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Abstract

Background: Quantitative trait locus (QTL) mapping in genetic data often involves analysis of correlated observations,
which need to be accounted for to avoid false association signals. This is commonly performed by modeling such
correlations as random effects in linear mixed models (LMMs). The R package lme4 is a well-established tool that
implements major LMM features using sparse matrix methods; however, it is not fully adapted for QTL mapping
association and linkage studies. In particular, two LMM features are lacking in the base version of lme4: the definition
of random effects by custom covariance matrices; and parameter constraints, which are essential in advanced QTL
models. Apart from applications in linkage studies of related individuals, such functionalities are of high interest for
association studies in situations where multiple covariance matrices need to be modeled, a scenario not covered by
many genome-wide association study (GWAS) software.

Results: To address the aforementioned limitations, we developed a new R package lme4qtl as an extension of lme4.
First, lme4qtl contributes new models for genetic studies within a single tool integrated with lme4 and its companion
packages. Second, lme4qtl offers a flexible framework for scenarios with multiple levels of relatedness and becomes
efficient when covariance matrices are sparse. We showed the value of our package using real family-based data in
the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT2) project.

Conclusions: Our software lme4qtl enables QTL mapping models with a versatile structure of random effects and
efficient computation for sparse covariances. lme4qtl is available at https://github.com/variani/lme4qtl.
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Background
Many genetic study designs induce correlations among
observations, including, for example, family or cryptic
relatedness, shared environments and repeated measure-
ments. The standard statistical approach used in quanti-
tative trait locus (QTL) mapping is linear mixed models
(LMMs), which is able to effectively assess and estimate
the contribution of an individual genetic locus in the pres-
ence of correlated observations [1–4]. However, LMMs
are known to be computationally expensive when applied
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in large-scale data. Indeed, the LMM approach has the
cubic computational complexity on the sample size per
test [3]. This is a major barrier in today’s genome-wide
association studies (GWAS), which consist in perform-
ing millions of tests in sample size of tens of thousands
or more individuals. Therefore, recent methodological
developments have been focused on reduction in compu-
tational cost [4].
There has been a notable improvement in compu-

tation of LMMs with a single genetic random effect.
Both population-based [3, 5, 6] and family-based meth-
ods [7] use an initial operation on eigendecomposition
of the genetic covariance matrix to rotate the data,
thereby removing its correlation structure. The compu-
tation time drops down to the quadratic complexity on
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the sample size per test. When LMMs have multiple
random effects, the eigendecomposition trick is not appli-
cable and computational speed up can be achieved by
tuning the optimization algorithms, for instance, using
sparse matrix methods [8] or incorporating Monte Carlo
simulations [9].
However, the decrease in computation time comes at

the expense of flexibility. In particular, most efficient
LMM methods developed for GWAS assume a single
random genetic effect in model specification and sup-
port simple study designs, for example, prohibiting the
analysis of longitudinal panels. We have developed a
new lme4qtl R package that unlocks the well-established
lme4 framework for QTL mapping analysis. We demon-
strate the computational efficiency and versatility of
our package through the analysis of real family-based
data from the Genetic Analysis of Idiopathic Throm-
bophilia 2 (GAIT2) project [10]. More specifically, we
first performed a standard GWAS, then showed an
advanced model of gene-environment interaction [11],
and finally estimated the influence of data sparsity on the
computation time.

Implementation
Linear mixedmodels
Consider the following polygenic linear model that
describes an outcome y:

y = Xβ + Zu + e

where n is the number of individuals, yn×1 is vector of
size n, Xn×p and Zn×n are incidence matrices, p is the
number of fixed effects, βp×1 is a vector of fixed effects,
un×1 is a vector of a random polygenic effect, and en×1
is a vector of the residuals errors. The random vec-
tors u and e are assumed to be mutually uncorrelated
and multivariate normally distributed, N (0,Gn×n) and
N (0,Rn×n). The covariance matrices are parametrized
with a few scalar parameters such as Gn×n = σ 2

g An×n and
Rn×n = σ 2

e In×n, where A is a genetic additive relation-
ship matrix and I is the identity matrix. In a general case,
the model is extended by adding more random effects,
for instance, the dominant genetic or shared-environment
components.

R packages for linear mixedmodels
The first group of R packages implement routines to
fit linear mixed models as stand-alone programs, for
example, the most recent Gaston package [12]. The sec-
ond group of R packages were developed as extensions
of the lme4 R package, including our lme4qtl package.
Of the many existing lme4-based extensions, the closest
to lme4qtl is the pedigreemm R package [13]. Although
this package does support analysis of related individuals,
the relationships are coded using pedigree annotations

rather than custom covariance matrices. Furthermore, the
pedigreemm package is not able to fit many advanced
models in comparison with lme4qtl (Additional file 1:
Supplementary Note 1).

Implementation of lme4qtl
As an extension of the lme4 R package, lme4qtl adopts
its features related to model specification, data represen-
tation and computation [14]. Briefly, models are specified
by a single formula, where grouping factors defining ran-
dom effects can be nested, partially or fully crossed. Also,
underlying computation relies on sparse matrix methods
and formulation of a penalized least squares problem, for
which many optimizers with box constraints are avail-
able. While lme4 fits linear and generalized linear mixed
models by means of lmer and glmer functions, lme4qtl
extends them in relmatLmer and relmatGlmer func-
tions. The new interface has two main additional argu-
ments: relmat for covariance matrices of random effects
and vcControl for restrictions on variance component
model parameters. Since the developed relmatLmer
and relmatGlmer functions return output objects of
the same class as lmer and glmer, these outputs can
be further used in complement analyses implemented in
companion packages of lme4, for example, RLRsim [15]
and lmerTest [16] R packages for inference procedures.
We have implemented three features in lme4qtl to

adapt the mixed model framework of lme4 for QTL map-
ping analysis. First, we introduce the positive-definite
covariance matrix G into the random effect structure, as
described in [13, 17]. Provided that random effects in lme4
are specified solely by Z matrices, we represent G by its
Cholesky decomposition LLT and applied a substitution
Z∗ = ZL, which takes the G matrix off from the variance
of the vector u

Var(u) = ZGZT = ZLLTZT = Z∗(Z∗)T

Second, we address situations when G is positive semi-
definite, which happen if genetic studies include twin pairs
[1]. To define the Z∗ substitution in this case, we use
the eigendecomposition of G. Although G is not of full
rank, we take advantage of lme4’ special representation of
covariance matrix in linear mixed model, which is robust
to rank deficiency [14, p. 24-25].
Third, we extend the lme4 interface with an option to

specify restrictions on model parameters. Such function-
ality is necessary in advanced models, for example, for
a trait measured in multiple environments (Additional
file 1: Supplementary Note 2).
We note that the later two features are available only in

lme4qtl, but not in other lme4-based extensions such as
the pedigreemm package [13].
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Analysis of the GAIT2 data
The sample from the Genetic Analysis of Idiopathic
Thrombophilia 2 (GAIT2) project consisted of 935 indi-
viduals from 35 extended families, recruited through a
proband with idiopathic thrombophilia [10]. We con-
ducted a genome-wide screening of activated partial
thromboplastin time (APTT), which is a clinical test
used to screen for coagulation-factor deficiencies [18].
The samples were genotyped with a combination of
two chips, that resulted in 395,556 single-nucleotide
polymorphisms (SNPs) after merging the data. We
performed the same quality control pre-processing
steps as in the original study: phenotypic values were
log-transformed; two fixed effects, age and gender,
and two random effects, genetic additive and shared
house-hold, were included in the model; individuals
with missing phenotype values were removed and all
genotypes with a minimum allele frequency below 1%
were filtered out, leaving 263,764 genotyped SNPs in
903 individuals available for GWAS. We compared the
performances between our package and SOLAR [2, 19],
one of the standard tool in family-based QTL mapping
analysis.

Results
We considered three models for the analysis of APTT in
the GAIT2 data, namely polygenic, SNP-based association
and gene-environment interaction.
Before conducting the analysis, we organized trait, age,

gender, individual identifier id, house-hold identifier
hhid variables and SNPs as a table dat. The additive
genetic relatedness matrix was estimated using the pedi-
gree information and stored in a matrix mat. A polygenic
model m1 was fitted to the data by the relmatLmer
function as follows.

m1 <- relmatLmer(aptt ~ age + gender

+ (1|id) + (1|hhid), dat,

relmat = list(id = mat))

The proportion of variance explained by the genetic
effect (heritability) was 0.56, and its 95% confidence
interval, estimated by profiling the deviance [14], was
[0.45; 0.84].
We further tested whether the genetic effect was statisti-

cally significant by simulations of the restricted likelihood
ratio statistic, as implemented in the exactRLRT func-
tion of the RLRsim R package [15]. The p-value of the test
was below 2.2 × 10−16.
For a single SNP named rs1, the update function cre-

ated an association model m2 from m1 and the anova
function then performed the likelihood ratio test.
m2 <- update(m1, . ~ . + rs1)

anova(m1, m2)

To automate the GWAS analysis, we created an example
assocLmer function with several options such as differ-
ent tests of association and parallel computation. By using
the assocLmer function, we have replicated some loci
previously reported for APTT in a larger cohort of 9,240
individuals [18] (Additional file 1: Figure S1) applying the
likelihood ratio test and running the analysis in parallel
on a desktop computer (2.8GHz quad-core Intel Core i5
processor, 8GB RAM).
The GWAS computation time of the association anal-

ysis with two random effects by lme4qtl was 7.6 h. We
performed the same analyses, using SOLAR, and observed
a computation time 3 fold larger (25.1 hours, Additional
file 1: Table S1). In additional experiments varying the
number of fixed and random effects, the lme4qtl pack-
age was also several times faster than SOLAR (Additional
file 1: Table S1, Additional file 1: Figure S2), owing to
the efficient lme4 implementation of sparse matrix meth-
ods. Though, in a special case when a model has a single
random effect, SOLAR had a option to apply the eigende-
composition trick and substantially speed up the compu-
tation (3.8 h), while this option has not been implemented
in lme4qtl (6.6 h). When including a widely used lmekin
function from the coxme package [20] in the comparison
study, our package lme4qtl also showed the lowest compu-
tation time (Additional file 1: Figure S3). As comparison
with other packages is beyond the scope of this work,
we suspect that lme4qtl will likely outperform others or
show similar results under scenario of sparse covariance
matrices. We note that the lme4qtl performance substan-
tially declines for dense covariance matrices, as described
further below.
If one is interested inmore complexmodels than m1 and

m2, our package lme4qtl is flexible enough for advanced
model specification. For instance, lme4qtl allows for
extension of the polygenic model m1 to assess the hypoth-
esis of sex-specificity (a special case of gene-environment
interaction) [11].

m3 <- relmatLmer(aptt ~ age + gender

+ (0 + gender|id)+(0+dummy(gender)|rid),

dat, relmat = list(id = mat))

The first genetic random effect, denoted as (0 +
gender|id), has three parameters σg1 , σg2 and ρg
and its variance is partitioned among three groups of
pairs: male-specific

(
σ 2
g1 , the genetic variance captured

by males
)
, female-specific

(
σ 2
g2

)
and male-female pairs(

ρgσg1σg2
)
. The second random effect, denoted as (0 +

dummy(gender)|rid), models the heteroscedasticity
in residual variance between the two groups of males and
females, where the variable rid is a copy of the individ-
ual identifier id variable. The random effect (1|hhid)
presented in m1 is not included for simplicity reasons.
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Additional file 1: Supplementary Notes 1 and 2 contain
the details on model specification and numerical results
obtained on the GAIT2 data.
To assess the null hypothesis of no gene-environment

interaction, Blangero proposed the likelihood ratio test
when comparing to either of two null models: the correla-
tion coefficient is one (ρg = 1) or the variances are equal
(σg1 = σg2 ) [11]. We implemented different restrictions
on model parameters in lme4qtl by means of a special
syntax for the vcControl parameter, as described in
Additional file 1: Supplementary Note 2. The next two
(null) models, m4 and m5, were fitted with the parame-
ter restrictions described above for the gene-environment
interaction analysis.

m4 <- relmatLmer(aptt ~ age + gender +

(0+ gender|id) + (0 + dummy(gender)|rid),

dat, relmat = list(id = dkin),

vcControl = list(rho1 = list(id = 3)))

m5 <- relmatLmer(aptt ~ age + gender +

(0 + gender|id)+(0 + dummy(gender)|rid),

dat, relmat = list(id = dkin),

vcControl=list(vareq=list(id=c(1,2,3))))

Numerical results of the likelihood ratio tests in
Additional file 1: Supplementary Note 3 showed that
the evidence for gene-environment interaction is weak.
Otherwise, a new m3-based association model can be
sought for GWAS, in which a SNP has both marginal and
interaction effects with the gender variable.
Lastly, we evaluated how the lme4qtl computation time

depends on the sparse structure of covariance matrices,
as the genetic relationship matrices are not necessar-
ily sparse. We used the polygenic model m1 as an ini-
tial model (the random effect (1|hhid) was omitted),
where the genetic relationship matrix mat has a high
proportion of zero values (sparsity) equal to 0.98. We
then gradually fill zeros in mat by small non-zero val-
ues, thus reducing the sparsity towards 0, and refitted
the model m1. We found that the time required to fit
the polygenic model increased substantially: it became
an order of magnitude greater once the sparsity changed
from the GAIT2 level 0.98 to 0.60 (Additional file 1:
Figure S4).

Discussion and conclusions
We have extended the lme4 R package, a well-established
tool for linear mixed models, for application to QTL
mapping. The new lme4qtl R package has adopted the
lme4’s powerful features and contributes with two key
building blocks in QTL mapping analysis, custom covari-
ance matrices and restrictions on model parameters.
To our knowledge, the lme4qtl R package is the most

comprehensive extension of lme4 to date for QTL map-
ping analysis.
Our package also has limitations. In particular, intro-

ducing covariance matrices in random effects implies that
some of the statistical procedures implemented in lme4
might not be applicable anymore. For instance, bootstrap-
ping in the update function from lme4 cannot be directly
used for lme4qtl models. Furthermore, the residual errors
in lme4 models are only allowed to be independent and
identically distributed, and ad hoc solutions need to be
applied in more general cases, as we showed for the gene-
environment interaction model. However, this restriction
on the form of residual errors may be relaxed in the future
lme4 releases, according to its development plan on the
official website [21]. Also, lme4qtl cannot compete with
tools optimized for particular GWAS models with a sin-
gle genetic random effect: lme4qtl allows for association
models with multiple random effects.
In practice, lme4qtl is mostly applicable to datasets with

sparse covariance matrices. Its use in population-based
studies with dense matrices may lead to a considerable
overhead in computation time. The typical study designs
suitable for lme4qtl are family-based studies, longitudi-
nal and similar studies with many sparse grouping factors.
Also, lme4qtl would be applicable in a 2-step GWAS pro-
cedure even in population-based studies: at the first step,
the linear mixed model is fitted a single time under the
null hypothesis of no association; at the second step, asso-
ciation tests make use of the variance component param-
eters estimated at the previous step, thus, avoiding fitting
the linear mixed model again and speeding up the compu-
tation [3, 4]. Of a practical note, lme4qtl was able to fit a
linear mixed model with many structured random effects,
including the dense genetic covariance matrix, on several
thouthands of individuals in less than half an hour on the
desktop computer (data not shown).
In conclusion, the lme4qtl R package enables QTL map-

ping models with a versatile structure of random effects
and efficient computation for sparse covariances.

Additional file

Additional file 1: Supplementary Tables and Figures. Supplementary Note
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Note 2: Multi-trait and multi-environment linear mixed models.
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