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Abstract

Background: In the field of biomarker validation with mass spectrometry, controlling the technical variability is a
critical issue. In selected reaction monitoring (SRM) measurements, this issue provides the opportunity of using
variance component analysis to distinguish various sources of variability. However, in case of unbalanced data
(unequal number of observations in all factor combinations), the classical methods cannot correctly estimate the
various sources of variability, particularly in presence of interaction. The present paper proposes an extension of
the variance component analysis to estimate the various components of the variance, including an interaction
component in case of unbalanced data.

Results: We applied an experimental design that uses a serial dilution to generate known relative protein concentrations
and estimated these concentrations by two processing algorithms, a classical and a more recent one. The extended
method allowed estimating the variances explained by the dilution and the technical process by each algorithm in an
experiment with 9 proteins: L-FABP, 14.3.3 sigma, Calgi, Def.A6, Villin, Calmo, I-FABP, Peroxi-5, and S100A14. Whereas, the
recent algorithm gave a higher dilution variance and a lower technical variance than the classical one in two proteins with
three peptides (L-FABP and Villin), there were no significant difference between the two algorithms on all proteins.

Conclusions: The extension of the variance component analysis was able to estimate correctly the variance components
of protein concentration measurement in case of unbalanced design.

Keywords: Mass spectrometry, SRM, Validation biomarkers, Technical variability, Experimental design, Variance component
analysis

Background
In the recent years, there has been a growing interest in
using high throughput technologies to discover bio-
markers. Because of the random sampling of the proteome
within populations and the high false discovery rates, it
became necessary to validate candidate biomarkers
through quantitative assays [1]. ELISAs (Enzyme-Linked

Immunosorbent Assays) have high specificities (because
they often use two antibodies against the candidate bio-
marker) and high sensitivities that allow quantifying some
biomarkers in human plasma. However, the limits with
ELISA are the restricted possibility of performing multiple
assays, the unavailability of antibodies for every new can-
didate biomarker, and the long and expensive develop-
ments of new assays [2]. The absolute quantification of
protein biomarkers by mass spectrometry (MS) has natur-
ally emerged as an alternative [3]. Eckel-Passow et al. [4]
have discussed the difficulties of achieving good repeat-
ability and reproducibility in MS and expressed the need
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for more research dedicated to proteomics data, including
signal processing, experimental design, and statistical
analysis.
In selected reaction monitoring (SRM, a specific form

of multiple reaction monitoring, MRM) [5], the issues
are somewhat different and offer the opportunity to use
variance component analysis to investigate repeatability,
reproducibility, and other sources of variability [6]. How-
ever, when the data are unbalanced (unequal number of
observations in all possible factor combinations), clas-
sical methods cannot estimate correctly the various
sources of variability, particularly in presence of
interaction.
The present paper proposes an extension of the vari-

ance component analysis via the adjusted sum of squares
that estimates correctly the various sources of variability
of protein concentration on unbalanced data. This ana-
lysis is applied with an experimental design that uses a
serial dilution to generate known relative protein con-
centrations and allows for a few sources of variation.
Two processing algorithms, a classical and a more recent
one (namely, NLP and BHI, respectively) are used to
estimate protein concentration.
This analysis allowed an initial investigation of the per-

formance of the new algorithm and a first comparison
with the classical algorithm. In addition, the results
given by the two algorithms are compared with those
obtained by ELISA.

Methods
Sample preparation
Because the true proteomic profiles in biological sam-
ples are unknown, an artificial “biological variability”
(herein called “dilution variability”) was generated by
serial dilution (an experiment close to the design of
Study III by Addona et al. [7]). Twenty-one target pro-
teins (bioMérieux, Marcy l’Étoile, France) were consid-
ered: 14.3.3 sigma, binding immunoglobin protein
(BIP), Calgizzarin or S100 A11 (Calgi), Calmodulin
(Calmo), Calreticulin (Calret), Peptidyl-prolyl cis-trans
isomerase A (Cyclo-A), Defensin α5 (Def-A5), Defensin
α6 (Def.A6), Heat shock cognate 71 kDa protein
(HSP71), Intestinal-Fatty Acid Binding Protein (I-FABP),
Liver-Fatty Acid Binding Protein (L-FABP), Stress-70 pro-
tein mitochondrial (Mortalin), Protein Disulfide-Isomerase
(PDI), Protein disulfide-isomerase A6 (PDIA6), Phospho-
glycerate kinase 1 (PGK1), Retinol-binding protein 4
(PRBP), Peroxiredoxin-5 (Peroxi-5), S100 calcium-binding
protein A14 (S100A14), Triosephosphate isomerase (TPI),
Villin-1 (Villin), and Vimentin. These proteins were diluted
in a pool of human sera (Établissement Français du Sang,
Lyon, France). In other words, a parent solution (mixture
of target proteins spiked in the pool of human sera) was
used at dilutions 1, 1/2, 1/4, 1/8, and 1/16. This led to the

use of six “samples” (serum pool + 5 dilutions). Five ali-
quots of 250 μL were taken from each sample: four for
SRM and one for ELISA. In addition, eight extra aliquots
of 250 μL of dilution 1/4 were used to estimate the diges-
tion yield.

Experimental design
The experimental design is shown in Fig. 1. From each
aliquot, two vials of 125 μL were taken for separate
digestions. Labelled AQUA internal standards were
added immediately before SRM-MS analysis then two
injections (readings) were performed on each vial. SRM
readings of the 24 aliquots (6 samples × 2 digestions × 2
injections) were carried out over 4 couples of days. Each
set of samples had to be “read” over a couple of days be-
cause of equipment-related constraints (SRM does not
allow analyzing all the samples in a single day). To avoid
unexpected or uncontrolled biases, sample reading was
made at random and two chromatographic columns
were alternately used (for more details on SRM, see
Additional file 1).
In the methodology associated with BHI algorithm, we

used quality control (QC) measurements made daily be-
fore peptide reading to estimate the digestion yield. In
parallel, each “extra” aliquot of dilution 1/4 was used on
one reading day as QC measurement. From each “extra”
aliquot, two vials of 125 μL were taken for digestion.
The two vials were passed one at the start and the other
at the end of the day then each vial was injected two
times leading to the calibration of four digestion yields
per day. The estimation of protein concentration with
BHI algorithm on a given day changes according to the
digestion yield estimated the same day.
With the classical NLP algorithm, the number of read-

ings per sample was 16 (4 aliquots × 2 digestions × 2 in-
jections). With the BHI algorithm, the number of
readings per sample was 64 (4 aliquots × 2 digestions × 2
injections × 4 digestion yields).
For ELISA measurement of Liver-Fatty Acid Binding

Protein (L-FABP), each sample provided five replicates.
Each replicate was read four times leading to 20 readings
per sample. Sample readings were made at random.

Protein quantification methods
The BHI algorithm
The Bayesian Hierarchical Algorithm (BHI) is based on
a full graphical hierarchical model of the SRM acquisi-
tion chain which combines biological and technical pa-
rameters (Fig. 2a, Tables 1 and 2).
To estimate all these parameters, two calibrations are re-

quired: the use of quality control (QC) samples measured
each day for calibration (at protein level) and the use of
AQUA peptides for calibration (at peptide level) (see sec-
tion “Experimental design”). This set of measurements
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a

b

Fig. 2 SRM: selected reaction monitoring- BHI algorithm: Bayesian Hierarchical algorithm- NLP algorithm: the classical algorithm- AQUA : Absolute
QUAntification (labelled internal standard) - QC: quality control- θtech the set of latent technical parameters

Fig. 1 HS: pool of human serum - SRM: selected reaction monitoring - Inj: injection - The triangles indicate the samples destined for SRM and
ELISA - The circle indicates the samples destined solely for estimating the digestion yield by SRM - The squares indicate the samples destined for
reading by SRM readings - The diamond indicates the samples destined for ELISA readings
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leads to a set of equations that captures the links between
the unknown latent variables and parameters to estimate
and the known SRM measurement. Estimating a protein
concentration requires estimating, at the same time, the
technical parameters included in the model.
Table 1 shows all the parameters and variables in-

volved in the description of the SRM analytical chain
model. Let θtech be the set of latent technical parameters
that describes the SRM acquisition chain:

θtech ¼ κ; τ; λ; ξ;ϕ�; γ; γ�ð Þ

Table 2 shows the hierarchical model that links protein
concentration y to the native transition signals I of
native peptides and the labeled transition signals I∗ of
AQUA peptides.
The BHI algorithm has to solve the inverse problem

and compute protein concentration y and technical pa-
rameters θtech. This problem is solved in a Bayesian
framework [8–15]. Table 3 shows the distribution type
used for each variable in this Bayesian framework.

To estimate together the protein concentration and
the parameters, we used the native transition signals I
with the labeled transitions signals I*. Regarding the la-
beled signal, the peptide concentration is known but the
transition gains and the inverse variance of the noise in
the AQUA signal have to be estimated.
Using the distributions defined in Table 3, the full a

posteriori distribution p(y, θtech| I, I
∗) can be approxi-

mated as follows:

p y; θtechjI; I�ð Þ �
p yð Þp κjyð Þp τð Þp λð Þp ξð Þp ϕ�ð Þp γð Þp γ�ð Þp Ijκ; ξ; τ; λ; γð Þ

p I�jκ; ξ;ϕ�; τ; λ; γ�ð Þ
The protein concentration and the parameters are esti-

mated by the expectation of this a posteriori (EAP) dis-
tribution. This EAP is defined as follows:

ey;gθtech
� �

¼ EAP y; θtechð Þð Þ

EAP y; θtechð Þð Þ ¼
Z

y; θtechð Þp y; θtechjI; I�ð Þdydθtech

Computing the EAP is achieved with methods based on
Markov Chain Monte-Carlo (MCMC) procedure and
hierarchical Gibbs structure. The algorithm performs se-
quentially a random sampling of each parameter (y, θtech)
from the a posteriori distribution and conditionally on the
previously sampled parameters, and iterates. The parame-
ters are sampled in the following order: κ, τ, λ, ξ, ϕ∗, γ, γ∗.
In the case of a Normal distribution, the sampling is
achieved knowing explicitly the mean and the inverse vari-
ance of the distribution. In the case of a uniform distribu-
tion, the sampling is achieved using one iteration of a
Metropolis-Hastings random walk. After a fixed number
of iterations, the algorithm computes the empirical mean
of each parameter after a warm-up index. This index
defines the number of iterations at convergence towards
the a posteriori distribution.
Here, we supposed that the digestion yields are known.

With BHI, we have introduced a protocol for estimating
the digestion yields. We used the control signals mea-
sured on the quality-control sample. We assumed that
the digestion factors dip defined by the number of pep-
tides i present in protein p are known. The digestion
yield gip is defined by the correction factor to apply to
the digestion factor to obtain ratio peptide/protein con-
centration. Note here that a matrix formulation allows
handling non-proteotypic peptides shared by several
proteins. The Control signals combine both native tran-
sition signals IQC and labeled transition signals I∗QC.
According to the above-described Bayesian algorithm,
the unknown becomes the digestion yield of each pep-
tide instead of the protein concentration. Here too, esti-
mating the EAP calls for a MCMC algorithm with

Table 1 Parameters and variables involved in the SRM analytical
chain model

Notation Description Range

t Time

tiln Discrete time sample n for peptide i and
fragment l. In experimental conditions
where only one ion by peptide is
followed, this element is labeled only
by peptide identifier i

i = 1, …, S
l = 1, …, L
n = 1, …, N

dip Digestion factor defined by the number
of peptides i present in protein p

i = 1, …, S
p = 1, …, P

gip Digestion yield defined by the correction
factor to apply to the digestion factor dip
to obtain ratio peptide/protein
concentration

i = 1, …, I
p = 1, …, P

ξil Peptide to fragment gain i = 1, …, S
l = 1, …, L

ϕ�
il Peptide to fragment gain correction

factor for AQUA peptide
i = 1, …, S
l = 1, …, L

Ci(τi, λi) Normalized chromatography peak
response of peptide i

i = 1, …, S

τi Chromatography peak position i = 1, …, S

λi Chromatography peak width i = 1, …, S

Iikl(til) Transition signal at time til i = 1, …, S
k = 1, …, K
l = 1, …, L

yp Protein p concentration p = 1, …, P

κi Peptide i concentration before
chromatography

i = 1, …, S

ϱik Concentration of selected ion k
of peptide i (precursor ion k of transition l)

k = 1, …, K

ϑkl Concentration of selected fragment l
of selected ion k (fragment of precursor
ion k of transition l)

l = 1, …, L
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hierarchical Gibbs structure. This calibration is done
once for each calibration batch selecting one quality
control measurement. This process may be generalized
to the cases where several quality control measurements
are available by combining within the EAP computation
the information delivered by each measurement.
The BHI algorithm includes an automated selection to

initialize the peak position that is based on the set of
transitions associated with each peptide. It computes the
product of the traces and searches for the position of the
maximum value on this product. This way, only the
peaks present in all traces are detected.
Algorithm BHI involves a fusion of the information de-

livered by all traces. This improves the algorithm robust-
ness when the number of traces is large. In fact, generally,

processing algorithms for protein quantification are most
performant with proteins of ≥3 peptides and peptides with
≥3 transitions [16].

The NLP algorithm
The NLP algorithm (Fig. 2b) is based on the median
value, over all transitions, of the log-transformation of
ratio native transition peak area/labeled transition peak
area. This algorithm is derived from a gold standard al-
gorithm used for oligonucleotide array analysis [17]. The
peaks are detected by MultiQuant™ software (AB Sciex,
France). These peaks are checked by an operator who
decides whether a signal of the labeled internal peptide
standard AQUA does not make sense and should be

Table 2 Hierarchical model equations of the SRM analytical chain for the native transition signals I and labeled transition signals I*

Quantity Targeted protein AQUA peptide standard

Protein concentration yp No labeled protein introduced p = 1, …,
P

Peptide concentration before chromatography
HiðyÞ ¼

XP

p¼1

gipdipyp

κ i ¼ HiðyÞ þ NðγκÞ
κ�i i = 1, …, S

Selected ion concentration before fragmentation ξiκi ξ iκ�i i = 1, …, S

Signal of transition at time tn κiξ ilCT
il ðτ i; λiÞðtnÞ κ�i ξ ilϕ

�
il C

T
il ðτ i; λiÞðtnÞ i = 1, …, S

l = 1, …, L
n = 1, …,
N

Resulting signals of selected children of targeted
peptidea

Glðκ; ξ; τ; λÞ ¼
XS

i¼1

XL

l¼1

κiξ ilCT
il ðτ i ; λiÞ

Il ¼ Glðκ; ξ; τÞ þ NðγnlÞ
G�
l ðκ�; ξ;ϕ�; τ; λÞ ¼

XS

i¼1

XL

l¼1

κ�i ξ ilϕ
�
il C

T
il ðτ i; λiÞ

I�l ¼ G�
l ðκ�; ξ;ϕ�; τÞ þ Nðγ�nlÞ

i = 1, …, S
l = 1, …, L

aBold notation stands for vectors

Table 3 Distribution type for each variable of the SRM acquisition chain

Hierarchical level Variable Analytic expression distributiona Distribution type

Transition Noise
pðIjκ; ξ; τ; λ; γÞ �

YL

l¼1

expð− 1
2 γnkIl−Glðκ; ξ; τ; λÞk2Þ

pðI�jκ; ξ;ϕ�; τ; λ; γ�Þ �
YL

l¼1

expð− 1
2 γ

�
nkI�l −G�

l ðκ; ξ;ϕ�; τ; λÞk2Þ

Normal

Peptide Peptide to fragment gain

pðξÞ � QS
i¼1

expð− 1
2 γ

i
ξðξ i−mξ i Þ2Þ

Normal

Peptide to fragment gain
correction factor pðϕ�Þ � QS

i¼1
expð− 1

2 γ
�
ϕðϕ�

i −1Þ2Þ
Normal

Noise inverse variance
pðγnÞ � γαn−1n

βαnn ΓðαnÞ expð− γn
βn
Þ

pðγ�nÞ � γ�ðαn−1Þn
βαnn ΓðαnÞ expð− γ�n

βn
Þ

Gamma

Peak retention time

pðτÞ � QS
i¼1

Uðτ i; τmi ; τMi Þ

Uniform

Peak width
pðλÞ � QS

i¼1
Uðλi; λmi ; λMi Þ

Uniform

Peptide concentration
pðκjyÞ � QS

i¼1
expð− 1

2 γκðκi−HiðyÞÞ2Þ
Normal

Protein Protein concentration
pðyÞ � QP

p¼1
expð− 1

2 γ
p
x ðyp−myp Þ2Þ

Normal

Digestion yield
pðgÞ � QS

i¼1

QP
p¼1

expð− 1
2 γgðgip−mgÞ2Þ

Normal

aBold notation stands for vectors
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considered as missing or whether a too low or absent
signal of the native transition should be assigned value 0.
The NLP algorithm uses, as input data, a normalized

and log-transformed quantity t defined by: t ¼ Lnð1þ I
I�

Þ where I represents the area under the peak of a given
native transition and I* the area under the peak of the la-
beled transition.

Elisa
Only protein L-FABP was concerned. The concentration
of this protein was measured using Vidas HBSAg® proto-
col, the 2C9G6/5A8H2 antibody pair, and Vidas® ana-
lyser (bioMérieux, Marcy-l’Étoile, France).

Statistical modeling and analysis
In this article, the performance of each algorithm in SRM
and the performance of ELISA were defined as the ability
to find the concentrations generated by serial dilution.
This ability was estimated by the linear slope and the vari-
ance decomposition of the linear model that links the
measured to the theoretical protein concentration gener-
ated by dilution. The best performance corresponds to the
highest part of dilution variance (explained by the dilu-
tion) and the lowest part of technical variance (explained
by the measurement error and lab procedures).
Only proteins that have a correlation coefficient ≥ 0.7

between theoretical and measured concentration with ei-
ther NLP or BHI algorithm were selected for the statis-
tical analysis.

Linearity analysis
For each algorithm and each protein, a linear regression
model was built to link the protein concentration y with
the theoretical protein concentration x. A log2 trans-
formation of the measurements was applied to stabilize
the variance. Because of the two-fold dilution, the log2
transformation was applied to x and y. With this trans-
formation, the regression line is expected to have a slope
close to 1.
Because the reading on a given couple of days may in-

fluence the relationship between the measured and the
theoretical concentration of each protein, the model in-
cluded a slope and an intercept for each day-couple; this
comes to include an interaction term between protein
concentration and day-couple. A fixed effects model was
applied and ‘sum to zero contrasts’ were used to obtain
estimations of the mean intercept and the mean slope as
follows:

yijr ¼ β0 þ β0 jD j þ β1xijr þ β1 jxijr
�Dj

þ εijr Model 1Sð Þ

i, j, and r correspond respectively to the sample, the
day-couple, and the digestion-injection step. Parameters

β0 and β1 are respectively the mean intercept and the
mean slope of the regression line between the log2
values of the measured protein concentrations and the
log2 values of the theoretical protein concentrations,
β0jand β1j being, respectively, the two-day-reading effects
on the mean intercept and the mean slope. D is for a
day-couple.
In parallel, a log2 transformation was applied to ELISA

measurements too. These measurements were then ana-
lyzed by a linear model (Model 1E) that included the
theoretical concentration x, the reading order T, and the
interaction between them:

yijr ¼ β0 þ β1xijr þ β0 jT j þ β1 jxijr
�T j

þ εijr Model 1Eð Þ

i, j, and r correspond, respectively, to the sample, the
reading order, and the replicate.

Variance decomposition
In this work, the data processed by the NLP algo-
rithm included null intensities and missing values
(see Additional file 2). These values were excluded
after log2 transformation. As their number was un-
equal between the couple of day readings, the data
were considered unbalanced.
To quantify the components of the variance, we calcu-

lated adjusted sums of squares by comparing complete
Model 1S with each of its nested models. The nested
models are shown below: Model 2S included only the ef-
fect of the theoretical concentration, Model 3S only the
effect of the two-day measurement, and 4S both effects
without interaction between them:

yijr ¼ β0 þ β1xijr þ εijr Model 2Sð Þ

yijr ¼ β0 þ β0 jD j þ εijr Model 3Sð Þ

yijr ¼ β0 þ β0 jD j þ β1xijr þ εijr Model 4Sð Þ

Table 4 and Fig. 3 present the components of the ana-
lysis of variance. The dilution variance and its inter-
action with the two-day measurement effect, was
calculated as the difference between Model 3S and
Model 1S residual sums of squares. The lab procedure
variance corresponds to the variance explained by the
two-day measurement effect and its interaction with the
theoretical concentration was calculated as the differ-
ence between Model 2S and Model 1S residual sums of
squares. The variance explained by the sole interaction
between the theoretical concentration and the two-day
measurement was calculated by the difference between
Model 4S and Model 1S residual sums of squares.
The residual variance was split into two components

[18]: 1) the measurement error due to instrumental and
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algorithmic errors, which was calculated as the sum of
the squares of the differences between the injection rep-
licate values and their mean, and 2) the lack of fit of the
model.
For ELISA, the same analysis of variance was ap-

plied to Model 1E. Each component of the sum of
squares was divided by the total sum of squares and
expressed as a percentage. This helped comparing the
three methods (ELISA and the two processing algo-
rithms for SRM).
Two Wilcoxon signed-rank tests were used on all pro-

teins to test, first the difference between the parts of
dilution variance then between the parts of technical
variance given by the two processing algorithms. These
two tests are not independent and correspond to a single
test in case of absence of interaction.

Results
Among all results obtained for all protein reads, the cor-
relation coefficient between the theoretical concentration
and the measured protein concentration was ≥0.7 in 9 out
of 21 proteins: L-FABP, 14.3.3 sigma, Calgi, Def.A6, Villin,
Calmo, I-FABP, Peroxi-5, and S100A14 (Additional files 3
and 4). The correlation coefficient was ≥0.7 with BHI and
NLP in proteins 14.3.3 sigma, Calgi, Def.A6, and Villin.
This coefficient was ≥0.7 with NLP only in Calmo, I-FABP,
Peroxi-5, and S100A14 and with BHI only in L-FABP.

Linearity analysis
Table 5 and Additional file 5 summarize the analysis of
variance in each linear model relative to each of the 9
above-cited proteins. Table 5 shows also the mean slopes
of these linear models.
For L-FABP and Villin, the BHI algorithm gave a

higher dilution variance and a lower technical variance
than the NLP algorithm. In addition, the mean slope of
Model 1S was closer to 1 with the BHI algorithm than
with the NLP algorithm.
The BHI algorithm gave various results with the

other proteins that have less than three peptides. For
14.3.3 sigma and Calgi, the BHI algorithm gave a
higher dilution variance and a lower technical vari-
ance than the NLP algorithm. Def.A6 gave similar re-
sults with both algorithms. The BHI algorithm gave
lower dilution variance and higher technical variance
than the NLP algorithm with Calmo, I-FABP, Peroxi-
5, and S100A14. Moreover, 14.3.3 sigma, and Calgi,
Calmo, I-FABP, Peroxi-5, and S100A14, the mean
slope of Model 1S was closer to 1 with the NLP than
with the BHI algorithm.
But, on all proteins, the dilution variances and the

technical variances were not significantly different be-
tween the two algorithms (p-values = 0.35 in both com-
parisons with Wilcoxon signed ranks test).
With L-FABP, ELISA gave higher dilution variance and

lower technical variance than SRM with the two algo-
rithms in terms of dilution variance and technical vari-
ance. Besides, the mean slope of Model 1E was closer to
1 than the mean slopes obtained with Model 1S with
either the BHI or the NLP algorithm.

Technical variance components
The part of the measurement error was the highest part
of the technical variance with the BHI with L-FABP,
14.3.3 sigma, Calgi, Def.A6, and Villin and with the NLP
with Calmo, I-FABP, Peroxi-5, and S100A14. The other
components of the technical variance (i.e., the two-day
measurement and the interaction between this measure-
ment and the theoretical concentration) included a vari-
ability of the intercept and a variability of the slope of
the regression lines relative to the 4 day-couples.

Fig. 3 Venn Diagrams showing the variance components

Table 4 Variance decomposition of Model 1S

Source of variation DF Adjusted sum of squares

Theoretical concentration
and interaction

J SS(x + x∗D|D)=RSS(Model 3S) −
RSS(Model 1S)

Two-day measurement
and interaction

2(J-1) SS(D + x∗D|x)=RSS(Model 2S) −
RSS(Model 1S)

Interaction (J-1) SS(x∗D|x, D)=RSS(Model 4S) −
RSS(Model 1S)

Residual variation IJR-2 J RSSðModel 1SÞ ¼
X
ijr

ðyijr−ŷijrÞ2

Measurement error (R-
1)*I*J

X
ijr

ðyijr−yij•Þ2

Lack of fit IJ-2 J
P
ijr
ðŷijr−yij•Þ2

DF degrees of freedom, I number of samples, J number of couples of days, R
number of digestion-injections -yij• : mean of digestion-injection replicate
measurements of each sample and each couple of days - ŷijr : predicted
measurements - RSS: residual sum of squares - SS: sum of squares
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Figures 4 and 5 show the relationships between the
theoretical and the measured protein concentrations on
the log2-log2 scale for the 9 proteins with algorithms
NLP and BHI, respectively. Figure 6 shows the relation-
ship between the theoretical and the measured L-FABP
concentration with ELISA. In these figures, for L-FABP,
14.3.3 sigma, Calgi, Def.A6, and Villin, the four regres-
sion lines relative to the 4 day-couples were more
grouped with BHI than with NLP. This means that the
part of the variance due to the two-day measurement
process and the interaction between this process and the
theoretical concentration is smaller with BHI than with
NLP (also shown in Table 5). For Def.A6, this part of the
variance was very low with both algorithms; thus, the
part due to the measurement error was the highest part
of the technical variance.

In Figs. 4 and 5, for Calmo, I-FABP, Peroxi-5, and
S100A14, the four regression lines relative to the 4 day-
couples were more grouped with NLP than with BHI.
This means that the part of the variance due to the two-
day measurement process and the interaction between
this process and the theoretical concentration is smaller
with NLP than with BHI.

Discussion
The present article proposes an extension of variance
component analysis via adjusted sums of squares by esti-
mating correctly the various sources of variability on un-
balanced data. This analysis allows estimating separately
the dilution variability and the technical variability. In an
application to protein concentration estimation by two
processing algorithms (NLP and BHI), this extension

Table 5 Estimations of the mean slope and results of variance decomposition

Protein and algorithm Peptide number Mean slope Theoretical concentration +
interactiona

Interaction Two-day process+
interactionb

Measurement
errorb

Totalb Lack
of fit

L-FABP 3

NLP 0.64 27.2 14.4 24.9 45.7 70.6 16.9

BHI 0.72 54.8 3.9 5.7 30.5 36.2 12.9

ELISAc 0.84 98.1 0.1 0.6 0.3 0.8 1.1

Villin 3

NLP 1.14 51.1 5.6 9.9 14.4 24.3 28.8

BHI 0.98 74.7 1.7 1.8 16.8 18.6 8.3

14.3.3 sigma 1

NLP 1.09 69.8 5.8 16.9 16.4 33.3 9.5

BHI 0.77 87.2 0.7 2.1 10.1 12.2 1.4

Calgi 2

NLP 1.02 86.2 1.8 6 6.7 12.7 2.9

BHI 0.81 93.5 0.1 1 4.3 5.3 1.3

Def.A6 1

NLP 0.97 97.6 0.1 0.1 2. 2.1 0.2

BHI 0.95 97.3 0.0 0.3 2.2 2.5 0.2

Calmo 1

NLP 0.55 87.1 0.6 8 4.7 12.7 2.4

BHI 0.32 19.8 0.8 16 52. 68.1 12.9

I-FABP 1

NLP 0.86 89.3 0.4 2 5.1 7.1 2.5

BHI 0.22 2.8 2.1 5.9 86. 91.9 7.4

Peroxi-5 1

NLP 0.69 80.4 1.5 2.5 15.2 17.6 2.2

BHI 0.30 27.3 15.2 24 51.5 75.5 12.4

S100A14 2

NLP 0.88 85.9 15.9 21.4 4.5 25.9 7.8

BHI 0.34 30.2 20.3 41.4 34.6 76 14.1

The results of variance decomposition (columns 4 to 9) are expressed as percentages, a Reflects the dilution variance. b Reflects the technical variance. c Results
stemming from the reading order (not the two-day readings)
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allowed algorithm performance quantification and com-
parison. The results showed that the performance of
each algorithm as reflected by the dilution and the tech-
nical variance depended on the protein and that, on all
proteins, there were no significant difference between
the two algorithms.
Other statistical modeling frameworks were proposed

for protein quantification in SRM experiments.
SRMstats [19] uses a linear mixed-effects model to com-
pare distinct groups (or specific subjects from these
groups). Its primary output is a list of proteins that are

differentially abundant across settings and the
dependent variables are the log-intensities of the tran-
sitions. Here, a simple linear model was used to find
the theoretical protein concentrations generated by
serial dilution, the primary outputs are the compo-
nents of the variance (essentially, the variance compo-
nent explained by the serial dilution) and the
dependent variable is the protein concentration esti-
mated by the quantification algorithm on the basis of
the ratio of native to labeled transitions (see parts
“The BHI algorithm” and “The NLP algorithm”).

Fig. 4 Two-day reproducibility of the linear model slopes with the NLP algorithm on the log2-log2 scale. In each panel, the solid line represents
the diagonal regression line
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In the publication of Xia et al. [6], the reproducibility
of the SRM experiment was assessed by decomposing
the variance into parts attributable to different factors
using mixed effects models. The sequential ANOVA was
used to quantify the variance components of the fixed
effects. However, when the data are unbalanced, the se-
quential ANOVA cannot correctly estimate the different
parts of the variance: with balanced data, one factor can
be held constant whereas the other is allowed to vary in-
dependently. This desirable property of orthogonality is
usually lost with unbalanced data which generated

correlations between factors. With such data, the use of
adjusted sums of squares (Type II and Type III sum of
squares in some statistical analysis programs) [20–23] is
then an appropriate alternative to the sequential sums of
squares. With Type II, each effect is adjusted on all other
terms except their interactions; thus one limitation is
that this approach is not applicable in the presence of
interactions. With Type III, each effect is adjusted on all
other terms including their interactions but one major
criticism is that some nested models used for estimating
the sums of squares are unrealistic [24] because these

Fig. 5 Two-day reproducibility of the linear model slopes with the BHI algorithm on the log2-log2 scale. In each panel, the solid line represents
the diagonal regression line
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models that include interaction terms between effects do
not allow for all effects (For example in a three-way
Table (A, B and C), the model that includes interaction
A*B*C does not include all effects A, B, C). Here, we
propose an approach that responds to this criticism.
In SRM protein quantification, the BHI algorithm

revealed a higher part of the whole dilution variance and
a lower part of the whole technical variance vs. NLP
with L-FABP and Villin, the only two proteins that have
three peptides. This is one limitation of the present
study because assessing the performance of the BHI
algorithm requires other proteins with three peptides or
proteins with more than three peptides.
In comparing the two algorithms using proteins with

less than three peptides, the difference in measurement
results may be explained by differences in the proprieties
of these algorithms. Firstly, the NLP algorithm is super-
vised and assesses the quality of both the native and the
labeled transition before estimating their ratio (spectrum
visualization by an operator) whereas the BHI algorithm
is automatic and gives directly an estimation of this
ratio, including a weighting of each transition according
to the estimated level of noise. When the signals of the
labeled transition are not detectable, the measures do
not make sense and are considered missing for the NLP
algorithm but give incorrect values with the BHI algo-
rithm. For Peroxi-5 and S100A14 proteins, 27% and 36%
of the values of the labeled transitions measured by the
NLP algorithm (see Additional file 2) were discarded by
the operator but read by the BHI algorithm. This can be
the reason for which these proteins had bad results with
the BHI algorithm. Thus, it would be interesting to

compare the two algorithms only on spikes selected by
the operator.
The BHI algorithm (but not the NLP) allows for the

variability stemming from the SRM pre-analytic step
(precisely, the digestion step) by using QC samples to
estimate the daily digestion yield. This may reduce the
variability due to the two-day measurement process, but
not systematically; in the presence of endogenous pro-
teins with fragments, the ratio of transitions (native to
labeled transition) may be altered, which leads to incor-
rect estimations of the digestion yields. Other strategies
to monitor the digestion step should then be used to
estimate correctly the digestion yield, such as the
addition of Protein Standard Absolute Quantification,
PSAQ [25]. Spiking isotopically labelled proteins has the
advantage that incomplete or unspecific digestion does
not corrupt the results; this corruption may occur when
labelled AQUA internal standards are used.
In each algorithm, when a linear relationship was not

clearly observed (< 0.70 correlation coefficient between
the theoretical concentration and the measured protein
concentration), it was assumed that the protein concen-
tration was below the analytical limit of detection. Actu-
ally, the SRM sensitivity depends not only on the protein
amount but also on the tryptic peptide sequence and the
matrix effect [26].

Conclusion
After the generic experimental design imagined by
Adonna et al. [7], an extension of this design and a vari-
ance decomposition via adjusted sums of squares in case
of unbalanced data are now available to evaluate the
technical variability of protein concentration by SRM
measurements and ensure an initial comparison of pro-
tein quantification algorithms.

Additional file

Additional file 1: The full details for sample preparation and SRM
analysis. (DOCX 16 kb)

Additional file 2: Number of transitions and peptides per protein and
the percent of missing and zero values among protein concentration
measurements. (DOCX 18 kb)

Additional file 3: Relationship between theoretical and BHI-quantified
protein concentrations. (TIFF 2929 kb)

Additional file 4: Relationship between theoretical and NLP-quantified
protein concentrations. (TIFF 2929 kb)

Additional file 5: Scatter plot showing the parts of dilution variance,
technical variance, and lack of fit with Model 1S. (TIFF 1318 kb)
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