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Abstract

Background: Even though coexistence of multiple phenotypes sharing the same genomic background is interesting,
it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to
the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying
mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression
and methylation profiles because of the lack of suitable methodology that can address this problem properly.

Methods: A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based
unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene
expression and methylation profiles even when a small number of samples is available.

Results: PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and
methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes
associated with differential expression and methylation between castes were identified, and analysis of enrichment of
Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint.

Conclusions: Biologically relevant genes, shown to be associated with significant differential gene expression and
methylation between castes, were identified here for the first time. The identification of these genes may help
understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same
genomic conditions.
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Background

Organisms often exhibit different phenotypes despite a
common genomic background. For example, juveniles and
adults frequently have different body plans (e.g., tadpoles
and frogs, caterpillars and butterflies, and megalopas and
clubs). Nonetheless, juvenile and adult organisms have
different sizes or must survive in distinct environments,
and these conditions require different phenotypes. More
striking examples are castes of social insects, such as ants
and bees, which can form two distinct forms: queens and
workers, both female [1]. They are usually closely related,
but queens and workers have different sizes and lifespans.
The mechanism that potentially allows social insects to
form castes with distinct body plans is the epigenome
[2, 3], which is flexible and can lead to the formation of
different phenotypes without genomic alterations. There-
fore, it is important to determine the correlation between
an epigenome and phenotype by analyzing gene expres-
sion.

In actuality, there have been many discussions regard-
ing how an epigenome can affect a phenotype [4]. Because
a gene can affect the phenotype through the regulation of
gene expression, it is natural to expect that the epigenome
can also affect the phenotype through the regulation of
gene expression [5]. The epigenome is even expected to
be heritable and thus affect phenotypes through genera-
tions [6]. In this field, the relation between the epigenome
and phenotype has been comprehensively investigated;
through regulation of gene expression, epigenetic mecha-
nisms have the potential to determine and alter cell phe-
notypes, and epigenetic mechanisms also mediate dosage
compensation, chromosomal silencing, and imprinting
[7]. In this regard, castes of social insects are expected to
be affected by various epigenomic alterations.

Some pioneering studies in this field have been con-
ducted [8, 9], but statistical analyses in these studies have
not been satisfactory, for example,

1. Gene ontology (GO) enrichment analyses had an
insufficiently small false discovery rate (FDR):
<0.5[8];

2. identification of differentially expressed genes
(DEGs) was performed at insufficiently large g > 0.6,
corresponding to FDR < 0.4 [9];

3. highly methylated regions significantly different
between phenotypes (castes) were not identified [8].

Even though these issues do not always reduce qual-
ity of the studies, addressing them should increase the
confidence in the conclusions.

Inadequate statistical analyses may be due to disre-
garding the multivariate nature of variables. All the
performed statistical analyses have been single—gene—
based, meaning that group behaviors were considered
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only after identification of genes. Recently, I proposed a
principal component analysis (PCA)-based unsupervised
feature extraction (FE) as a method that can perform
multivariate analysis before gene selection and applied
it to various bioinformatic problems [10-31]. Therefore,
applying PCA-based unsupervised FE to the analysis of
datasets may yield more reliable results. PCA-based unsu-
pervised FE was also extended to tensor decomposi-
tion (TD) to integrate multiway [32-34] and multiview
[35-37] datasets. TD-based unsupervised FE applied to
the integrated analysis of gene expression and methylation
profiles may allow for identification of relations between
gene expression and methylation, essential for identifica-
tion of the mechanisms behind epigenetic regulation of
phenotype development.

Methods
A flow chart showing the experimental design is presented
in Fig. 1.

Gene expression and methylation profiles

All gene expression and methylation profiles [8] were
retrieved from Gene Expression Omnibus (GEO). Gene
expression profiles of P. canadensis and D. quadriceps are
available as Supplementary Files in GEO ID GSE59525:
GSE59525_RPKM_Pcan.txt.gz and SE59525_RPKM_
Dqua.txt.gz. Methylation profiles of P canadensis and
D. quadriceps are in GSM14388XX_PcanYYY_CX.txt.gz
and GSM14388XX_DquaYYY_CX.txt.gz, which are also
available as Supplementary Files in GEO ID GSE59525
(XX and YYY are presented in Table 1). An addi-
tional gene expression profile of P canadensis [9],

Patalano et al, (2015) Ferreira et al, (2013)
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Fig. 1 A flow chart showing the design of this study. Three gene
expression profiles and two methylation profiles were retrieved from
two studies on two social insect species, Polistes canadensis and
Dinoponera quadriceps. All of them were processed by PCA-based
unsupervised FE, whereas two pairs of gene expression and
methylation profiles were analyzed by TD-based unsupervised FE.
Differential expression between castes was analyzed in seven
obtained gene sets. Analysis of GO term enrichment was performed
on three sets of genes derived from gene expression analysis and on
two sets of genes generated by TD-based unsupervised FE. The full
list of the selected genes is presented in Additional file 1
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Table 1 The list of files containing methylation profiles retrieved

from GEO

XX YYY XX YYyY Description

P. canadensis D. quadriceps

50 _Synthetic 57 _Synthetic Control

51 21Q 58 1AQ Queen Tst replicate

52 43Q 59 2AQ Queen 2nd replicate
53 75Q 60 3AQ Queen 3rd replicate

54 26W 61 W Worker 1st replicate

55 42W 62 3CW Worker 2nd replicate
56 76W 63 3DW Worker 3rd replicate

13059_2012_3057_MOESM9_ESM.CSV, was retrieved
from the supplementary file presented in the study (Addi-
tional file 9). Gene expression values were used as-is,
but methylation profile values were integrated so that
they represented the relative methylation within genes.
Assuming my and misy are methylation and nonmethy-
lation values respectively at locus s, then the relative
methylation within the ith gene can be defined as

Zsei M1
)
Zsei(msl + my))

where )" ; is taken over s bases within DNA sequences
corresponding to the ith gene body.

PCA-based unsupervised FE
A flow chart showing PCA- and TD-based unsupervised
FE is presented in Fig. 2.

PCA

Assume that N x M matrix X represents gene expres-
sion or methylation of the ith gene in the jth sample, x;; €
RN>*M which can be standardized as >, x;; = 0, Y, xlzj =N.
The kth PC score, uy; € RMMNAMXN - attributed to the
ith gene can be obtained as the ith component of the kth
eigenvector u; of XX, where X7 is the transposed matrix
of X, so that

XXTuk = AUy,

where A is the kth eigenvalue. The kth PC loading, v; €
Rmin(NMXM attributed to the jth sample can be obtained
as the jth component of the kth vector v, which is

defined as
Vi = XTuk.
This is also the kth eigenvector of matrix X7 X because
XTxv = XTXXTwye = X  hpuge = hiev.
PCA-based unsupervised FE

To carry out FE by PCA, PC loadings, v, of interest that
can be used for FE must be identified, and there are several
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Fig. 2 A flow chart of PCA- and TD-based unsupervised FE. Gene
expression and methylation profiles were examined by PCA or TD. For
PCA, gene expression and methylation profiles were processed
separately, whereas TD was applied after generating a tensor from
them. For PCA, principal component (PC) loading attributed to
samples was studied and selected for FE. Because PC loadings and PC
scores attributed to genes show one-to-one correspondence, PC
scores corresponding to the selected PC loadings were subjected to
FE. For TD, one-sample singular value vectors used for FE were
selected. Afterwards, during analysis of core tensors, G, gene singular
value vectors associated with Gs with larger absolute values were
selected. By means of the identified PC scores or gene singular value
vectors, P-values were determined for genes, assuming a X2
distribution, and genes associated with adjusted P-values less than
0.01 were finally selected

approaches. Suppose that 2 represents a set of ks of the
identified vgs. Then, gene i, primarily contributing to the
kth (k € Q) PC score, uy, should be identified, and this
task can be accomplished by selecting the outliers within
the space spanned by the PC scores:

span(uy : k € Q).

uri(k € Q,1 < i < N) was assumed to follow a multiple
normal distribution, and P-values, P;s, were attributed to
each gene i via the Xz distribution,

2
Pi=Py >Z(”’“) : (1)

0,
ke k

where P,2[> x] represents the cumulative probability
of the x? distribution that the argument is greater than
x, whereas oy is standard deviation. Afterwards, genes
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is, associated with the Benjamini—-Hochberg criterion—
adjusted P;s [38] lower than the threshold value, e.g., 0.01,
were selected as outliers.

TD-based unsupervised FE

When two sets of experimental factors are affecting each
sample, e.g., tissues and diseases, gene expression and
methylation profiles should be presented as a tensor x;; €
RNXMxL " \yhere j and £ correspond to the tissue and
disease, respectively.

Equivalence of PCA and singular value decomposition (SVD)
PCA can be extended to a tensor as follows. PCA is known
to be equivalent to SVD,

Urxv = A, (2)

where U and V are N x M and M x M orthogonal matri-
ces, respectively. A represents a M x M diagonal matrix.
Assume that U = (uq,...,upy) and V = (vq,...,vy).
The diagonal component of A can be written as Ag. Then,
using vy = XTuy and XX uy = Ay,

U'xv =u™xxu =u"Au = A.

Therefore, 4 and V' composed of PC scores and load-
ings satisfy Eq. (2). Subsequently,

uu™xvvt = x =uav’,
or this relation can be written as

Xj = Y MclbiVig. ®3)
k

Extension to TD
Equation (3) can be easily generalized to TD [32] by
extending the matrix to a tensor,

N M L
Xije = Z Z Z G(kl,kZ) k?))ukliukzjukgéf

k1=1ky=1k3=1

where uy,; € RN*N Uk, € RM>M Uk € RIXL and
UK;' = (ul,...,uKi) with ([(1,1(2,1(3) = (N,M,L) were
assumed to be orthogonal matrices. Hereafter, Uk, and
uy, are referred to as singular value matrix and singu-
lar value vector, respectively. Given that the core tensor,
G(ki, ky, k3) € RN*MxL g as large as Xijk, this situa-
tion represents an overcomplete problem, i.e., there is no
unique decomposition. In this study, higher-order SVD
(HOSVD) [39], which is known to frequently give a global
minimum [40], was employed to perform TD, assuming
% =0,; x?jz = N, as in the PCA cases.

TD-based unsupervised FE

First, (ko, k3) of interest, which were attributed to sam-
ples, were selected, and, as for PCA, there are different
approaches. Next, G(ky, ko, k3)s associated with selected
ko, k3 were ranked based on their absolute values, and
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by means of top-ranked k;s with the set defined as €,
the same procedure applied to Eq. (1) was repeated by
replacing PC score uy; with a gene singular value vec-
tor, ug, ;. Currently, we do not have any specific criterion
specifying how many k;s should be considered.

TD-based unsupervised FE for integrated analysis of
multi-omics data

For two distinct omics datasets, such as a gene expres-
sion profile, x;;, and a methylation profile, x;;, TD-based
unsupervised FE can be used for the integrated analysis by
generating a tensor,

Xije = XijXie,

to which TD-based unsupervised FE can be applied [35].
The subsequent procedure was the same as the standard
one described in the previous subsection.

GO enrichment analysis
To perform GO enrichment analysis of the previously
described dataset [8], the list of genes associated with
GO terms was downloaded [41]: PCAN.v01.GO.tsv for P
canadensis and DQUA .v01.GO.tsv for D. quadriceps.
Because genes presented in the second study we used [9]
were not fully annotated but contained protein sequence
gene IDs, a list of gene IDs was uploaded to UniProt
[42] and GO term associations were downloaded. GO
enrichment analyses were performed on the retrieved list.
Fisher’s exact test was selected for evaluation of the
overlaps between the set of provided genes and genes
associated with a specific GO term. The obtained P-
values were adjusted in accordance with the Benjamini—
Hochberg criterion [38]. GO terms associated with
adjusted P-values less than 0.01 were selected.

Results

PCA-based unsupervised FE applied to the dataset
provided by Patalano et al. [8]

PCA-based unsupervised FE was performed on the
dataset presented in another study [8].

The methylation profile

PCA-based unsupervised FE was applied to the methy-
lation profiles of P canadensis and D. quadriceps. In
Fig. 3(a) and (c), the first PC loadings, vi, are presented,
attributed to seven samples, comprising one control, three
queen samples, and three worker samples of P. canaden-
sis and D. quadriceps each. For both, v; mainly denotes
the difference between the control and queen or worker
samples. In Fig. 3(b) and (d), the histogram of the first PC
score, uy, attributed to genes is presented, and red areas
represent the selected genes, with adjusted P-values com-
puted using Eq. (1) lower than 0.01 (241 and 138 selected
genes for P. canadensis and D. quadriceps, respectively).
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Fig. 3 The results of PCA performed on methylation profiles.
PCA-based unsupervised FE was tested on methylation profiles.

a and b: P. canadensis. ¢ and d: D. quadriceps. a and ¢: A boxplot of PC
loadings v, (b) and (d): A PC score histogram, us. Red areas in (b) and
(d) represent selected genes

Because in Fig. 3(a) hypermethylated genes are presented,
and the results in Fig. 3(b) suggest that only the genes
with positive PC scores are selected, all the selected genes
were found to be hypermethylated. Similarly, because in
Fig. 3(c), hypomethylation is presented, and the results
in Fig. 3(d) indicate that only the genes with negative PC
scores are selected, all the selected genes were found to be
associated with hypermethylation as well. This finding is
in agreement with the results of the other study [8].
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Patalano et al. [8] did not find genes associated with
the emergence of distinct methylation patterns between
queens and workers, but the results presented in Fig. 3(a)
and (c) show minor differences between queens and work-
ers, suggesting that the selected genes may have different
methylation profiles between queens and workers over-
all. Three statistical tests were carried out to analyze
the differences between queens and workers (Table 2)
and demonstrated that PCA-based unsupervised FE could
identify gene-associated methylation patterns between
queens and workers, unlike the analyses in the other study
[8]. Given that in Fig. 3(a) and (c), the upregulation and
downregulation of methylation in queens are presented,
whereas in Fig. 3(b) and (d), genes associated with posi-
tive and negative PC scores are shown, the selected genes
were found to be associated with hypermethylation in
queens. This finding suggests that hypermethylated genes
are associated with relative hypermethylation in queens.

Gene expression

PCA-based unsupervised FE was performed on the gene
expression profiles of P canadensis and D. quadriceps.
Because the gene expression profile of P canadensis
was log2-ratio converted, it was scaled back to the
original one as 2% before the application of PCA.
In Fig. 4(a) and (c), v3 and v4 are presented, showing
the most significant differences in gene expression lev-
els between queens and workers of P canadensis and
D. quadriceps, respectively. In Fig. 4(b) and (d), the distri-
butions of v3 and v4 for P. canadensis and D. quadriceps,
respectively, are depicted. Red areas represent the selected
genes, with adjusted P-values, determined using Eq. (1),
lower than 0.01 (41 and 145 genes for P. canadensis and
D. quadriceps, respectively).

To determine whether the expression of selected genes
differs between queens and workers, three statistical tests
were carried out (Table 3). The majority (five of six) of
the applied tests confirmed that expression of the selected
genes differs between queens and workers of P. canadensis
and D. quadriceps, in line with the findings reported
elsewhere [8].

PCA-based unsupervised FE applied to the dataset
provided by Ferreira et al. [9]

PCA-based unsupervised FE was performed on the
expression profiles reported in another study [9]. In

Table 2 Statistical tests for differences in the methylation rates of
selected genes between queens and workers

t Wilcox KS
P. canadensis 859 x 107 3.10 x 1073 183 x 1074
D. quadriceps 1.11 x 1072 588 x 1073 175 %1073

t: the t test, Wilcox: the Wilcoxon rank sum test, KS: the Kolmogorov-Sinai test, all
two-sided
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Fig. 4 Results of gene expression PCA. PCA-based unsupervised FE
was applied to the gene expression profiles. a and b: P. canadensis.
cand d: D. quadriceps. a and ¢ A boxplot of PC loadings v, (b) and
(d): A distribution of PC scores uy. Red areas in (b) and (d) represent

the selected genes

Fig. 5(a), the third PC loadings, vs, are presented, which
demonstrate the most significant class dependence based
on categorical regression (ANOVA). In Fig. 5(b), the dis-
tribution of the third PC score, u3, is shown, where the red
areas represent the selected genes (120 genes associated
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Table 3 Statistical tests for differences in expression of the
selected genes between queens and workers

t Wilcox KS
P. canadensis 437 x 1074 0.07 645 x 1073
D. quadriceps 173 x 10712 224 x 10712 526 x 10712

t: the t test, Wilcox: the Wilcoxon rank sum test, KS: the Kolmogorov-Sinai test; all
two-sided

with the adjusted P-values, as determined by means of
Eq. (1), lower than 0.01). Because this situation corre-
sponds to g > 0.99 in the analysis provided by Ferreira
et al., we demonstrated that we were able to identify a set
of genes more significant than those identified in the other
study, where g was > 0.6.

To test whether the selected genes reflect the class-
specific up- and downregulation of expression, three
statistical tests were conducted (Table 4). We separated
genes into two classes based on the sign of u3;, to identify
the upregulation or downregulation of these genes for fur-
ther comparisons. As shown in Table 4, 120 selected genes
were found to be significantly upregulated or downreg-
ulated, excluding the upregulation of genes in Foudress,
with the smallest number of genes identified in the other
study. Therefore, we successfully identified genes that
manifest class-specific upregulation or downregulation.
Furthermore, the genes identified here are common for

a) 3rd PC loadings b) 3rd PC score
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Fig. 5 The results of PCA applied to gene expression profiles.
PCA-based unsupervised FE was performed on the gene expression
profiles obtained from the study by Ferreira et al. a: A boxplot of PC
loadings vy. b: A distribution of PC scores u;. Red areas in panel

(b) represent 120 selected genes. PC3> 0: 77 genes, PC3< 0: 43 genes
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Table 4 Statistical tests for upregulation and downregulation of
gene expression in four categories vs. others

PC3 t Wilcox KS
Worker 4+ down 396 x 10~° * *
VS
others

- up 0.22 * *
Queen  + up 0.36 0.10 887 x 107*
VS
others

—  down 032 0.69 469 x 1073
Foundress + up 0.05 0.13 0.17
VS
others

—  down 0.11 349 x 10710 627 x 1071
Callow + up 0.99 * *
VS
others

—  down 1.14x107% 277x1077  334x10°°

#:<22 x 10716 t:the t test, Wilcox: the Wilcoxon rank sum test, KS: the
Kolmogorov-Sinai test, all are two-sided

all four classes, while those identified in the other study
differed between the comparisons.

TD-based unsupervised FE applied to the integrated
analysis of gene expression and methylation profiles

By PCA-based unsupervised FE, we successfully identified
genes associated with gene expression and methylation
profiles showing significant differences between castes.
Genes found by means of gene expression profiles and
methylation profiles did not overlap. Fisher’s test results
yielded an odds ratio lower than 1.0 (data not shown
because of negative results). This finding indicated that
the genes identified using different datasets are quite
distinct. Therefore, it is difficult to understand the mech-
anisms by which the epigenetic modifications affect gene
expression and regulate phenotype development.

One may wonder if a gene expression alteration must
not always be associated with altered methylation. Never-
theless, many authors have employed the strategy where
genes associated with both altered gene expression and
methylation are sought, to identify biologically impor-
tant genes. Heng et al. [43, 44] have tried to find genes
associated with both altered gene expression and methy-
lation to discover genes crucial for breast cancers. Li
et al. [45] have attempted to find genes associated with
both altered gene expression and methylation to identify
key genes in severe oligozoospermia. Mallik et al. [46]
have looked for genes associated with both altered gene
expression and methylation for tumor prediction. These
are only a few examples of studies that involve the asso-
ciation of altered gene expression and methylation. Thus,
altered gene expression and promoter methylation may
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have to be considered together to identify genes specific
for castes of social insects, too.

To explore the possibility of correlating gene expres-
sion and methylation profiles via our strategy, we applied
TD-based unsupervised FE to tensor x;;; = x;xie, where
i represents a gene, x;; is the gene expression of the jth
sample, and x;; denotes methylation of the £th sample. In
Fig. 6(a), the first sample singular value vector for gene
expression, uj,; (at ko = 1) for P canadensis is shown,
which has the most significant dependence upon class
labels based upon categorical regression. Because the pre-
sented results are similar to those shown in Fig. 3(a),
TD-based unsupervised FE was demonstrated to success-
fully generate biologically relevant singular value vectors
for gene expression, uy,; (at ko = 1). Similarly, results
depicted in Fig. 6(b) represent the third sample singular
value vectors for the methylation profiles of P. canadensis,
Uiye (With k3 = 3), which were also found to be simi-
lar to those presented in Fig. 4(a). This finding indicates
that TD-based unsupervised FE can successfully generate
biologically relevant sample singular value vectors.

Next, we aimed to identify core tensor G(ki, ko, k3)
(at (ko,k3) = (1,3)) associated with the larger absolute
values, to select ks used for the gene selection based on
P canadensis profiles (Table 5). Given that G(ky, k2, k3)
(with 9 < ki < 10, (ky,k3) = (1,3)) were shown to be
top-ranked, the ninth and 10th singular value vectors, uy, ;
(with 9 < k; < 10) were used for the selection of 133
genes, associated with the adjusted P-values, determined
via Eq. (1), lower than 0.01 (Fig. 6(c)).

To determine whether the selected genes show differ-
ential expression and methylation between workers and
queens, three statistical tests were applied (Table 6). We
observed that 133 selected genes have significant differ-
ences in expression and methylation between the samples
under study. Therefore, using TD-based unsupervised FE,
we successfully identified a set of genes that have both dif-
ferential gene expression and methylation between queens
and workers; this accomplishment was not possible with
the PCA-based unsupervised FE performed individually
on gene expression and methylation profiles.

In Fig. 6(d), the first sample singular value vector for
gene expression, uy,; (with ko = 1) for D. quadriceps
is presented, which was shown to have the most signif-
icant dependence upon class labels based on categorical
regression. Because these results were shown to be simi-
lar to those presented in Fig. 3(c), TD-based unsupervised
FE was demonstrated to successfully generate biologically
relevant sample singular value vectors of gene expression,
Ug,j (with kp = 1). Similarly, in Fig. 6(e), the fifth sam-
ple singular value vectors for the methylation profile of
D. quadriceps are depicted, uy,, (with k3 = 5), which
were found to be similar to those in Fig. 4(c). This find-
ing indicates that TD-based unsupervised FE can lead
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Table 5 The top 10 core tensors, G, with large absolute values

P. canadensis D. quadriceps

ki G(ky, ka, k3) ki Gk, ka, k3)
(k2 k3) = (1,3) (k2 k3) = (1,5)

9 —79.8 1 —548

10 754 12 4.1
7 —614 25 34

11 384 2 —29
5 —234 23 2.8

4 —16.0 9 24

12 —-11.9 20 —2.2
1 —54 8 22

13 54 10 —17
6 —45 22 —14

to successful generation of biologically relevant sample
singular value vectors.

Furthermore, we aimed to identify the core tensor
G(ky, ko, k3) (at (ky,k3) = (1,5)) associated with the
increased absolute values, to identify the kis used for
the gene selection in D. quadriceps datasets (Table 5).
Because G(ky, ky, k3) (with (ki, ko, k3) = (11,1,5)) is top-
ranked, the 11th gene singular value vectors, uy, —11,;, were
employed for the selection of 128 genes associated with
the adjusted P-values, determined using Eq. (1), lower
than 0.01 (Fig. 6(f)).

To confirm that the selected genes are associated with
differential gene expression and methylation between
workers and queens, three statistical tests were applied
(Table 6). We demonstrated that the 128 selected genes
are associated with significant differences in gene expres-
sion but not methylation between queens and workers.
Therefore, by TD-based unsupervised FE, we success-
fully found a set of genes associated with the differential
gene expression but not methylation between queens and

Table 6 Statistical tests of the differences (between queens and
workers) in gene expression and methylation

t Wilcox KS

P, gene 171 %1073 1.89 x 1072 0.08
canaden-  expression
Sis

methylation 174 x 1074 506 x 1073 1.02 x 1073
D. gene 273%10717 905 x 1072 441 x 107"
quadri- expression
ceps

methylation ~ 0.3757 0.7163 04413

The genes identified by TD-based unsupervised FE were analyzed by t (the t test),
Wilcox (the Wilcoxon rank sum test), and KS (the Kolmogorov-Sinai test), all
two-sided
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workers, suggesting that this analysis was not successful in
the case of D. quadriceps.

GO enrichment analysis

We demonstrated that PCA- and TD-based unsupervised
FE can be used for the successful identification of genes
associated with differential gene expression and methyla-
tion between workers and queens, but these results may
be improved by showing that these sets of genes are bio-
logically relevant as well. GO enrichment analysis was
performed on three sets of genes selected on the basis of
the gene expression profiles obtained from other studies
(two P. canadensis datasets and one D. quadriceps dataset
[8, 9], Table 7).

In contrast to the results of the other study on P
canadensis gene expression profiles [8], which showed no
enrichment data, by means of the same dataset, we iden-
tified two enriched GO terms using the results obtained
by PCA-based unsupervised FE. In the TD analysis,
the number of enriched GO terms increased to three.
These results indicate that we successfully performed the
integrated analysis via TD-based unsupervised FE on P
canadensis datasets.

For D. quadriceps profiles, both genes identified by
Patalano et al. [8] and those selected by PCA-based unsu-
pervised FE were found to be associated with the same
number of enriched GO terms, five, although the iden-
tified terms were not identical. Nevertheless, in the TD
analysis, we did not observe any enrichment, and this
result coincides with the fact that TD-based unsuper-
vised FE failed to identify genes associated with differ-
ences in methylation profiles between queens and workers
(Table 6).

Finally, in the analysis of genes identified by PCA-
based unsupervised FE in the dataset provided by Ferreira
et al. [9], five enriched GO terms were identified as well.
Therefore, PCA- and TD-based unsupervised FE methods
were shown to successfully identify biologically relevant
sets of genes associated with significant enrichment in
GO terms.

Discussion

Biological importance of the obtained results

We observed some instances of enrichment of GO terms,
but the biological importance of our results should be
examined further. In P canadensis analysis, GO terms
related to lipid transport were found to be enriched.
Recently, Ament et al. [47] reported that worker honey
bees undergo a socially regulated, highly stable lipid loss
as part of their behavioral maturation. Given that P
canadensis is a bee species as well, the observed GO
term enrichment of genes with differential gene expres-
sion and methylation profiles may be promising. Altered
methylation of these genes may induce changes in gene
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Table 7 GO enrichment analysis of the genes selected using gene expression profiles

P. canadensis
Dataset provided by Patalano et al. [8]
Results obtained in this study (PCA)
GO:0005319
GO:0006869

Results obtained in this study (TD)
GO:0005319
GO:0005811
GO:0006869

Patalano et al. [8]

Lipid transporter activity
Lipid transport

Lipid transporter activity
Lipid particle
Lipid transport

No enrichments

Dataset provided by Ferreira et al. [9]
Results obtained in this study (PCA)
GO:0004129
GO:0003735
GO:0006412
GO:0005743
GO:0008137

D. quadriceps
Dataset provided by Patalano et al. [8]
Results obtained in this study (PCA)
GO:0005506
GO:0009055
GO:0016705

G0:0020037
GO:0055114
Results obtained in this study (TD)

Cytochrome-c oxidase activity
Structural constituent of ribosome
Translation

Mitochondrial inner membrane

NADH dehydrogenase (ubiquinone) activity

Iron ion binding

Electron carrier activity

Oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen
heme binding

Oxidation-reduction process

No enrichments

Patalano et al. [8]
GO:0003735
GO:0005622
GO:0005840
GO:0005842
GO:0006412

Structural constituent of ribosome
Intracellular

Ribosome

Cytosolic large ribosomal subunit

Translation

expression that result in a highly stable lipid loss. This
arrangement may enable the coexistence of multiple
phenotypes.

In contrast, oxidation-reduction processes, regulated by
genes expressed differently between queens and workers
of D. quadriceps, have been reported to be upregulated

in the queens of multiple ant species [48]. Because
D. quadriceps is an ant species, this means that we cor-
rectly identified DEGs between workers and queens, via
the proposed strategy. In addition to the heme-binding—
associated genes, shown to be differently expressed
between queens and workers of D. quadriceps, they were
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associated with aberrant methylation in termites [49],
another species of social insects.

Furthermore, oxidoreductase activity—related genes,
found to be differently expressed between queens and
workers of D. quadriceps, have been reported to be
expressed in the queens of honey bees too [50].

Alaux et al. [51] determined genes associated with elec-
tron carrier activity—shown to be differentially expressed
between the queens and workers of D. quadriceps in this
study as well—in another study, which analyzed the rela-
tion between aggressiveness and behavioral evolution in
honey bees.

When genes of D. quadriceps, identified by Patalano
et al. were analyzed, more general GO terms were
obtained, e.g., those related to translation and ribo-
somes, which are unlikely to be related to social-
insect—specific features. In contrast, identification of
more specific GO terms and the results of other
studies point to biological importance of the analyses
presented here.

Future directions

This paper shows the importance of integrated analyses
of gene expression and promoter methylation for find-
ing genes that might link castes of social insects to the
epigenome. At the moment, only two species were inves-
tigated, but because castes of social insects have been
examined in multiple species that do not belong to even
the same family from the genetic point of view [52], this
approach should be extended other species. Inclusion of
more species may clarify how castes of social insects have
evolved and have been maintained from the standpoint of
epigenetics.

Conclusions

Here, we tested newly developed PCA- and TD-based
unsupervised FE for the analysis of gene expression and
methylation profiles of P. canadensis and D. quadriceps.
The issues observed in other studies were solved as
follows:

1. GO enrichment analysis was performed successfully
on P. canadensis gene expression profiles [8] with a
strict criterion of FDR less than 0.01 (Table 7);

2. Genes found to be differentially expressed among
four castes [9] were analyzed by means of a strict
criterion of FDR less than 0.01 (Table 6);

3. Genes associated with differential methylation
between queens and workers of P. canadensis were
analyzed successfully [8] (Table 2).

Therefore, PCA- and TD-based unsupervised FE meth-
ods were successfully performed on ’‘omics datasets
comprising gene expression and methylation profiles.
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The obtained sets of genes will help us understand
how development of caste phenotypes is regulated
epigenetically.
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Additional file 1: Genes selected by PCA- and TD-based unsupervised FE.
(XLSX 16 kb)
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