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Abstract

Background: Structural modeling of protein-protein interactions produces a large number of putative
configurations of the protein complexes. Identification of the near-native models among them is a serious
challenge. Publicly available results of biomedical research may provide constraints on the binding mode, which
can be essential for the docking. Our text-mining (TM) tool, which extracts binding site residues from the PubMed
abstracts, was successfully applied to protein docking (Badal et al., PLoS Comput Biol, 2015; 11: e1004630). Still,
many extracted residues were not relevant to the docking.

Results: We present an extension of the TM tool, which utilizes natural language processing (NLP) for analyzing the context
of the residue occurrence. The procedure was tested using generic and specialized dictionaries. The results showed that the
keyword dictionaries designed for identification of protein interactions are not adequate for the TM prediction of the
binding mode. However, our dictionary designed to distinguish keywords relevant to the protein binding sites led to
considerable improvement in the TM performance. We investigated the utility of several methods of context analysis, based
on dissection of the sentence parse trees. The machine learning-based NLP filtered the pool of the mined residues
significantly more efficiently than the rule-based NLP. Constraints generated by NLP were tested in docking of unbound
proteins from the DOCKGROUND X-ray benchmark set 4. The output of the global low-resolution docking scan was
post-processed, separately, by constraints from the basic TM, constraints re-ranked by NLP, and the reference constraints. The
quality of a match was assessed by the interface root-mean-square deviation. The results showed significant improvement of
the docking output when using the constraints generated by the advanced TM with NLP.

Conclusions: The basic TM procedure for extracting protein-protein binding site residues from the PubMed abstracts was
significantly advanced by the deep parsing (NLP techniques for contextual analysis) in purging of the initial pool of the
extracted residues. Benchmarking showed a substantial increase of the docking success rate based on the constraints
generated by the advanced TM with NLP.

Keywords: Protein interactions, Binding site prediction, Protein docking, Dependency parser, Rule-based system,
Supervised learning

Background
Protein-protein interactions (PPI) play a key role in various
biological processes. An adequate characterization of the mo-
lecular mechanisms of these processes requires 3D structures
of the protein-protein complexes. Due to the limitations of
the experimental techniques, most structures have to be
modeled by either free or template-based docking [1]. Both

docking paradigms produce a large pool of putative models,
and selecting the correct one is a non-trivial task, performed
by scoring procedures [2]. Often knowledge of a few binding
site residues is enough for successful docking [3].
In recent years, the number of biomedical publications, in-

cluding PPI-relevant fields, has been growing fast [4]. Thus,
automated text mining (TM) tools utilizing online availability
of indexed scientific literature (e.g. PubMed https://
www.ncbi.nlm.nih.gov/ pubmed) are becoming increasingly
important, employing Natural Language Processing (NLP)
algorithms to purge non-relevant information from the initial
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pool of extracted knowledge. TM+NLP techniques are
widely used in biological text mining [5–18], particularly for
the extraction and analysis of information on PPI networks
[19–34] and for the prediction of small molecules binding
sites [35, 36].
Recently, we developed a basic TM tool that extracts

information on protein binding site residues from the
PubMed abstracts. The docking success rate significantly
increased when the mined residues were used as con-
straints [37]. However, the results also showed that many
residues mentioned in the abstracts are not relevant to the
protein binding. Examples of such residues include those
originating from studies of small molecule binding, or from
papers on stability of the individual proteins. Filtering the
extracted residues by the shallow parsing (bag-of-words)
Support Vector Machines (SVM) was shown to be insuffi-
cient. In this paper, we present an advancement of our basic
TM procedure based on the deep parsing (NLP techniques
for contextual analysis of the abstract sentences) for
purging of the initial pool of the extracted residues.

Methods
Outline of the text-mining protocol
The TM procedure was tested on 579 protein-protein com-
plexes (bound X-ray structures purged at 30% sequence
identity level) from the DOCKGROUND resource (http://dock-
ground.compbio.ku.edu) [38]. The basic stage of the proced-
ure consists of two major steps: information retrieval and
information extraction [37] (Fig. 1). The abstracts are re-
trieved from PubMed using NCBI E-utilities tool (http://
www.ncbi.nlm.nih. gov/books/NBK25501) requiring that ei-
ther the names of both proteins (AND-query) or the name
of one protein in a complex (OR-query) are present in the
abstract. The text of the retrieved abstracts is then processed
for the residue names. The structures of the individual pro-
teins are used to filter the pool of the extracted residues by:
(i) correspondence of the name and the number of the ex-
tracted residues to those in the Protein Data Bank (PDB) file,
and (ii) presence of the extracted residue on the surface of
the protein. Several NLP-based approaches (semantic simi-
larity to generic and specialized keywords, parse tree analysis
with or without SVM enhancement) were further applied for
additional filtering of the extracted residues from the ab-
stracts retrieved by the OR-queries. Performance of the TM
protocol for a particular PPI, for which N residue-containing
abstracts were retrieved, is evaluated as

PTM ¼

XN
i¼1

N int
i

XN
i¼1

N int
i þ Nnon

i

� � ; ð1Þ

where N int
i and Nnon

i are the number of the interface and

the non-interface residues, correspondingly, mentioned
in abstract i for this PPI, not filtered out by a specific
algorithm (if all residues in an abstract are purged, then
this abstract is excluded from the PTM calculations). It is

Fig. 1 Flowchart of NLP-enhanced text mining system. Scoring of
surrounding sentences is shown for Method 3 (see text)
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convenient to compare the performance of two algo-
rithms for residue filtering in terms of

ΔN PTMð Þ ¼ NX1
tar PTMð Þ−NX2

tar PTMð Þ; ð2Þ
where NX1

tarðPTMÞ and NX2
tarðPTMÞ are the number of targets

with PTM value yielded by algorithms X1 and X2, respect-
ively. The N(0) and N(1) values capture the general shape
of the PTM distribution. Thus, the effectiveness of an algo-
rithm can be judged by its ability to reduce N(0) (all false
positives) and increase N(1) (all true positives). In this
study, advanced residue filtering algorithms are applied to
the pool of residues extracted by the OR-queries with the
basic residue filtering, thus X2 will hereafter refer to this
algorithm. The negative values of ΔN(0) and the positive
values of ΔN(1) indicate successful purging of irrelevant
residues from the mined abstracts.

Selection of keywords
Generic keywords semantically closest to PPI-specific
concept keywords (see Results) were found using Perl
module QueryData.pm. The other Perl modules lesk.pm,
lin.pm and path.pm were used to calculate similarity
scores introduced by Lesk [39, 40], Lin [41] and Path
[42, 43], correspondingly, between the token (words) in
a residue-containing sentence and the generic keywords.
These Perl modules, provided by the WordNet [44, 45]
(http://wordnet.princeton.edu), were downloaded from
http://search.cpan.org. The score thresholds for the resi-
due filtering were set as 20, 0.2, and 0.11, for the Lesk,
Lin and Path scores, respectively.
The keywords relevant to the PPI binding site (PPI + ive

words), and the keywords that may represent the fact of
interaction only (PPI-ive words) (Table 3) were selected
from manual analysis of the parse trees for 500 sentences
from 208 abstracts on studies of 32 protein complexes.

Scoring of residue-containing and context sentences
The parse tree of a sentence was built by the Perl mod-
ule of the Stanford parser [46, 47] (http://nlp.stanfor-
d.edu/software/index.shtml) downloaded from http://
search.cpan.org. The score of a residue in the sentence
was calculated as

SX ¼
X
i

1

dþ
Xi

−
X
j

1
d−
X j
; ð3Þ

where dþ
Xi and d−

X j are parse-tree distances between a resi-
due and PPI + ive word i and PPI-ive word j in that sen-
tence, respectively. Distances were calculated by edge
counting in the parse tree. An example of a parse tree of
residue-containing sentence with two interface residues
having score 0.7 is shown in Additional file 1: (Figure S1).
An add-on value to the main SX score (Eq. 3) from the

context sentences (sentences immediately preceding and

following the residue-containing sentence) was calcu-
lated either as simple presence or absence of keywords
in these sentences, or as a score, similar to the SX score,
but between the keywords and the root of the sentence
on the parse tree.

SVM model
The features vector for the SVM model was constructed
from the SX score(s) of the residue-containing sentence
and the keyword scores of the context sentences (see
above). In addition, the scores accounting for the pres-
ence of protein names in the sentence

Sprot ¼
0; if no protein names in the sentence
1; if only name of one protein in the sentence
2; if name of both proteins in the sentence

8<
:

ð4Þ
were also included, separately for the residue-containing,
preceding, and following sentences. The SVM model
was trained and validated (in 50/50 random split) on a
subset of 1921 positive (with the interface residue) and
3865 negative (non-interface residue only) sentences
using program SVMLight with linear, polynomial and
RBF kernels [48–50]. The sentences were chosen in the
order of abstract appearance in the TM results.
The SVM performance was evaluated in usual terms

of precision P, recall R, accuracy A, and F-score [51].

P ¼ TP
TPþ FP

; R ¼ TP
TPþ FN

;

A ¼ TPþ TN
TPþ FNþ TNþ FP

; F ¼ 2
P � R
P þ R

;

ð5Þ

where TP, FP, TN, and FN are, correspondingly, the number
of correctly identified interface residues, incorrectly identi-
fied interface residues, correctly identified non-interface
residues, and incorrectly identified non-interface residues
in the validation set. The results (Additional file 1: Figure
S2-S7) showed that the best performance was achieved
using RBF kernel with gamma 16. Thus, this model was in-
corporated in the TM protocol (Fig. 1).

Text mining constraints in docking protocol
TM constraints were incorporated in the docking proto-
col and the docking success rates assessed by bench-
marking. Basic TM tool [37] with OR-queries was used
to mine residues for 395 complexes from the DOCK-

GROUND unbound benchmark set 4. The set consists of
the unbound crystallographically determined protein
structures and corresponding co-crystallized complexes
(bound structures). Binary combinations of OR and
AND queries were generated [37]. The original publica-
tion on the crystallographically determined complex was
left out, according to PMID in the PDB file. Because of
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the frequent discrepancy in the residue numbering and
the chain IDs in the bound and the unbound structures,
the residues were matched to the ones in the bound
protein. The residues were ranked for each interacting
protein using a confidence score. The confidence range
was between 1 (low) and 10 (high). The AND-query
residues were given preference over the OR-query ones
for the basic TM protocol, according to our ranking
scheme [37]. The confidence score was calculated as

f Rð Þ ¼ min 10;
XNR

i¼1

ai

 !
; ð6Þ

where NR is the number of abstracts, mentioning residue
R, ai = 1, if abstract i was retrieved by the OR-query
only, and ai = 2, if the abstract was retrieved by the
AND-query. For each protein, the top five residues were
used as constraints in GRAMM docking [52]. The con-
straints were utilized by adding an extra weight to the
docking score if the identified residue was at the pre-
dicted interface. The maximum value of 10 reflects the
difference between the low confidence (f = 1) and the
high confidence (f = 10) constraints, while alleviating the
effect of possible residue overrepresentation in published
abstracts (very high f values).
For the NLP score, the confidence ranking scheme

was modified such that the range is preserved between 1
and 10 and the AND-query residues are given higher
precedence than the OR-query residues. The NLP was
used for re-ranking within each category as

f Rð Þ ¼
10; if for some i; ai is retrieved in AND query and passes NLP
8; if ai is retrieved in AND query
6; if any ai retrieved in OR query passes NLP
max 5; count of abstracts containing Rð Þ

8>><
>>:

9>>=
>>;;

ð7Þ

The residues at the co-crystallized interface were used
as reference. Such residues were determined by 6 Å atom-
atom distance across the interface. The reference residue
pairs were ranked according to the Cα - Cα distance. The

top three residue-residue pairs were used in docking with
the highest confidence score 10, to determine the max-
imum possible success rate for the protein set.

Results and discussion
Generic and specialized dictionaries
The simplest approach to examining the context of a residue
mentioned in the abstracts would be to access the semantic
similarity of words (token) in the residue-containing sen-
tence to a generic but at the same time PPI-relevant concept.
For the purpose of this study, such concept was chosen to be
“binding site” as the one describing the physical contact be-
tween the two entities (proteins). We designated the words
“touch” and “site” as the most semantically similar words
relevant to this concept (binding site) to be used in WordNet
[44, 45] (generic English lexical database with words grouped
into sets of cognitive synonyms), which does not contain any
knowledge-domain specific vocabularies [53]. Thus, we cal-
culated similarity scores (see Methods) between these two
words and all the words of the residue-containing sen-
tence(s) in the abstracts retrieved by the OR-query. If a score
exceeded a certain threshold, all residues in the sentence
were considered to be the interface ones. Otherwise they
were removed from the pool of the mined residues. The cal-
culations were performed using three different algorithms
for the similarity score. Similarity scores by Lesk and Path
demonstrated only marginal improvement in the filtering of
mined residues compared to the basic residue filtering
(Table 1 and Fig. 2). Lin’s score yielded considerably worse
performance. Similarly poor performance of this score was
reported previously, when it was applied to word prediction
for nouns, verbs and across parts of speech [54]. In our opin-
ion, this may be due to some degree of arbitrariness in the
way the similar words are grouped under a common subsu-
mer (most specific ancestor node), and how this subsumer
fits into the overall hierarchy within the synset (set of cogni-
tive synonyms). Thus, we concluded that generic vocabular-
ies cannot be employed in the TM protocols for identifying
PPI binding sites. This correlates with the conclusions of
Sanchez et al. [55] that hierarchical structure of generic and

Table 1 Overall text-mining performance with the residue filtering using semantic similarity of words in a residue-containing
sentence to a generic concept in the WordNet vocabulary. For comparison, the results with basic residue filtering are also shown

Query Similarity measure Ltot
a Lint

b Coverage (%)c Success (%)d Accuracy (%)e ΔN(0)f ΔN(1)f

AND – 128 108 22.1 18.7 84.4

OR – 328 273 56.6 47.2 83.2

OR Lesk [39, 40] 319 267 55.1 46.1 83.7 -3 −1

OR Lin [41] 251 184 43.4 31.8 73.3 + 8 −8

OR Path [42, 43] 316 265 54.6 45.8 83.9 −3 + 1
aNumber of complexes for which TM protocol found at least one abstract with residues
bNumber of complexes with at least one interface residue found in abstracts
cRatio of Ltot and total number of complexes
dRatio of Lint and total number of complexes
eRatio of Lint and Ltot
fCalculated by Eq. (2)
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domain-specific vocabularies are different and thus, for ex-
ample, MESH specific vocabulary [56] provides more accur-
ate knowledge representation of medical concepts compared
to the generic WordNet lexicon.
Next, we tested applicability of the 7 specialized diction-

aries (Table 2) to filtering of the residues mined by the
OR-queries. All these dictionaries were specifically de-
signed for the mining of the literature on PPI identifica-
tion and contain up to several hundred PPI-relevant
keywords. Thus, there is no need to measure semantic
similarity between words in the residue-containing sen-
tence and words in these dictionaries, and it is just enough
to spot these words in the sentences (maximum possible
semantic similarity). If any keyword was spotted in a sen-
tence, all residues mentioned in this sentence were con-
sidered as interface residues. The results (Table 2 and
Fig. 3) indicated, however, that using all dictionaries did

not yield significant improvement in the residue filtering.
While some dictionaries (with ΔN(0) < 0 in Table 2) suc-
ceeded in removing irrelevant information, there is a gen-
eral tendency of removing relevant information as well
(predominantly negative numbers of ΔN(1) in Table 2).
Interestingly, the best performing dictionary by Schuh-
mann et al. [57] contains the smallest number of words.
All tested dictionaries were designed for the mining in-

formation on the existence of interaction. Thus, we also
tested our own dictionary, designed specifically to distin-
guish keywords relevant and irrelevant to the protein-
protein binding sites (see Methods). Despite the small
amount of PPI-relevant words in the dictionary, the filter-
ing of the mined residues based on this dictionary led to
considerable improvement in the TM performance (the
rightmost bars in Fig. 3 and the bottom row in Table 2).
This suggests that even a limited amount of text provided
by abstracts can be used to extract reliable PPI-relevant
keywords.

Analysis of sentence parse tree - deep parsing
In the dictionary look-up approach all residues in the sen-
tence were treated either as interface or non-interface
ones. The parse tree (hierarchical syntactic structure) of a
sentence enables treating residues in the sentence differ-
ently depending on a local grammatical structure. Also,
two adjacent words in a sentence can be far apart on the
parse tree, and vice versa (distant words in a sentence can
be close on the parse tree). This mitigates fluctuations in
distances between keywords in “raw” sentences, caused by
peculiarities in author’s writing style (some authors favor
writing short concise sentences whereas others prefer long
convoluted sentences). We adopted a simple approach
based on the proximity of mined residue(s) to the PPI +
ive and PPI-ive keywords (Table 3) on the parse tree,
quantified in the score SX calculated by Eq. 3 the close
proximity (in the grammatical sense) to the PPI + ive. The
high positive value of the score implies that a residue is in
keywords, making it plausible to suggest that this residue

Fig. 2 Performance of basic and advanced text mining protocols.
Advanced filtering of the residues in the abstracts retrieved by the
OR-queries was performed by calculating various similarity scores
(see legend) between the words of residue-containing sentences and
generic concept words from WordNet. The TM performance is
calculated using Eq. (1). The distribution is normalized to the total
number of complexes for which residues were extracted
(third column in Table 1)

Table 2 Overall text-mining performance with the residue filtering based on spotting in the residue-containing sentences
keyword(s) from specialized dictionaries

Dictionary and reference Number of PPI keywords Ltot
a Lint

b Coverage (%)c Success (%)d Accuracy (%)e ΔN(0)f ΔN(1)f

Blaschke et al., [20] 43 265 205 45.8 35.4 77.4 0 −8

Chowdhary et al., [58] 191 284 233 49.1 40.2 82.0 −7 −4

Hakenberg et al. [59] 234 297 232 51.3 40.1 78.1 6 −7

Plake et al. [60] 73 291 230 50.3 39.7 79.0 1 −1

Raja et al. [23] 412 302 247 52.2 42.7 81.8 0 −5

Schuhmann et al. [57] 64 212 152 36.6 26.3 71.7 − 1 5

Temkin et al. [21] 174 283 223 48.9 38.5 78.8 0 −9

Own dictionary 16 224 169 38.7 29.2 75.4 −6 8

For definitions of columns 3–9, see footnotes to Table 1. Full content of in-house dictionary is in Table 3, but only PPI + ive part was used to calculate the data in
this Table
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is related to the protein-protein binding site. Large nega-
tive SX values indicate closeness of the residue to the PPI-
ive keywords, thus such residue is most likely outside the
PPI interface. Note, that this approach is susceptible to
quality and extent of the dictionary used. However, this
problem will be mitigated as more relevant texts (includ-
ing full-text articles) will be analyzed for finding new PPI
+ ive and PPI-ive keywords.
The interface residues tend to have SX > 0.25 (Additional

file 1: Figure S8). Thus, we used this value as a threshold
to distinguish between interface and non-interface
residues. Compared to the simple dictionary look-up (see
above), even such simplified analysis of the parse tree,
yielded significant improvement in the performance of
our text-mining protocol (Method 1 in Table 4 and red
bars in Fig. 4).

The main message of a sentence can propagate through
the article text comprising several sentences around the
master sentence (context) and therefore it would be logical
to include context information in the residue filtering as
well. However, there is no clear understanding how far
away the message can spread, especially in such dense text
as an abstract. Thus, we treated as context only sentences
immediately preceding and following the residue-
containing sentence. These sentences usually do not con-
tain residues. Thus, we included context information either
by simple spotting PPI + ive keywords in these sentences
(Method 2) or by calculating SX-like score of PPI + ive and

Fig. 3 Performance of basic and advanced text mining protocols. Advanced filtering of the residues in the abstracts retrieved by the OR- queries was
performed by spotting PPI-relevant keywords from various specialized dictionaries (see legend). The TM performance is calculated using Eq. (1). The
distribution is normalized to the total number of complexes for which residues were extracted (third column in Table 2). Full content of the in-house
dictionary is in Table 3, but only PPI + ive part was used to obtain results presented in this Figure. The data are shown in two panels for clarity

Table 3 Manually generated dictionary used to distinguish relevant
(PPI + ive) and irrelevant (PPI-ive) information on protein-protein
binding sites. Only lemmas (stem words) are shown

Category Words

PPI + ive bind, interfac, complex, hydrophob, recept, ligand,
contact, recog, dock, groove, pocket, pouch, interact,
crystal, latch, catal

PPi–ive deamidation, IgM, IgG, dissociat, antibo, alloster,
phosphory, nucleotide, polar, dCTP, dATP, dTTP, dUTP,
dGTP, IgG1, IgG2, IgG3, IgG4, Fc, ubiquitin, neddylat,
sumoyla, glycosylation, lipidation, carbonylation,
nitrosylation, epitope, paratope, purine, pyrimidine,
isomeriz, non-conserved, fucosylated, nonfucosylated,
sialylation, galactosylation

Table 4 Overall text-mining performance with the residue
filtering based on analysis of sentence parse tree
Method of parse
tree analysis

Ltot Lint Coverage
(%)

Success
(%)

Accuracy
(%)

ΔN(0) ΔN(1)

Method 1. Scoring
of the residue-
containing
sentence only

222 173 38.3 29.9 77.9 −13 + 10

Method 2. Scoring
of the residue-
containing sentence
and keyword
spotting in the
context sentences

208 154 35.9 26.6 74.0 −7 + 3

Method 3. SVM
model with scores
of the residue-
containing and
context sentences

182 146 31.4 25.2 80.2 −27 + 21

Keywords used in the analysis were taken from our dictionary (Table 3). For
definitions of columns 2–8, see footnotes to Table 1
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PPI-ive words with respect to the sentence root (Method
3). In the former algorithm, a mined residue is treated as
interface residues if its SX > 0.25 and a PPI + ive keyword
was spotted in the context sentences. The latter algorithm
requires a more complicated approach as there is no clear
distinction between the context-sentence scores for inter-
face and non-interface residues. Thus, classification of the
residues was performed by an SVM model with the optimal
parameters (see Methods).
Inclusion of the context information by simple keyword

spotting worsens the performance of the residue filtering
(Method 2 in Table 4 and cyan bars in Fig. 4) as many

interface residues are erroneously classified due to the ab-
sence of the keywords in the context sentences. Application
of the SVM model, despite a relatively small number of its
features, increased filtering performance dramatically, mak-
ing SVM-based approach superior to all other methods in-
vestigated in this study. All three methods have comparable
values of overall success and accuracy (Table 4). An ex-
ample of successful filtering of non-interface residues is
shown in Fig. 5 for the chains A and B of 2uyz. Out of five
residues mined by the basic TM protocol, only one residue
(Fig. 5, Glu67B) was at the complex interface (PTM = 0.20).
SVM model has filtered out all four non-interface residues,
elevating TM performance to PTM = 1.00 (details are avail-
able in Additional file 1: Table S1 and accompanying text).
Finally, to ensure that the results are not determined by

over fitting the SVM model, we filtered residues on a re-
duced set of abstracts where all abstracts for a complex
were excluded from the consideration if at least one ab-
stract contained sentence(s) used for the training of the
SVM model. Despite a significant drop in the coverage, the
results on the reduced set (Additional file 1: Figure S9) did
not differ much from the results obtained on the full set of
abstracts.

Docking using text-mining constraints
Constraints generated by NLP were tested in docking by
GRAMM to model complexes of unbound proteins from
the DOCKGROUND X-ray benchmark set 4 (see Methods). The
set consists of 395 pairs of separately resolved unbound pro-
tein structures and their co-crystallized complexes. Each un-
bound complex was docked by GRAMM three times, using
(1) constraints from the basic TM, (2) constraints re-ranked

Fig. 4 Performance of basic and advanced text mining protocols.
Advanced filtering of the residues in the abstracts retrieved by the
OR-queries was performed by different methods of analysis of the
sentence parse trees (for method description see first column in
Table 4) The TM performance was calculated using Eq. (1). The
distribution is normalized to the total number of complexes for
which residues were extracted (second column in Table 4)

Fig. 5 Successful filtering of mined residues by the SVM-based approach of the parse-tree analysis (Method 3 in Table 4). The structure is 2uyz chains
A (wheat) and B (cyan). Residues mined by the basic TM protocol are highlighted. The ones filtered out by the advanced TM protocol are in orange
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by NLP, and (3) the reference constraints. The output of the
global low-resolution docking scan consisted of 20,000
matches, with no post-processing (except for the removal of
redundant matches). The matches were scored by the sum
of the f values (Eq. 7), if constraints were generated for the
complex. If no constraints were generated, the score was
zero. The quality of a match was assessed by Cα ligand inter-
face root-mean-square deviation, i-RMSD (ligand and recep-
tor are the smaller and the larger proteins in the complex,
respectively), calculated between the interface of the docked
unbound ligand and the corresponding atoms of the un-
bound ligand superimposed on the bound ligand in the co-
crystallized complex. Success was defined as at least one
model with i-RMSD ≤5 Å in top 10 predictions. The results
(Fig. 6) show significant success rate increase in the docking

output when using constraints generated by the advanced
TM, from 27% in the case of the basic TM, to 47% in the
case of the advanced TM with NLP.
Since some authors might not include the required de-

tails in the abstracts of their papers, we plan to extend the
automated analysis to the full-text articles, as well as to ex-
plore incorporation of the papers from bioaRxiv. This
should increase of the size of the training sets for machine-
learning models, and the number of available features, thus
enabling the use of the deep learning methodologies for
generation of the docking constraints. Such constraints
could be potentially further improved by incorporating
information automatically extracted from other publicly
available PPI-related resources, leading to more accurate
and reliable structural modeling of protein interactions.

Conclusion
We explored how well the natural language processing
techniques filter out non-interface residues extracted by
the basic text mining protocol from the PubMed abstracts
of papers on PPI. The results based on generic and spe-
cialized dictionaries showed that the dictionaries gener-
ated for the mining of information on whether two
proteins interact, as well as generic English vocabularies
are not capable of distinguishing relevant (interface) and
irrelevant (non-interface) residues. Efficient filtering of
irrelevant residues can be done only using a narrowly
specialized dictionary, which comprises words relevant to
PPI binding mode (binding site), combined with interpret-
ation of the context in which residue was mentioned.
Interestingly, the size of such specialized dictionary is not
a critical factor for the protocol efficiency. We tested
several methods of context analysis, based on dissection of
the sentence parse trees. The best efficiency was achieved
using machine-learning approaches for examining
residue-containing and surrounding sentences (as op-
posed to the rule-based methods). Docking benchmarking
showed a significant increase of the success rate with
constraints generated by the advanced TM with NLP.
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