on the training and validation datasets are measured and
shown in Fig. 5. As shown in Fig. 5, there were small
fluctuations for the loss values in the training dataset,
and it tended to be more stable when the iteration num-
ber approached 6000. This indicated that the FCN struc-
ture had learned the microvessel features. Some of the
feature maps and learned parameters are presented in
Fig. 6 (a) — (d). It is noted from Fig. 6(h) that the micro-
vessel areas have much different information than the
non-microvessel areas. After the training phase, the
trained FCN model was then used to detect the microves-
sels in new input H&E stained images. Some of the detec-
tion results from the FCN model are shown in Fig. 6 (e) —
(i). It shows that most of the microvessels were success-
fully detected.

Moreover, the microvessel segmentation results were
quantitatively measured based on 50 H&E stained
384 x 384 pixels testing images, which were not used
in the FCN training phase. The metrics consisting of

0.7 f

Training Loss
~— Validation Loss

4000 6000 8000 10000

Iterations

0 2000

Fig. 5 Loss values during FCN training

pixel accuracy (pA), mean accuracy (mA), and mean
intersection over union (mIU) were adopted for the
segmentation evaluation. These metrics were defined
as the following:

PA = Zinii/z:iti (2)
mA = (ril) Zil’lii/ti (3)
mll = (1/ny) Zinii/ (ti + Z},Vlﬁ—niz‘) (4)

where 7, is the number of pixels of class i predicted to
belong to class j, n,; is the total number of different clas-
ses, and ¢=Y,;n; is the total number of pixels of class i. In
addition to the aforementioned metrics, numbers of false
positive (FP) and false negative (FN) results were used for
the segmentation evaluation. FP refers to the number of
predicted microvessels that were not actually microvessels,
and FN means the number of microvessels that were not
successfully detected. A total of 35 pathology images of
size 1600 x 1600 were extracted from another 5 H&E
stained slides, which were not used in the FCN training
and testing phase (see Fig. 4). The trained FCN was ap-
plied to these new 35 images in order to evaluate FP and
EN. The total number of microvessels in these images was
about 450. In this study, the FCN-8 s model proposed in
[34] was also applied to detect the microvessel and used
for comparison. The prediction evaluation results of both
our FCN model and FCN-8 s are shown in Table 1. It is
noted from Table 1 that the proposed FCN model outper-
forms the FNC-8 in all defined metrics. The pathologist
checked the FPs and found the two models seem to mis-
classify regions having blood cells as microvessels, but in
fact the appearance of blood cells doesn’t guarantee a
microvessel is present. It is expected that the FP problem
could be reduced with more training images, which con-
tain more non-microvessel areas with some blood cells.

In addition to the aforementioned metrics, the training
time and prediction/inference time were measured and
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Fig. 6 lllustration of feature maps, and prediction results learned weights. a An H&E stained image. b Some features maps in the convolution
layer. ¢ Some learned weights in the convolution layer. d One feature map in the deconvolution layer. e-h: Original H&E stained images. i-l
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compared between our FCN model and FCN-8 s in
Table 2. This indicates that the proposed FCN model
consumes less inference time than FCN-8 s in [34],
while more training time is needed.

Since it is difficult to gather a large number of labelled
images for FCN training from scratch, fine-tuning the net-
works is a good strategy using a limited number of train-
ing images. In total, the proposed FCN model has fewer
layers than that used in FCN-8 s, and it makes good use of
the limited training images and leads to less inference
time. However, one more fusion layer used in our model
may make the back-propagation more complicated and
require a longer training time. The prediction layer in
FCN-8 s is 8X upsampled from the previous layer and it
produces more coarse results compared with that in our
FCN model, where the prediction result is only 2X

Table 1 Prediction results between our FCN and FCN-8 s

The proposed FCN model FCN-8 s
pA 0.952 0.946
mA 0.833 0.772
miU 0.755 0.707
FP 119 155
FN 7 22

upsampled from the previous layers and thus can improve
precision. It is also expected that the prediction accuracy
for both FCN models could be improved if more training
images were provided.

In this study, we applied the trained FCN model to
identify the microvessels in the pathology images of 88
lung adenocarcinoma patients from the CHCAMS
cohort. First, a lung cancer pathologist identified and
labeled the tumor region(s) from each tissue slide in
agreement with another pathologist, and then we
randomly sampled three representative images from
each tumor region. The total number of sample images
collected was 274. For each sample image, we identified
the microvessels using the FCN model. Then, we calcu-
lated the total microvessel area in each image, as well as
the percentage of tumor cells around the microvessel,
defined by the number of tumor cells around the

Table 2 Time consumption between our FCN and FCN-8 s

The proposed FCN model FCN-8 s
Training time [ms]* 1.2E+07 1.2E+07
Inference time [ms]® 313 390

“measured based on 300 training images of size 384 x 384 and the total
iteration is 10,000
Pmeasured based on 50 validation images of size 384 x 384
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microvessel divided by the total number of cells around
the microvessel.

With the estimated total area of microvessels and the
percentage of tumor cells around the microvessel, we fit a
Cox regression model to evaluate the association between
estimated microvessel features and patient survival out-
comes, after adjusting for other clinical information such
as age, gender, and tobacco history. Multiple sample im-
ages from the same patient were modelled as correlated
observations in the Cox regression model to compute a
robust variance for each coefficient. The hazard ratio
(HR), the 95% confidence interval (CI) of the HR and the
p-value for each variable are summarized in Table 3.

The results show that higher microvessel density in a
patient is associated with significantly better survival
outcome. This finding is consistent with current studies
in lung cancer [3] and kidney cancer [54]. In addition, a
higher percentage of tumor cells around the microves-
sels is associated with poor survival outcome, but the p-
value is only marginally significant, probably due to the
limited sample size (1 = 88).

Furthermore, we applied the developed algorithm to
other types of H&E studies. Some microvessel prediction
results based on H&E-stained images in breast and kid-
ney cancers are shown in Fig. 7. The current algorithm
seems to perform reasonably well for H&E-stained im-
ages in different types of cancer. However, a systematic
evaluation is needed for further study.

Discussion

In this paper, we propose a deep learning algorithm to
detect microvessels in H&E stained pathology image. Ex-
perimental results verified that the features of complex
microvessels could be learned and used for microvessel
detection using FCN models. Furthermore, these micro-
vessel prediction results were evaluated and validated by
a pathologist. Although the training phase in FCN takes
a relatively long time, the computing time in the predic-
tion/inference phase is acceptable. Comparison results
have shown that our proposed method produces better
results than the original FCN-8 in terms of pixel accur-
acy, mean accuracy, mean intersection over union, FP, FN,
and inference time. This study developed a computer

Table 3 Survival analysis for NLST lung cancer pathology

images

HR (95% Cl) p-value
Gender (Male vs. Female) 1.05 (040, 2.75) 0.922
Age 1.01 (0.98, 1.04) 0433
Tobacco history (Yes vs. No) 1.15 (044, 3.01) 0.779
microvessel Area 035 (0.14, 0.90) 0.029*
Percentage of Tumor Cells 3.14 (0.88, 11.24) 0.078
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Fig. 7 microvessel prediction results in H&E-stained image with
breast cancer (a) & (b) and kidney cancer (c) & (d)

"

algorithm to detect micro blood vessel and quality micro
blood vessel related features, such as MVD, from the H&E
stained images. It provides an alternative way to study the
role of micro blood vessels and investigate their role in
tumor progression and treatment response from public
datasets, when the CD31/CD34 IHC stained images are
not available.

In this study, we used the manually labelled microves-
sels within the H&E-stained images as the ground truth
for the measurement of algorithm performance. In order
to improve the accuracy of the manually labelled micro-
vessels, we had two pathologists, Drs. Lei Guo and Lin
Yang, label the blood vessels independently. We noticed
that the inter-observer variability was relatively high, es-
pecially for relatively small blood vessels. So, only the
blood vessels that both pathologists agreed on were used
as the ground truth for evaluating the performance of
the algorithms. Moreover, the model developed from
this study provides an objective method for micro blood
vessel detection from H&E stained images for future
studies and clinical applications.

In this study, we used a training set to train the model,
and an external validation set to determine the numbers
of iterations in order to avoid overfitting. Next, we eval-
uated the prediction performance of the final model in
the testing set. The final model was applied to a new co-
hort (88 lung adenocarcinoma patients from the
CHCAMS cohort) to identify micro blood vessels and
study the association between the micro blood vessel-
related features and patient outcomes, while the under-
lying biological mechanisms merit further investigation.
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In this study, we developed a deep learning-based algo-
rithm for detecting micro blood vessels from H&E stained
images, mainly from lung cancer. The proposed method
could also be applied to other types of cancers, such as
breast and kidney cancers. Currently, the proposed FCN
model algorithm may have a false positive problem for
background regions where a large number of blood cells
appear. These problems could be resolved by feeding the
algorithm with more training data, including a greater var-
iety of microvessels and non-microvessels.

Conclusions

It has been reported that microvessel-based features in
immunochemistry images are potentially associated with
patient outcome. To the best of our knowledge, there is
no related research on microvessels in H&E stained im-
ages. In this study, the proposed method was used to
identify microvessels in a real patient cohort, and the
resulting microvessel density is significantly associated
with patient survival outcome. This indicates that our
method has the potential to predict patient clinical out-
come using H&E pathology images, which are widely
available in clinical practice.
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