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Abstract

Background: Computational network biology is an emerging interdisciplinary research area. Among many other
network approaches, probabilistic graphical models provide a comprehensive probabilistic characterization of
interaction patterns between molecules and the associated uncertainties.

Results: In this article, we first review graphical models, including directed, undirected, and reciprocal graphs (RG),
with an emphasis on the RG models that are curiously under-utilized in biostatistics and bioinformatics literature. RG's
strictly contain chain graphs as a special case and are suitable to model reciprocal causality such as feedback
mechanism in molecular networks. We then extend the RG approach to modeling molecular networks by integrating
DNA-, RNA- and protein-level data. We apply the extended RG method to The Cancer Genome Atlas multi-platform

ovarian cancer data and reveal several interesting findings.

Conclusions: This study aims to review the basics of different probabilistic graphical models as well as recent
development in RG approaches for network modeling. The extension presented in this paper provides a principled
and efficient way of integrating DNA copy number, DNA methylation, mRNA gene expression and protein expression.
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Background
This article starts with a comprehensive review of graph-
ical models and recent development in constructing bio-
logical networks using reciprocal graphs (RG’s). In order
to integrate multi-omics data including proteomics, we
extend the work in [1] utilizing fundamental biological
knowledge and the factorization of the joint distribution.
Computational network biology (CNB) is an emerg-
ing research field that encompasses theory and applica-
tions of network models to systematically study different
molecules (DNA, RNA, proteins, metabolites and small
molecules) and their complex interactions in living cells.
CNB provides new insights in diverse research areas
including system biology, molecular biology, genetics,
pharmacology and precision medicine. The development
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of high-throughput profiling technologies allows for the
interrogation of the status of many molecules in a cell
at the same time, which makes it possible to jointly
model these cell components with network modeling
approaches. CNB is an interdisciplinary research area and
has received contributions from researchers with various
background. In this paper, we focus on network modeling
approaches from a statistical perspective, namely, proba-
bilistic graphical models (PGM) which allow a complete
probabilistic description of interaction patterns between
molecules and the associated uncertainties when estimat-
ing such interactions from noisy genomic and/or pro-
teomic data.

PGM are probabilistic models for multivariate random
variables whose conditional independence (also known
as Markov property) structure is characterized by an
underlying graph. PGM provides a concise, complete and
explicit representation of joint distribution and allows for
convenient Gibbs factorization of the density (if it exists)
and hence local computations. The Markov property can
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be directly read off the graph through the notion of graph
separation. PGM is closely related to causal inference,
path analysis and expert system and finds a wide range
of applications in political sciences, economics, genetics,
biology, physics and psychology.

The most commonly used graphs are undirected graphs
(UG) and directed acyclic graphs (DAG). UG repre-
sents symmetric interactions between variables whereas
DAG allows for asymmetric ones that can be poten-
tially interpreted as cause-effect relationships. Both UG
and DAG are a special case of a more general graph-
ical model known as chain graphs (CG) [2, 3] which
allow for both symmetric and asymmetric conditional
independence relationships. Despite of the flexibility of
CG, the directed relationships are still constrained to be
(block-) recursive, that is, reciprocal causality is prohib-
ited. However, cyclic causal relationship are fundamental
and ubiquitous in science, including, for example, the law
of supply and demand in economics or feedback mecha-
nism in gene regulatory networks. Spirtes [4] and Koster
[5], in their respective seminal work, independently pro-
posed coherent non-recursive graphical models including
directed cycles of which the joint distribution was previ-
ously thought ill-defined ([6], p. 72). Spirtes [4] developed
directed cyclic graphical (DCG) models which include
DAG’s as a special case, and [5] proposed an even more
general class of graphical models, reciprocal graphical
(RG) models, which include CG (hence UG and DAG)
and DCQG as special cases. The relationships between the
aforementioned graphs are depicted as a Venn’s diagram
in Fig. 1.

In this paper, we focus on RG’s due to their statisti-
cal generality, the capability of modeling feedback loops
and their still underappreciated popularity in the bio-
statistics and bioinformatics literature. The rest of this
paper is structured as follows. We first review the basics
of UG, DAG and RG in this section. In the next section,
we provide a comprehensive review of novel Bayesian
approaches in modeling molecular networks using RG.

= (

Fig. 1 Venn’s diagram of different graphs. UG: undirected graph. DAG:
directed acyclic graph. DCG: directed cyclic graph. CG: chain graph.
RG: reciprocal graph

Page 60 of 69

Then, we extend the RG approach in [1] to modeling
The Cancer Genome Atlas (TCGA) ovarian cancer data
that are measured on three different levels: DNA, RNA
and proteins. The extension is non-trivial: we factorize an
RG into two separate RG’s (one for DNA and RNA and
the other for RNA and protein) and make coherent joint
inference by exploiting two known biochemical processes:
DNA transcribes to RNA and RNA in turn translates to
protein, the latter also allowing us to estimate the direc-
tion of the relationship between RNA and protein which
informs the directionality of the regulatory relationships
between proteins. To the best of our knowledge, we are
among the first to reconstruct multi-omics functional net-
works that consider mass spectrometry proteomics data
generated by the CPTAC.

Overview of directed, undirected and reciprocalgraphical
models. Graphical models are a class of statistical mod-
els for a set of random variables Z = (Z1,... ,ZP)T that
provide a graphic representation of conditional indepen-
dence relationships among the variables. Using graphical
models allow practitioners to simplify inferences, obtain
parsimonious solutions via variable selection, enable
local computations, and define a framework for causal
inference.

In a graphical model, variables are represented by a set
of nodes and their associated interactions are represented
by edges. A missing edge usually represents the condi-
tional independence between the corresponding pair of
random variables conditional on a certain set of other
variables. The conditioning set depends on the chosen
type of graph. Here, we provide a minimal set of termi-
nologies required to describe the Markov properties in
later sections.

A graph G = (V,E) is defined by a set of nodes V =
{1,...,p} and a set of directed and undirected edges E =
E4 U E*. For a pair of nodes i,j € V, we denote an undi-
rected edge by i—j or {i,j} € E* and a directed edge by i —
jor (i,j) € E%. We write i > j if there exists a path from i
to j. A path is an ordered sequence (ip, . . ., ix) of distinct
nodes except possibly ip = ix such that {ix_1,ix} € E or
(ik—1,ix) € Efork = 1,...,K. A cycle is then a path with
ip = ix. A path component is a set of nodes that are all
connected by an undirected path. The boundary of a node
iisbd() = {j | {j,i} € Eor (j,i) € E} and the boundary
of a subset A € V is bd(4) = J;c4 bd(i)\A. A node i is
said to be a parent of node j, if (i,j) € E. The set of par-
ents of j is denoted by pa(j). The ancestors of node i are
an(i) = {i}U{j|j > i}. The descendants of node i, denoted
by de(i), are the nodes i such that there is a path from i
to j. The non-descendants of i are nd(i) = V\(de(i) U {i}).
For A C V, the induced subgraph by A is G4 = (A, Ea)
where E4 = EN (A x A). A subset A C V is anterior if
bd(A) = (¥ and the minimal anterior set of A is denoted
by an(A). Note that we use an() to denote both ancestors
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and minimal anterior set; it should not cause any confu-
sion because in fact an({i}) = an(i). Notice that (minimal)
anterior set [5] is equivalent to (minimal) ancestral set
in [7]. A graph is complete if all nodes are joined by an
edge. A complete subgraph that is maximal with respect
to the subset relation is called cligue. A useful procedure
in defining Markov properties of graphs with directed
edges is moralization. The moralization is performed in
two steps. Make the boundary of each path component
complete by adding undirected edges and then replace all
directed edges by undirected ones. We call the resulting
undirected graph moral graph, denoted by G” = (V, E™).

We say that graph G is a undirected graph (UG) if E =
E* contains only undirected edges. And graph G is said to
be a directed acyclic graph (DAG) if E = E4 contains only
directed edges and no cycles. A reciprocal graph (RG) is a
graph G that can have both directed and undirected edges
and cycles, with the only restriction being no directed
edges between nodes in the same path component [5]. In
the following, we provide a concise overview of each type
of graph. More comprehensive and technical details of the
contents can be found in [7] and [6].

Undirected graphical models

Let P denote the joint distribution of Z = Z, =
Zy,... ,Zp)T. We say P has a Gibbs factorization (or sim-
ply factorization) with respect to a UG G if its density f (Z)
can be written as

f@) =[] vec@o (1)

CeC

where C is the collection of cliques of G and V¢ is an
arbitrary nonnegative function on the domain of Z¢ for
CeCl.

Not surprisingly, the factorization property of P is
closely related to its Markov properties; in fact, the for-
mer implies the latter. The Markov property of a UG relies
on a notion of graph separation. For three disjoint subsets
A, B,C € V of nodes, A is said to be separated from B by
C if every path between A and B includes a node in C. The
global Markov property of a UG is given in the following
definition.

Definition 1 (Global Markov property) Given a UG G,
the joint distribution P of Zv is global Markov with respect
to G if for any three disjoint subsets A, B and C of 'V, Z4
is independent of Zp given Z¢, written as Z4 L Zp | Z¢
whenever C separates A and B.

The global Markov property always implies the local
Markov property.
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Definition 2 (Local Markov property) Given a UG G,
the joint distribution P of Zv is local Markov with respect
to G ifforany nodei € V, Z; I Zy\pagi,iy | Zbd()-

The local Markov property in turn always implies the
pairwise Markov property.

Definition 3 (Pairwise Markov property) Given a UG
G, the joint distribution P of Zv is pairwise Markov with
respect to G if for any pair of nodes i,j € V, Z; 1L Z; |
Zv\(ijy-

In summary, factorization in (1) = global Markov prop-
erty = local Markov property = pairwise Markov prop-
erty. A natural question to ask is: is the relation also true
backwards? The answer is yes when P has a positive and
continuous density, which is summarized in the follow-
ing theorem, often referred to as Hammersley-Clifford
theorem [8].

Theorem 1 (Hammersley-Clifford) Suppose a probabil-
ity distribution P has a positive and continuous density f.
Then P satisfies the pairwise Markov property with respect
toa UG G if and only if f factorizes according to G.

When P = N (0, A1) is multivariate Gaussian with pre-
cision matrix A, undirected graphical models are defined
by zero constraints on A. There is a one-to-one corre-
spondence between the graph structure G and the zero
patterns in A. Specifically, the precision matrix A is con-
strained to the cone of positive definite matrices with
off-diagonal entry A;; = 0 if and only if there is a miss-
ing edge in G between nodes i and j. Therefore, in the
Gaussian case, learning the graph structure is equivalent
to recovering the zero patterns in A. Interested readers
are referred to recent Bayesian approaches [9-11] and
non-Bayesian approaches [12, 13].

Directed graphical models
We say the distribution P factorizes with respect to a DAG
G if its density f(Z) can be written as

p
f@) =T]f(Zi| Zpa)- 2)

i=1

Similar to UG’s, the Markov property of a DAG can be
also defined by the concept of graph separation. How-
ever, unlike UG’s, the separation is more complicated in
DAG’s. There are two different but equivalent approaches
in describing separation in a DAG. Pearl [14] introduced
the notion of d-separation characterized by several con-
ditions and then defined the global Markov property of a
DAG in the same way as that of an UG except that separa-
tion is replaced by d-separation. Another approach [3] is
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based on the moralization and graph separation in UG's.
We elaborate more on the latter because it will be used
again in defining Markov properties of RG’s. Similar to the
previous section, we introduce global, local and pairwise
Markov properties of DAG and then state the relation-
ships between them. Recall that G’ denotes the moralized
graph.

Definition 4 (Directed global Markov property) Given
a DAG G, the joint distribution P of Zy is global Markov
with respect to G if for any three disjoint subsets A, B and
Cof'V, Z4 is independent of Zp given Zc, written as Z 1L
Zp | Zc whenever C separates A and B in QZZ(AUBUC).

Definition 5 (Directed local Markov property) Given a
DAG G, the joint distribution P of Zy is local Markov with
respectto G if forany nodei € V, Z; 1 Zyqi) | Zpaiy-

Definition 6 (Directed pairwise Markov property)
Given a DAG G, the joint distribution P of Zy is pairwise
Markov with respect to G if for any pair of nodes i,j € V,
Zi L Zj | Zpaw\py-

Similar to UG, it is easy to show that factorization
in (2) = directed global Markov property = directed
local Markov property = directed pairwise Markov prop-
erty. In fact, directed global and local Markov proper-
ties are equivalent [15]. Moreover, a theorem similar to
Hammersley-Clifford’s theorem holds for DAG’s as well.

Theorem 2 ([7]) Suppose a probability distribution P
has a continuous density f. Then P satisfies the local
Markov property with respect to a DAG G if and only
if f factorizes according to G. Furthermore, if the density
f is positive, local and pairwise Markov properties are
equivalent.

In a Gaussian DAG, each conditional distribution in (2)
is a linear model

f(Zi| Zpaw) = N(Z;i | Z BiiZj» o),
jepa(i)

where N(- | u,02) is a Gaussian density with mean p
and variance o2, Essentially, a DAG is decomposed as a
system of recursive and independent linear regressions
for which the graph structure inference can be performed
using standard model selection technique.

However, there is an important caveat in using DAG’s
for statistical inference. That is the the notion of Markov
equivalence — different DAG’s may induce the same set of
conditional independence relationships. For example, the
graphs i < j — kand i < j < k induce the same con-
ditional independence relationship, i 1. &k | j. Both are
equivalent to the UG i — j — k. In fact, any perfect DAG
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(i.e. a DAG without configuration i — j < k, that is, all
parents are married) is Markov equivalent to a decompos-
able UG (i.e. UG in which all cycles of length four or more
have a chord, which is an edge that is not part of the cycle
but connects two nodes of the cycle). Conversely, given an
undirected decomposable graph, there exists a Markov-
equivalent perfect DAG; see [7] or [16]. One approach to
avoid repeatedly analyzing Markov equivalent DAG’s is
adopting a prior ordering of the nodes. The ordering may
be obtained from subjective prior knowledge such as a ref-
erence network [17] or more objectively from an ordering
learning algorithm such as order-MCMC [18]. For other
recent DAG approaches, see [19-21] or [22].

Reciprocal graphical models, simultaneous equation
models and path diagrams

We introduce the global Markov property for RG’s in
the following definition and omit the local and pairwise
Markov properties since they are not as practically useful
as in UG and DAG.

Definition 7 (Reciprocal global Markov property)
Given a RG G, the joint distribution P of Zy is global
Markov with respect to G if for any three disjoint subsets
A, Band C of V, Z4 is independent of Zg given Zc, writ-
tenas Zy 1 Zp | Zc whenever C separates A and B in

g::;lq(AUBUC)'

Similarly to UG and DAG, there is also a Hammersley-
Clifford-type theorem for RG’s ([5], Theorem 3.4).

However, while it is a beautiful theoretical result on the
equivalence between the global Markov property and the
Gibbs factorization in RG, the latter is difficult to work
with in practice due to its complex form. Fortunately, in
the Gaussian case, there is an easy connection between RG
and simultaneous equation models (SEMs). To describe
this connection, let Z = (Y, X) be divided into two sets of
variables Y and X and consider an SEM,

Y =AY + BX+E 3)

where we assume the following five conditions:

Cl. (Y,X)~ N(0,X);

C2. ELX;

C3. I — Aisinvertible;

C4. Cov(E) is diagonal;

C5. ¥ = Cov(X) is block diagonal with full diagonal
blocks.

To link an SEM to an RG, we draw a path diagram G =
(V,E) of SEM by the following rules:

(i) definenodesV ={1,...,p,p+1,...,p+ q} which
represent (¥, X) = (Y1,..., Yy, X1,...,Xg);
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(i) draw directed edges
E4 = {(,) | a; # 0 orbyj—, # 0}; and
(iii) draw undirected edges E*{{i,j} | ¥;p;—p # O}.

In words, (i) we introduce a node for each variable in
(Y,X) with nodes j = 1,...,p corresponding to Y; and
p +j corresponding to X; for j = 1,...,q; (ii) nodes i =
1,...,p (i.e. Y; nodes) become targets of directed edges
from node j if the corresponding a; # 0 or b;;_, # 0;
(iii) we introduce undirected edges between X; and X (i.e.
nodes i + p and j + p) if ¥;; # 0. Figure 2a shows an
example of an RG withp =2 and g = 3,

0 % * 00
A_|:*0:|,B_|:0**i|and\ll_

with * indicating non-zero elements. With conditions C1-
C5, the Markov properties of an SEM can be read off its
path diagram.

*00
0|, (4
0 % %

Theorem 3 ([5]) Let Y = AY + BX + E be an SEM sat-
isfying conditions CI1-C5. The joint distribution P of (Y, X)
is global Markov with respect to the path diagram G.

For example, the SEM with configuration in (4) implies
X1 L Xy, X3 which is evident by looking at the moral
subgraph g;”n(xl,xbxg) = g&l,xz,xs} in Fig. 2b. Clearly, the
empty set ¥ separates X; and X, X3. We can also find

Y1 Yo

Fig. 2 lllustration. a Path diagram G for SEM with configuration in (4).
b Moral subgraph g&,x;,xg} induced by an(Xy, X2, X3) = {X1, X2, X3}.

¢ Moral graph G™
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X1 L X5,X3 | Y1,Y2 by moralizing the entire path dia-
gram (Fig. 2c) since set {Y7, Y2} separates X and X3, X3 in
G™. However, we remark that the class of SEMs satisfying
conditions C1-C5 is a subclass of RG. For instance, i —
j— k < lisa CQG (hence an RG) but does not correspond
to an SEM. Similarly to DAG’s, DCG’s (or more generally
RG’s) can also be divided into Markov equivalence classes;
see [23-28] for characterization and learning of Markov
equivalence classes of DCG’s.

Methods
In this section, we will review recent RG approaches in
modeling molecular networks including [29, 30] and [1].

Modeling signaling pathways through latent variables
Telesca et al. [29] considered gene expressions y;; for p
genes measured over n samples, i = 1,...,nm and j =
1,...,p. They follow [31] and introduce trinary latent
variables e;; € {—1,0, 1} defining three possible categories
of each expression y;j,

—1 underexpressed gene j in sample i
1 overexpressed gene j in sample i (5)
0 otherwise

e,'}' =

The e; can be interpreted as an underlying biologic sig-
nal of under-, over- or normal expression. The motivation
of the proposed inference is that only e; should be mod-
eled without over-interpreting the additional noise in y;
as biologically meaningful. Given e;;, a Gaussian-uniform
mixture model is assumed for gene expression y;,

yijlei ~ fey,j D), (6)

where f11; = U(—«;,0),fij = U<0rK,*)’fO,j =

N (O, sz) and y; = y;j — (a; + ;) is the normalized rel-
ative abundance, corrected for a sample-specific effect o;
and a gene-specific effect u;. Conditional conjugate pri-
ors are assigned to «;, u;,/cj_,/cf: o ~ N (0, to%) S~
N (mﬂ, rﬁ) ko ~ 1G (ag.by), /c].+ ~ IG (a},b}), ojz ~
IG(as,bs). Note that o; and u; are not identifiable
because o; + uj = (a; — ¢) + (14 + ¢) for any constant c. If
desired, the identifiability problem can be resolved by set-
ting Y 7 ; o; = 0. For posterior simulation, the constraint
can be implemented by setting or; <— a;—cand p; < pj+c
with ¢ = Y7 | &; at each iteration.

The dependence of gene expressions is modeled
through the prior model for the latent variables e;;. In [29],
they further introduced another set of latent Gaussian
variables z;; as probit scores for each trinary e;;,

-1 ifzi]' >1
1 ifz; < -1
0 otherwise.

€ij =
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The continuous latent probit scores are then modeled
by an SEM

zj=my+ Y apzi — mi) + €
kj

with €; ~ N (O, slz) and m;; = xlT B; for covariates x;.
Conjugate normal priors are assumed for regression coef-
ficients B; and aj. By (3) this defines an RGM. Let A be
the p x p matrix of which the diagonal elements are zeros
and the off-diagonal (j, k) entries are aj. Then the joint
distribution of Z; = (z;,.. ., zip)T is given by
pZilmi, &) =N (mi, (@ = )7'SU - 4)7"),

where m; = (mil,...,m,'p)T and § = diag(s1,...,sp).
The structure of the path diagram G for this SEM is deter-
mined by the zero patterns in 4, i.e. ax = 0 if and only
if there is a missing edge from k to j. They define the
prior over graph G to be a subgraph of some fixed graph
Go = (V,Ep). The idea is to specify Gy as some known
maximum pathway. That is, p(G|¥) = ¥/El(1 — y)!Fol=IEl
where v ~ Beta(ay,by). Restricting G to subgraphs
of Gy very effectively incorporates the prior information
that might be available about an established biological
pathway, using, for example, a public database such as
KEGG. This restriction to subgraphs of Gy is important
to mitigate nonidentifiability due to Markov equivalence
between distinct graphs. Moreover, it also greatly reduces
the graph search space, which allows for efficient poste-
rior simulation through trans-dimensional Markov chain
Monte Carlo (MCMC). Further discussion and detailed
treatment of this topic can be found in [29].

The network structure in [29] is built on the latent
Gaussian variables which are linked to the observed gene
expressions through another layer of latent trinary vari-
ables. Therefore it defines an indirect dependence struc-
ture on the actual gene expression. [30] extend this work
to allow for a more direct characterization of the depen-
dence structure of the observed protein expressions. Par-
ticularly, they proposed a fully general dependence prior
between latent binary variables and developed a parsimo-
nious framework for Bayesian model determination that
allows for local computation.

Telesca et al. [30] start with the same sampling model as
in (5) and (6), but then deviate substantially from the ear-
lier model by reducing the trinary variable e; to a binary
indicator variable z;; = 2/(e;; = 1) — 1. That is,

2 — —1 if protein j is inactivated or neutral in sample i
7711 if protein j is activated in sample i

The motivation of this reduction is the simplicity of the
prior model on the resulting binary vector Z; = (z;). In
fact, it is possible [8] to describe all possible probability
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models p(Z;) that comply with a given conditional inde-
pendence structure. See below. Also, investigators usually
focus on protein activations in RPPA studies. The joint
distribution of Z; = (z;,. ..,zip)T conditioned on the
graph G is by an Ising model,

P
p(ZilG, &, B) x exp Zotjzij + Z Bjkzijzik

j=1 {j;k}eE™

The model is completed with normal priors for «; and
Bjk- In essence, the approach first maps an RG G = (V, E)
to its moral graph G” = (V, E”) and then defines the joint
probability model for Z; based on G”. The prior model for
the graph G is again hinged upon a known reference net-
work Gy = (V, Ep). However, it is not constrained to be a
subgraph of the reference network as before. Instead, they
assume p(G|Y¥) Ya(G:90) with ¢ ~ Beta(ay, by ) where
d(-,-) is adiscrepancy measure. They choose d(-,-) = |[E‘N
Eo|+38|ENEG| with é > 1 which is a weighted sum of edges
dropped from and added to the reference graph Go. With
8 > 1, the discrepancy measure allows for parsimonious
inference by imposing a heavier penalty for adding edges
than removing edges. A distinctive feature of this con-
struction is that the prior decreases to zero exponentially
fast as discrepancy measure increases, which allows the
posterior simulation to be concentrated around the refer-
ence network. See [30] for more modeling and inference
details of this topic.

Integrative network analysis from multi-platform genomic
data

Different types of molecules in a living cell do not act in
isolation; in fact, DNA, RNA and proteins work closely
together to carry out various functions for each cell.
Studies that consider only one specific type of molecules
remain unnecessarily restricted. In [1] they integrate DNA
and RNA molecules for a more robust and biologically
interpretable estimate of a gene network. In particular,
they consider p gene expressions ¥ = (Y1,...,Y,)7T,
together with corresponding copy number and methyla-
tion, collectively denoted by X = (Xj,... ,XQP)T. They
then exploit the central dogma of molecular biology that
gene expression is produced by transcription from seg-
ments of DNA on which the copy number and methy-
lation are measured, but the reverse processes are rare
and biologically uninterpretable. The importance of this
restriction is that in a network of Z = (¥, X) some edges
have fixed pre-determined directions corresponding this
observation. This in turn allows us to report meaningful
inference on the directions of the remaining edges. Sim-
ilar idea but in a different context has been proposed by
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[32-34]. With this assumption, they then model the reg-
ulatory relationships between copy number, methylation
and gene expression with the following SEM

Y =AY + BX+E )

where A = (a;) € RP*P with zeros on the diagonal,
B = (by) € RF? and E = (e1,...,6)T ~ Np(0, %).
The SEM in (7) immediately prohibits gene expression
from regulating copy number or methylation since there
is no X on the right-hand side of the equation. It also
explicitly allows for feedback loops between the genes
which are quite common motifs in molecular networks
and have key functional roles in many cellular processes
such as regulating gene expressions and acting as bistable
switches [35]. Such feature is missing in DAG’s, UG’s
and CG’s.
Next they assign thresholded priors [36] for A and B,

aj = Zl,’jl(| Ell'/' |> t;) and by = l;ikl(| Z’ik |> t),

fori =1,...,p,j # iand k = 2i — 1,2i. The thresh-
old parameter f; controls the minimum effect sizes of
a;j and by and is assigned a uniform hyperprior #; ~

Uniform(0, o). Normal priors are given to 4; and bi,
aij ~ N(O, Tij»a)> and by ~ N(O, rl.(,f) ) and conjugate

hyperpriors ri;a) ~ 1G(uy, Br) and ri(kb) ~ 1G(ag, Br)-
The thresholded priors enjoy nice theoretical properties
as they are closely related to spike-and-slab prior and non-
local prior as shown in [36—-38]. We refer readers to [1] for

a more comprehensive description of the work.

Reverse engineering gene networks with heterogeneous
samples
Genomic data are often heterogeneous in the sense that
the samples can be naturally divided into observed or hid-
den groups. For example, in a pan-cancer study, patients
are normally grouped by the known cancer types whereas
when studying a specific cancer, patients can be split into
homogeneous latent subtypes. The inferential goals of
these two cases are typically quite different. In the case
with observed groups, much of the statistical work has
been devoted to building models that allow information
to be shared across groups. Such approaches improve
the statistical power in graph estimation especially for
groups with very limited samples by borrowing strength
from other groups. For hidden groups, the underlying task
becomes a clustering problem which aims to partition
subjects into homogeneous clusters. In this section, we
introduce two hierarchical RG models that are suitable for
heterogeneous datasets. Interested readers can find more
details in [38].

Suppose there are C known groups in the data. Let
{s; = c} be the group indicator for patient i in group c €
{1,...,C}L.Denote Y, = {Y;; s; = cand X, = {X}; s; = ¢}

Page 65 of 69

the set of observations for patients in group c. Then [38]
entertain a group-specific SEM

Yc IACYC +BcXc +Ec

where A; = (acj), Bc = (bcj)and E. = (€1, . ., ec,}z)T ~
Np(O: X.) with Ac,ij = Zlc,ijl(| Zlc,ij |> ;) and bc,ik = bc,ik1(|
Lc,ik |> t;). To link the graphs across groups, they impose
multivariate normal priors on the edge strength

. . . AT
a;j = (avj,...,acy) ~ Nc (O, ri](,“) sz) ,

j i \" b)
by = (bl,ikr . -rbC,ik> ~Nc (0’ Tik 9) ’

The covariance matrix = (w,) connects edge strength
and graph structure across groups. When w,. is close to
+1, a;; and Zlc/,ij tend to have similar absolute values,
which gives rise to a high probability that the edge i < j
is included or excluded in groups ¢ and ¢’ simultaneously
since the threshold ¢; is shared across groups. Therefore,
graphs from group ¢ and ¢’ are more likely to share com-
mon edges. On the other hand, when .- is close to 0,
the association between groups c and ¢’ is negligible. They
do not fix . Instead, they use an inverse-Wishart prior,
Q@ ~ IW(v,¥) and let the data dictate how strong the
associations should be.

The Bayesian hierarchical model above allows for easy
extension to the case where the groups are unknown.
Ni et al. [38] simply augment the model with a Dirichlet-
multinomial (DM) allocation model on the group indi-
cator ¢|m,C ~ Multinomial(1,7,...,7¢) and w|C ~
Dir(n,...,n). The number of clusters C is usually
unknown; they assume a geometric prior for C ~ Geo(p),
which eliminates the need to fix C a priori. They set
the covariance matrix € to be diagonal since the goal of
clustering is to split samples into groups with disparate
networks rather than encourage similarity across the clus-
ters. Alternatively, one can also set  to be a Stieltjes
matrix (i.e. a positive definite matrix with nonpositive
off-diagonal entries) to induce repulsive graphs.

Results

In this section, we generalize the RG approach of [1] by
incorporating protein expressions in modeling the molec-
ular network. Proteins provide important and orthog-
onal information in reverse engineering the network
because they represent the downstream cumulative effect
of changes that happen at the DNA and RNA lev-
els and are more directly related to the phenotypical
changes in cancer cells. Clinical utilization of genomic
data alone show limited benefits, which is partly due to
the poor concordance between gene and protein expres-
sions [39, 40]. Many factors such as complex interactions
between different types of molecules are responsible for
the discrepancy between gene and protein abundance.
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The goal of this analysis is to explicitly model such com-
plex interactions. We choose RG because it allows for
efficient computation and great interpretability and is
suitable to model reciprocal causality such as feedback
mechanism.

We use the same notations ¥ = (Y1,...,Yp)T and
X = (Xl,...,sz)T to denote gene expressions and
the matched copy number and methylation. Importantly,
additionally, for each gene Yj, there is also the associated

protein expression, denoted by Z; for j = 1,...,p. We
extend the SEM in (7) to
Y =AY +BX + Ey

8)

Z=CZ+DY +Ez

where A = (a;;) € RP*? and C = (¢;) € RP*F have zeros
on the diagonal, B = (by) € RPX% D = (djj) € RP*P and
independent errors Ey ~ N, (0, Xy) and Ez ~ N,(0, Xz)
with diagonal covariance matrices Xy = diag(o1,...,0))
and Xz = diag(A1,...,Ap). In essence, model (8) defines
the following joint probability model for (Y, Z) given X,

p(Y,ZIX) = pZ|Y)p(Y|X),
p(Y1X) =N, [(I —A)7'BX, (I - ATy - A)‘T] ,

p@Y) =N, {ad-7'py,d - 05 - 077

)

The network structure is embedded in the parameters
A, B, C and D. In this analysis, we restrict our attention to
cis-regulatory relationships between DNAs and RNAs by
constraining b;; to 0 for j # 2i — lor2ifori =1,...,p.
That is, copy number and methylation of gene i can only
affect gene expression i. The interpretation of model (9)
is given as follows: b;5;_1 # 0 if and only if copy num-
ber i is associated with its gene expression; b;o; # 0
if and only if methylation i is associated with its gene
expression; a; # 0 if and only if gene j regulates gene
i; ¢j # 0 if and only if protein j regulates protein j; and
dij # 0 if and only if gene j regulates protein i. We use
the thresholded prior for A, B, C and D. For error vari-
ances, we assume inverse-gamma priors, oj, A; ~ 1G(a, b)
for j = 1,...,p which imply an inverse gamma condi-
tional posterior distribution which in turn allows the use
of a Gibbs sampling transition probability by sampling
from the respective inverse gamma. The complete MCMC
algorithm is provided in Algorithm 1.

Using TCGA-Assembler ([41], version 2), we acquired,
processed and combined TCGA ovarian cancer data,
including copy number, methylation and gene expression
from the Genomic Data Commons (GDC) and mass
spectrometry proteomic samples generated by the Clin-
ical Proteomic Tumor Analysis Consortium (CPTAC).
The resulting dataset contains 104 samples. In this case
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Algorithm 1
1: Initialize A = (a;), B = (by), C = (c;), D = (djj),t =

(&)
2. fori=1,...,pdo
3: update o;, A; by a Gibbs step
4 forj=1,...,i—1,i+1,...,pdo
5: update ri](-“) by a Gibbs step
6 update ri]@ by a Gibbs step
7: update a;; by a Metropolis-Hastings step
8 update c;; by a Metropolis-Hastings step
9: end for
10: forj=2i—1,2ido
11: update ‘l:i/(.b) by a Gibbs step
12: update b;; by a Metropolis-Hastings step
13: end for
14: forj=1,...,pdo
15: update ri/(.d) by a Gibbs step
16: update dj; by a Metropolis-Hastings step
17: end for

18: update t; by a Metropolis-Hasting step

19: end for

20: Repeat steps 2-20 until convergence

21: Output posterior samples of 4,B,C,D,t, Xy, Xz, T

study, we focus on p = 10 genes that are core mem-
bers of the PI3K pathway [42], as shown in Fig. 3a, by
playing a critical role in cell cycle progression, survival,
motility, angiogenesis and immune surveillance [43]. It
is one of the most frequently altered pathways in ovar-
ian cancer [44, 45]. For each gene, we have matched copy
number, methylation, gene expression and protein expres-
sion (i.e. 40 nodes in total). We report inference based
on 100,000 MCMC samples (thinned out to every 10th
iteration) after discarding the first 50,000 iterations as
burn-in.

The recovered network is shown in Fig. 3b where
the blue solid lines represent activation whereas the red
dashed lines are inactivations. The edge width is propor-
tional to the posterior probabilities of inclusion p(a; #
01X,Y,2), p(bj # 0IX,Y,Z), p(c; # 0|X,Y,Z) and
p(d; # 0|X,Y,Z), which can be approximated by MCMC
sample averages, for example, p(a; # O0|X,Y,Z) =
% Zlel I (afjl) #* 0) where the superscript (/) denotes the
Ith MCMC sample and L is the total number of samples.
The suffixes represent four different type of molecules:
c=copy number, m=methylation, g=gene and p=protein.
For clarity we do not show disconnected molecules. The
degree of each node in Fig. 3b is reported in Table 1. The
top three highly connected nodes are the protein AKT1
which is involved in 15 regulatory activities, the pro-
tein mTOR with 10 activities and the protein AKT3 with
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9 activities. AKT1 and AKT3 belong to the same AKT
family which is known to have shown strong oncogenic
function and is a key mediator of PI3K pathway function
[46]. AKT isoforms are often phosphorylated in ovarian
cancers and may play a role in mediating the progression
of late-stage serous ovarian carcinomas [47]. mTOR plays
a critical role in regulating cell growth and proliferation
by integrating signals including growth factors, nutrients,
energy and stress [48, 49]. We also capture the well-known
positive regulatory relationship between AKT1 and its
downstream target mTOR [45, 49]. Other findings that
are consistent with the biological literature include the
inhibitory relationship between proteins PTEN and AKT1
and stimulatory relationship between proteins PIK3CA
and AKT1 [50, 51]. Interestingly, the recovered network
includes a negative feedback from proteins of mTOR to
AKT1. Recent studies [45, 52—54] confirmed that such
feedback mechanism can be either positive or nega-
tive depending on many factors including cell types and
conditions.

Inference includes some surprising findings. For exam-
ple, PIK3R1 is expected to activate rather than inactivate
AKT1. Although the unexpected result may simply be a
false positive, it deserves further experimental validation.

Discussion and conclusions

We have reviewed the basics of UG’s, DAG’s and RG’s
and discussed recent RG-based approaches in model-
ing molecular networks. The extension of the approach
in [1] allows to integrate multi-platform data including
copy number, methylation, gene expression and protein

expression. Our approach can be further be general-
ized to incorporating other data types such as single
nucleotide polymorphisms (SNPs), mutation status and
microRNAs. SEM-based RG approaches, however, can-
not be directly applied to SNPs and mutation status
because they have discrete support and the condition
C1 requires the data to be multivariate normal. This
limitation can be addressed by imputing latent normal
variables. Although we do not find serious violation of
normality assumption in our data, if desired, one could

Table 1 Degrees of molecules from recovered network in Fig. 3b

Molecule Degree Molecule Degree
AKT1.p 15 PTEN.p 2
mTOR.p 10 PIK3CAp 2
AKT3.p 9 AKT1.c 1
mTORg 6 AKT2.c 1
AKT2.g 5 AKT3.m 1
AKT3.g 4 mTOR.c 1
STK11.g 4 PIK3CA.c 1
TSC2.9 4 PTEN.c 1
AKT1.g 3 STK11.c 1
PTEN.g 3 TSCl.c 1
AKT2.p 3 TSC2.c 1
PIK3R1.p 3 PIK3R1.g 1
TSC2.p 3 STK11.p 1
PIK3CAg 2 TSClp 1
TSCl.g 2
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adopt the approach of [29] and introduce additional lay-
ers of hidden variables when the data are seemingly
non-normal.

Another important assumption of the discussed
approaches in this paper is homogeneity across samples.
It is an unrealistic assumption in many applications,
especially in oncology where the consensus is that tumors
are extremely heterogeneous. Characterizing tumor het-
erogeneity can fundamentally improve our understanding
of the cancer biology and practically allow us to divide
heterogeneous patient population into homogeneous
subpopulations so that refined personalized treatments
can be developed targeting specific subgroups of can-
cer patients. Several approaches have been proposed
for modeling networks with heterogeneous samples
[38, 55-57].
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