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performance of methods for detecting
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Abstract

Background: The exponential accumulation of new sequences in public databases is expected to improve the
performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was
never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional
sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only
input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation
pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding
how the sequence content of the databases affects them is relevant and timely.

Results: In this work we evaluate how the growth and change with time in the content of sequence databases
affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating
historical versions of the multiple sequence alignments that would have been obtained in the past based on the
database contents at different time points, covering a period of 20 years. Applying the methods to these historical
alignments allows quantifying the temporal variation in their performance. Our results show that the number of
families to which these methods can be applied sharply increases with time, while their ability to detect potentially
functional residues remains almost constant.

Conclusions: These results are informative for the methods’ developers and final users, and may have implications
in the design of new sequencing initiatives.

Keywords: Sequence database, Functional residue, Conserved positions, Family-dependent conserved position,
Specificity-determining position, Functional subfamily

Background
The pace at which new amino-acid sequences of pro-
teins are deposited in public databases is exponentially
growing. Today it is relatively straightforward and inex-
pensive to sequence an entire genome, whose translation
would yield the sequences of the encoded proteins. Re-
cent improvements in sequencing technologies are
boosting this trend [1], so that not only genomes of rep-
resentative taxa are available, but also of similar strains
or even individuals.
One way of taking advantage of this deluge of se-

quence information is to use sequence comparison

methods to retrieve and compare similar proteins. Pro-
tein multiple sequence alignments (MSAs) have been
long used to obtain functional and structural informa-
tion [2]. In a MSA, homologous proteins (i.e. those shar-
ing a common ancestor) are represented in such a way
that evolutionarily equivalent residues stack together (in
the same column in the most common representation).
These alignments allow not only to perform global
structural and functional inferences (i.e. transferring
structure and function between homologous proteins),
but also to study finer details at the residue level. Since a
column in a MSA (termed “position” in this context) can
be regarded as a representation of the amino-acids
allowed by the evolution at a particular site in the set of
homologs, a lot of information can be obtained studying
its patterns of amino-acid change/conservation [3, 4].
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Full conservation was the first and most straightforward
pattern extracted from MSAs [5, 6]: positions where
evolution did not allow any change should have some
functional or structural importance. Another informative
pattern involves pairs of positions, where the pattern of
inter-homolog residue change in one position is not in-
dependent but related to that of another, so that the two
positions are co-varying. These correlated change pat-
terns are in many cases due to compensatory mutations
between residues close in the three-dimensional structure
of the proteins, and hence their main utility is to predict
residue contacts from sequence information [7–9].
Another mutational pattern indicative of functional

relevance is the so-called family-dependent conservation.
When we can divide the set of homologous proteins into
subfamilies according to some functional criteria (e.g.
groups with different functional specificities within the
global function shared by all the homologs), some posi-
tions appear as differentially conserved within these sub-
families. For instance, they are conserved in one group
but not in others, or they are conserved within each sub-
group but with a different amino-acid. These positions
point to protein functional sites related to the functional
specificities that determine the group separation, and
consequently they are generally termed “specificity de-
termining positions” (SDPs) [3, 4, 10]. For example,
within a set of homologous enzymes performing the
same catalytic activity, we can define subgroups depend-
ing on the substrate specificity. Whereas fully conserved
positions would map to the active site residues respon-
sible for the catalytic activity, SDPs would point to those
involved in binding the different substrates. Besides dif-
ferential binding, SDPs could also point to other regions
related to functional specificity, such as allosteric regula-
tion sites, residues determining protein stability, etc.
Consequently, SDPs complement fully conserved posi-
tions as predictors of functional sites from sequence in-
formation alone.
There are many approaches to detect SDPs from mul-

tiple sequence alignments, e.g. [11–17]. For some re-
views and comparisons see [3, 4, 10, 18–20]. Most of
these approaches are “unsupervised” in the sense that
they use the subfamily definition implicit in the dis-
tances between the sequences in the MSA. Some of
these methods can explicitly report the assignment of
the MSA sequences to subfamilies, concomitantly with
the associated SDPs. The maturity of these approaches
in terms of performance and usability (e.g. through soft-
ware with graphical interfaces [21]) makes it possible for
them to be routinely used by bioinformaticians and ex-
perimental biologists, to perform SDP studies in many
proteins of biotechnological and biomedical interest.
This is generally done in combination with experimental
approaches aimed at mutating these positions in the

search for a swap of functional specificities (see [22] for
examples).
The performance of these approaches depends on the

quality of the MSAs that constitute their only input. It
has been hypothesized that the exponential growth of
the sequence databases would improve that perform-
ance, since the methods would work with larger (poten-
tially richer) sources of information. Nevertheless, this
point has not been tested exhaustively or quantified so
far. In this work we evaluate how the growth and change
with time in the content of sequence databases affect the
sequence-based methods for detecting functional sites
and subfamilies.

Methods
In order to evaluate how the change in size and content
of the sequence databases is affecting the sequence-
based methods for detecting functional subfamilies and
functional sites, we “recreated” the MSAs that would
have been obtained for a test set of proteins at different
time points in the past, spanning a period of 20 years.
We then applied five methods for detecting functional
sites and subfamilies to these “historical” MSAs. In the
following, we explain in detail this procedure, illustrated
in Fig. 1.
As test set of protein families, we used the “large non-

enzyme dataset” previously compiled by Chakraborty et
al. [10], which contains 121 families of proteins. This
dataset was obtained by automatically filtering an initial
set of 7729 families in the PANTHER database [23] by
different SDP-related criteria (e.g. enough family mem-
bers, available functional information, etc.) In order to
fit this dataset into our workflow, which aims to gener-
ate historical versions of the multiple sequence align-
ments for a given protein, we did not use the MSAs
generated by Chakraborty, but just took the first se-
quence of each alignment and ran for it the procedure
described below, which includes the generation of the
alignment.
For each of these 121 sequences, we started by retriev-

ing homologs in the (current) Uniprot database [24] by
“blasting” [25] it against this resource (e-value cutoff of
1E-4). We had previously generated a database with the
“publication date” of each Uniprot sequence. To simu-
late the set of homologs that would have been obtained
at a given year, from the BLAST output we filtered out
the hits with more recent publication dates (Fig. 1). We
retrieved the sequences of the remaining hits (publica-
tion date equal or earlier than our year of interest) and
aligned them with Clustal Omega [26]. A non-redundant
version of that alignment was generated by filtering out
proteins with more than 95% sequence identity.
We carried out this procedure for the period

1994–2014, in steps of 2 years. Note that this did
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not yield exactly the same alignments that one would
have obtained those years, since the software used
(i.e. BLAST and Clustal) have improved and the data-
base content influences the BLAST e-value. Never-
theless, we expect these differences to be minimal,
especially given the stringent e-value threshold used
(i.e. very close homologs).
We applied to the 11 historical non-redundant align-

ments of each of the 121 proteins four programs for de-
tecting functional residues and subfamilies: S3det [14],
Xdet [12], Evolutionary Trace (ET) [11] and Two Entro-
pies Analysis Objective (TEA-O) [27]. S3det is based on
a vectorial representation of the proteins in the MSA
followed by a dimensionality-reduction step that leads to
a multidimensional space where the vectors of similar
proteins are close. Subfamilies are detected as clusters in
this reduced space. S3det implements a novel procedure
for determining the optimal number of axis and protein
clusters. An equivalent treatment for the individual posi-
tions leads to a “position space” where the vectors of po-
sitions with a tendency to be conserved within a given
group of proteins cluster in the same region of the space
where those proteins are. In this way, S3det concomi-
tantly reports the subfamilies and their associated SDPs.
Xdet is based on the idea that the pattern of residue

changes in a SDP position resembles that of the whole
family: a group of close sequences (subfamily) would be
related to a set of similar (or identical) residues and vice

versa. The pattern of changes of a particular position is
represented by a matrix with the amino-acid similarities
(according to a standard substitution matrix) for all pairs
of residues within that position. The pattern of changes
for the whole family is represented by an equivalent
matrix with the overall sequence similarities for all pairs
of proteins. These two matrices are compared with a
Spearman nonparametric rank correlation approach so
that positions with a high correlation score (≥0.8 in this
study) are good candidates to be SDPs. Although Xdet
takes into account the subfamily composition of the
MSA implicitly (i.e. represented in the whole-sequence
distance matrix), it does not report it explicitly. From
the Xdet output we also retrieved the fully conserved
positions (entropy = 0.0).
ET splits the MSA of the family in different subsets

(subfamilies) of different granularity by hierarchically
cutting its phylogenetic tree at different levels, from
the root to the leaves. The intra-family conserved res-
idues at each level are taken as the predicted func-
tional residues. Since the root of the tree (level 0)
generates only 1 subfamily, the functional residues it
renders are actually the fully conserved positions, not
SDPs. Hence, this approach allows to detect both,
fully conserved positions and SDPs. Based on this ap-
proach, ET associates a score to each position in the
MSA. For this work positions with score 2.0 or better
(lower) were selected.

Fig. 1 Schema of the methodology. A representative sequence is taken from each of the 121 non-enzymatic families previously used by Chakraborty
et al. [10]. Its homologs are retrieved from the current version of Uniprot (top) and yearly subsets of these are constructed based on their publication
date. The sequences of these “historical” sets of homologs are retrieved and aligned in an attempt to generate the multiple sequence alignments one
would have obtained at a given time point in the past. Finally, the methods for detecting SDPs and functional subfamilies are applied to these
historical alignments and the results contrasted with structural information on binding sites if available (bottom)

Garrido-Martín and Pazos BMC Bioinformatics  (2018) 19:67 Page 3 of 9



TEA-O follows a similar tree-guided splitting of the
family and, for each level, it calculates for all positions
their full conservation and an entropy-based parameter
aimed at detecting SDPs. A consensus plot is then gen-
erated from these level plots, where functional positions
cluster in different regions depending on their conserva-
tion. Since TEA-O requires an explicit tree as input, we
generated it from the corresponding alignment with
ClustalW [28] (default parameters). For TEA-O, we took
all positions with score 0.3 or better (lower) as the pre-
dicted set of SDPs.
Only MSAs with 15 or more sequences were used for

retrieving the five sets of predicted functional residues.
For the 121 original proteins, we looked for a homolo-

gous structure in PDB using BLAST (e-value ≤1E-3, se-
quence identity ≥25%, aligned region ≥50%). With these
criteria, we found a homolog of known structure for 67
out of the 121 proteins. We retrieved the binding sites
annotated for these structures in the FireDB database
[29]. For a given set of predicted functional residues in a
given family (SDPs and fully conserved sites) we calcu-
lated their average distance to the annotated binding
sites in the homologous structure, and divided it by the
average distances of all residues to the same sites. A
value lower than 1.0 would indicate that the set of pre-
dicted functional residues tend to be closer than ex-
pected to a (potentially) functional region of the protein.
While this is not a perfect definition of functional site

(i.e. not all the functional sites are close to biding sites
and vice versa), it allows evaluating a large enough data-
set, especially taking into account that we are interested
in relative changes of performance with time, more than
the absolute values.

Results
For a set of 121 protein families, we recreated the mul-
tiple sequence alignments (MSAs) that would have been
obtained at different time points in the past (1994–2014)
in order to evaluate how the change in size and charac-
teristics of the sequence databases affect the MSA-based
detection of functional subfamilies and functional sites.
See Methods for a detailed description of the procedure.

The number of available sequences grows exponentially,
while redundancy does not
Figure 2A represents the total number of sequences
available for the different families each year, relative to
those available in 2014. Each boxplot represents the
yearly distribution of this ratio for the 121 families. It
can be seen that the number of available sequences
grows exponentially, in concordance with the overall
growth of the whole Uniprot database. If we generate
the same plot for the number of sequences in the final
MSAs used, that is, after the 95% redundancy removal,
the plot is virtually identical (not shown). That indicates
that this exponential growth in the number of sequences

Fig. 2 Evolution with time of the sequence repertoire for the families analyzed. a) Relative number of sequences available for each family (respect
to those available in 2014). The yearly distributions of this parameter for all the families are shown as boxplots. b) Same representation for the
redundancy within each family (number of sequences in the alignment filtered at 95% sequence identity over those in the non-filtered alignment). c)
Number of families to which it would have been possible to apply the SDP-based methods considering two thresholds for the minimum number of
required sequences
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is not primarily due to redundancy (i.e. that the new se-
quences added with time are not highly similar to those
already available). A better way to quantify this is to ac-
tually plot the distribution of redundancies for each fam-
ily: the ratio of the number of sequences in the final
alignment used (95% non-redundant) over the total
number of sequences (Fig. 2B). In this case the boxplots
show much wider distributions since redundancy varies
largely from one family to another, but with a steady in-
crease or even a plateau in the last years (when the incre-
ment in the total number of sequences is larger, Fig. 2A).

The number of workable families grows with time
Figure 2C represents the number of families to which it
would have been possible to apply the methods for detect-
ing SDPs and functional subfamilies each year, depending
on the minimum number of sequences required in the
MSAs (15, used in the rest of this work, and 10). It can be
seen that this “coverage” clearly benefits from the accu-
mulation of sequences in databases. For example, in 2004
it would have been possible to apply these methods only
to a 10% of the families of our dataset (21% requiring 10
sequences), while 10 years later it was possible to analyze
almost all families (120 out of 121).

The number of detected subfamilies slightly increases but
the number of predicted functional sites does not
Figure 3A shows the distribution of the number of sub-
families detected by S3det per family and year, relative

to the corresponding numbers in 2014. Values larger
than 1.0 mean that, for that particular year, S3det de-
tected more subfamilies than in 2014 (in spite of having
fewer sequences). It can be seen that, in general, as we
accumulate more sequences of members of a family,
these led to the definition of new subfamilies. Neverthe-
less, this increment is very low in the last years and does
not recapitulate the exponential growth in the total
number of family members (Fig. 2A). A lack of incre-
ment in the number of subfamilies in the context of an
exponential growth in the total number of family mem-
bers would indicate that the new sequences are similar
to existing ones, hence lying in existing subfamilies.
Nevertheless, as commented above, we do not see a
large increment in the redundancy, at least with the 95%
cutoff we used (Fig. 2B). Consequently, especially in the
last decade, it seems that families are enlarged with new
members, distant enough not to increase redundancy,
but close enough not to define new subfamilies.
Figures 3B to F show the yearly distributions of the

number of predicted functional residues (fully conserved
positions, and SDPs detected by Xdet, S3det, ET and
TEA-O) retrieved from the family MSAs whose charac-
teristics were described above, always relative to these
numbers in 2014. In all cases the distributions were
fairly broad, since the families are very different in their
functional characteristics. Nevertheless, some general
trends can be extracted. There is a clear decrease in the
number of conserved residues. This is expected because,

Fig. 3 Evolution with time of the number of functional subfamilies and functional sites. a) Relative number of subfamilies detected by S3det for
each family (respect to those detected in 2014). The yearly distributions of this parameter for all the families are shown as boxplots. b) Same
representation for the relative number fully conserved positions. c to f) Same representations for the relative number of SDPs reported by Xdet,
S3det, ET and TEA-O respectively
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as we have more sequences, it becomes more difficult
for a position to be conserved in all of them. On the
contrary, if for instance we only know two sequences for
a given family, most positions would be conserved just
by chance. Thus, in 1998 we would retrieve on average 4
times more conserved residues from a MSA than in
2014. The patterns for the SDPs detected by the differ-
ent methods are more complex, but in none of the cases
there is an increment in the number of reported posi-
tions, except perhaps for TEA-O. For ET there is a clear
decrease with time in the number of reported positions.
For example, in 2006 we would obtain with this program
on average twice as many SDPs as in 2014. Again, these
trends are immersed in wide distributions since the be-
havior of each family in terms of functional subfamilies,
associated SDPs, and the functional/evolutionary pres-
sure related to both is very different.

The accumulation of new sequences does not improve
the performance of methods for predicting functional
sites significantly
The relative distances from the sets of predicted func-
tional residues to those annotated as “binding” in FireDB
is shown in Fig. 4. The first clear observation is that in
most cases these values are smaller than 1.0 (see
Methods), in agreement with what has been previously
reported (e.g. [10, 20]). This indicates that the sets of
functional residues (fully conserved, and SDPs reported
by Xdet, S3det and ET, as well as the intersection

between the first two) are closer to the binding sites
than what would be expected by chance. This is not the
case for TEA-O, whose predicted sets of positions are
farther than expected to the binding sites. Maybe the
particular MSAs we are using are not the best for this
particular method, it has been optimized to detect other
types of functional sites not related to binding (e.g. in
surfaces), or it is simply not working in our hands. The
best overall performances, as well as the more stables
along time, are for fully conserved residues and SDPs re-
ported by ET. As commented in the Introduction, ET
also reports fully conserved positions, concomitantly
with SDPs.
The most intriguing observation is that in any of the

cases the performance increases noticeably as new se-
quences become available. Even the widely-used con-
served positions do not become better predictors of
functionality (assessed as closeness to binding sites) as
the MSAs become larger. For example, their perform-
ance is similar in 2008 and 2014 (Fig. 4A), while the
MSAs became 5 times bigger on average (Fig. 2B). Per-
haps only the intersection between Xdet and S3det (i.e.
taking as predicted functional sites the residues pre-
dicted simultaneously by both programs) shows some
improvement.

Example
For illustrative purposes, we present here the detailed
study of a family of proteins for which the performance

Fig. 4 Evolution with time of the relative distances to the annotated binding sites of the detected SDPs and conserved residues. a) Average
distance of the fully conserved residues to annotated binding sites over the corresponding value for all residues. The yearly distributions of this
ratio for all the families are shown as boxplots. b to e) Same representations for the SDPs reported by Xdet, S3Det, ET and TEA-O. f)
Same representation for the SDPs reported jointly by Xdet and S3det (intersection between their predictions)
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of all methods increased with time. For the family of
leghemoglobin-related proteins (Panther [23] ID:
PTHR22024), the workflow described in Methods gener-
ated a final (filtered) MSA with 23 sequences in its his-
torical version of 2010, and 48 sequences in 2014.
Figure 5A shows the subfamilies detected by S3det in
both alignments. Since most proteins found in 2010 are
also present in the 2014 alignment (not all due to the re-
dundancy removal procedure) it is possible to map the
subfamilies between both years (depicted in the same
color in Fig. 5). Note that the green family split into two
due to the addition of new sequences (forced to be
depicted in the same color in the 2014 panel for clarity).
The new proteins sequenced between 2010 and 2014
also cause the appearance of a new subfamily (pink in
2014). This new subfamily is far from the others in the
sequence space, as shown in the vectorial representation
generated by S3det (Fig. 5B) (Compare with the more
“homogeneous” distributions of the 2010 subfamilies.) In
a typical phylogenetic tree this would be a clade far apart
from the others.
The MSA columns corresponding to the SDPs re-

ported by S3det are also shown in Fig. 5. The appear-
ance of that very divergent subfamily (pink in 2014)
changes completely the pattern of SDPs, since S3det, in

the search for positional patterns better reflecting the
distribution of the families in the sequence space, will
report positions differentially conserved in the new
(pink) subfamily versus all the others together (since
they are close). This illustrates how the “discovery” of a
new subfamily can drastically change the sequence space
“landscape” of a given family and, consequently, its asso-
ciated SDPs. In this particular case, the new SDPs arisen
due to the appearance of the new subfamily are better in
terms of closeness to the binding sites. Moreover, in
2010 only 2 out of the 10 SDPs identified map in the
available 3D structure, which does not cover the whole
sequence.

Discussion
A deluge of sequence data is the most obvious outcome
of the modern techniques for the fast and inexpensive
sequencing of complete genomes. Consequently, we ex-
pect an incremental usage of the methods for predicting
protein structural and functional features from these
massive sequence data. For this reason, it is important to
quantify the effect of the sequence accumulation on
these methodologies. In principle, their performance is
expected to improve with time, but issues like redun-
dancy could have an opposite effect. Indeed, some

Fig. 5 Example of the S3det analysis for a protein family at two time points in the past. The results of S3det for the multiple sequence alignments of
leghemoglobin related proteins (PTHR22024) that would have been obtained in 2010 and 2014 are shown. a) Detected families and SDPs.
b) sequence spaces. The representations were generated with JDet [21]
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studies have questioned the utility of the “blind” un-
supervised sequencing of complete genomes in terms of
the new information that is actually obtained from them
[30, 31]. Other studies have assessed how the temporal
accumulation of sequence data affects, for example, the
performance of methods for detecting remote homology
[32] or the sequence-based prediction of interaction
partners [33, 34]. In some cases, the accumulation of se-
quence data not only improved the methodologies quan-
titatively but changed them qualitatively, increasing their
reliability from a “just above random” stage to the real
applicability, side by side with experimental methods.
This was the case of the new wave of methods for pre-
dicting residue contacts from co-variation information,
for which the increase in the size of the MSAs, together
with methodological improvements, took them to a
point where they can predict the 3D structure of a pro-
tein when enough homologs (in the order of hundreds
or thousands) are available [7–9]. Methods for predict-
ing SDPs and other functional residues are now part of
the standard toolboxes of molecular biologists and are
being increasingly used [22]. Current workflows imple-
menting these methods, nowadays do not take into ac-
count the composition of the sequence databases, and
use all sequences available in these, eventually with a
simple redundancy removal. For these reasons an
equivalent study on the effect of the sequence accumula-
tion on their performance is timely.
We describe here the first study aimed at getting insight

into how the growth of the most widely used protein se-
quence database affects the performance of the methods
for predicting functional subfamilies and functional sites
in proteins. As expected, most of the parameters assessed
show a broad distribution for the 121 families studied.
This is because the families are very different in their
functional aspects and so are the evolutionary pressures
shaping their sequences. Nevertheless, despite this vari-
ability, some global trends could be extracted.
The most obvious general observation is that, as new

sequences accumulate, the number of families to which
these approaches can be applied drastically increases.
However, neither the number of predicted functional
sites, nor their accuracy, follow the same trend. Here it
is important to take into account that we use a quite
stringent criterion to define “functionality”: closeness to
annotated binding sites. These are not the only “func-
tional sites” in a protein. However, in this particular
work we are interested in the relative change in per-
formance with time, and not in the absolute values.
Using a different criterion for functionality could drastic-
ally change the performance, but we do not expect it to
change its temporal trend. There are specific reviews fo-
cused on detailed evaluations of the methods’ perfor-
mances and their comparison, e.g. [10, 20].

The reason for this intriguing lack of improvement is
not clear and, according to our own results, it is not due
to the accumulation of redundancy in databases. It
might happen that methods are developed in a particular
time point and, as a consequence, even if not intended,
adapted to a particular database content, reflected in the
composition of the dataset used for training/testing. If
this is the case, the message to developers would be to
try to better assess how the foreseen changes in the
MSAs of their datasets would affect the performance
(e.g. removing/adding redundancy, simulating the in-
corporation of new members of the family, …) Getting
additional insight into the reasons behind this unex-
pected lack of improvement would involve following in
detail the individual families along time, besides obtain-
ing the global figures we present here. For example, how
the sub-family composition changes with time, adding
or removing members, how the set of SDPs varies, etc.
While this can be easily done for a small set of cases,
(we actually show an example for a particular family),
quantifying it for a large number of families is still
challenging.

Conclusions
Understanding how the size and composition of the se-
quence databases affect the performance of the ap-
proaches for detecting functional subfamilies and
functional residues would allow not only to have a
clearer idea about which results to expect, but also to
re-direct and better design sequencing efforts, either glo-
bally of for particular cases. Our results show that the
mere “blind” accumulation of sequences in databases
does not help this kind of methodologies. Consequently,
other alternatives have to be devised. For example, if the
price of sequencing technologies drops enough, we may
think of a future where it would be possible to (re)se-
quence the strains/variants more adequate for the MSA
of our family of interest, instead of just relying on the in-
formation present in the databases.

Abbreviations
MSA: multiple sequence alignment; SDP: specificity determining position
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