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Abstract

Background: With the recent proliferation of single-cell RNA-Seq experiments, several methods have been
developed for unsupervised analysis of the resulting datasets. These methods often rely on unintuitive
hyperparameters and do not explicitly address the subjectivity associated with clustering.

Results: In this work, we present DendroSplit, an interpretable framework for analyzing single-cell RNA-Seq datasets
that addresses both the clustering interpretability and clustering subjectivity issues. DendroSplit offers a novel
perspective on the single-cell RNA-Seq clustering problem motivated by the definition of “cell type”, allowing us to
cluster using feature selection to uncover multiple levels of biologically meaningful populations in the data. We
analyze several landmark single-cell datasets, demonstrating both the method’s efficacy and computational efficiency.

Conclusion: DendroSplit offers a clustering framework that is comparable to existing methods in terms of accuracy
and speed but is novel in its emphasis on interpretabilty. We provide the full DendroSplit software package at
https://github.com/jessemzhang/dendrosplit.
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Background

In recent years, single-cell RNA-Seq has proven to be
a powerful approach for studying biological samples in
various settings [1]. Scientists have leveraged this tech-
nology to shed light on how cells differentiate [2-6],
investigate known cell types [7-10], and discover new
cell types and gene patterns [11-17]. These efforts have
yielded a plethora of diverse datasets sharing character-
istics such as missing entries (drop-out events) and high
dimensionality. Additionally, technological breakthroughs
such as droplet encapsulation, molecular barcoding, and
cheap parallelization have produced datasets involving
tens of thousands and even millions of cells [17-22]. After
obtaining such datasets, scientists are often interested in
clustering the high-dimensional points corresponding to
individual cells, ideally recovering known cell populations
while discovering new and perhaps rare cell types. While
the definition of a cell type is not precise [23], biolo-
gists agree that gene expression levels are highly relevant.
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With gene expression dictating protein expression (and
hence cellular function), identifying the genes that distin-
guish a cell type is of paramount importance. Therefore
from a computational perspective, there are two key prob-
lems in downstream analysis: 1) clustering and 2) feature
selection, also known as differential expression.
General-purpose clustering algorithms such as
K-means, DBSCAN [24], affinity propagation [25], and
spectral clustering [26] have performed well for several
single-cell datasets [27]. In order to achieve good perfor-
mance, however, the datasets often need to be carefully
preprocessed, and the algorithms require non-intuitive
hyperparameter tuning. For example, both K-means and
spectral clustering require choosing the desired number
of clusters, DBSCAN requires choosing the max distance
between two samples in the same neighborhood, and
affinity propagation requires choosing both a preference
parameter for determining which points are exemplars
and a damping parameter for avoiding numerical oscil-
lations. To address specific computational challenges of
single-cell RNA-Seq datasets, researchers have developed
a wide array of application-specific clustering algorithms
[28-34] and packages for end-to-end analysis [21, 35-39].
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Regardless of which set of these tools one uses, find-
ing the right approach for clustering a specific dataset
requires careful design of the computational workflow,
but often finding a good combination of clustering
algorithm and hyperparameters is time-consuming and
difficult. Additionally, none of these approaches explicitly
addresses the inherent subjectiveness behind clustering,
which stems from the potential existence of subtypes and
sub-subtypes.

With an emphasis on interpretability and ease of
exploratory analysis, we introduce DendroSplit, a frame-
work for clustering single-cell RNA-Seq data. In addition
to speed, the framework has the following advantages:

® Gene-based justification for all decisions made when
generating clusters
Interpretable hyperparameters

e Ability to cheaply produce multiple clusterings for
the same dataset

® Ease of incorporation into existing single-cell
RNA-Seq workflows

At a high level, the approach leverages a feature selec-
tion algorithm to generate biologically meaningful clus-
ters. The end-to-end DendroSplit workflow is illustrated
in Fig. la. After preprocessing the N x M expression
matrix X (where N and M represent the number of cells
and genes, respectively), we generate the N x N distance
matrix D. We use hierarchical clustering to iteratively
group cells based on their pairwise distances, obtain-
ing a dendrogram, a tree-like data structure illustrating
how grouping was performed. The split step starts at
the root of the tree. Each node in the dendrogram rep-
resents a potential partitioning of a larger cluster into
two smaller ones. If this “split” results in two adequately
separated clusters (according to a metric we call the sepa-
ration score), the split is deemed valid and the algorithm
continues on the new clusters. Otherwise, the algorithm
terminates for the subtree below the node. After the
split step, DendroSplit performs a pairwise comparison
of the resulting clusters, repeatedly merging clusters until
all clusters are sufficiently separated. The merge step
counteracts the greedy nature of hierarchical clustering,
allowing DendroSplit to compare clusters that may have
incorrectly ended up far away from one another in the
dendrogram. The overall approach involves two intu-
itive hyperparameters: the separation score threshold for
accepting a split, and the separation score threshold for
accepting a merge.

We use the term “framework” to underline how specific
design choices for certain components in the workflow
such as the separation score will result in different clus-
tering “methods”. Our choice of separation score is moti-
vated by a key assumption: if two cell populations are
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of different types, then there should exist at least one
gene that is differentially expressed between the two
populations. Given a candidate split in the dendrogram,
we perform a Welch’s ¢-test for each gene. The separation
score is —log(Pmin) Where ppmin represents the smallest
p-value achieved (Fig. 1b), and we will be using this defi-
nition of separation score for all experiments presented in
this work. We demonstrate that the deterministic method
outlined in Fig. 1 is applicable to a wide variety of single-
cell datasets. We show how DendroSplit can help us
investigate the most significant genes considered at each
split or merge, providing insight for how clusters are gen-
erated. Finally, we show how DendroSplit can cheaply
generate several clusterings for different hyperparameter
values.

Some clustering approaches similar to DendroSplit exist
in literature. For example, the most common method
of generating clusters from a dendrogram involves sim-
ply cutting the dendrogram horizontally at some fixed
height. This rigid approach often fails to generate mean-
ingful clusters for more complex datasets. The Dynamic
Tree Cut algorithm [40] adds significant flexibility and
processes the dendrogram based on an adaptive cut.
Though it does not explicitly use a dendrogram, the back-
SPIN algorithm [12] also uses cell-cell similarities to per-
form iterative splitting. Unlike DendroSplit, both of these
algorithms require choosing unintuitive hyperparameter
cutoffs based on nuanced criteria. The most similar clus-
tering approach was used by Lake et al. [15] for analyzing
their human brain single-cell dataset. Their approach fits
into the DendroSplit framework, using a separation score
based on random forests. This separation score, compared
to the separation score mentioned above, has an ele-
ment of randomness, is significantly more computation-
ally expensive, and requires less intuitive hyperparameter
choices.

Implementation

Distance metric

For all single-cell datasets, we used the correlation dis-
tance. The correlation distance between x; and x; corre-
sponding to cells i and j is

d(x;,xj) =1 — r(x;Xx;)

where r is the Pearson correlation coefficient. There-
fore d is bounded between 0 and 2. This distance metric
has the advantage of being agnostic to both shift and
scale, making it robust to certain biases we would expect
to vary across datasets. As a caveat, the distance met-
ric has the disadvantage of depending on the number of
zeros, and therefore the distance between two cells before
and after gene filtering may be different due to removal
of entries equal to 0. For all experiments in this work,
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Fig. 1 Overview of DendroSplit. a The workflow starts by preprocessing a N x M matrix of gene expressions before computing cell-cell pairwise
distances, resulting ina N x N distance matrix. The distance matrix is fed into a hierarchical clustering algorithm to generate a dendrogram. The
dynamic splitting step involves recursively splitting the tree into smaller subtrees corresponding to potential clusters. Finally, the subtrees are
merged together during a cleanup step to produce final clusters. b A split corresponds to the partitioning of a larger cluster into two smaller
clusters. A split is only deemed valid if the separation score, a metric for how well-separated two populations are, is above a predefined split
threshold. Leveraging biological intuition, we rank how well each gene distinguishes the two subpopulations based on independent Welch's t-tests.
We use the —log of the smallest p-value obtained as our separation score due to its interpretability and practical effectiveness. A split threshold of 10
would work for the example shown here. € During the merge step, the clusters obtained from the split step are compared to one another using
pairwise separation scores. If the closest two clusters are not sufficiently far apart based on a predefined merge threshold, they are merged together
and the process is repeated. When all clusters are sufficiently far apart, the algorithm terminates and the final labels are output
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distance matrix computations were parallelized on 32
cores and computed using the scikit-learn Python
package [41].

Hierarchical clustering

DendroSplit performs hierarchical clustering using the
Scipy Python package [42]. One source of ambiguity for
hierarchical clustering lies in the method for determin-
ing the distance between two clusters. We found that the
“complete” method produces the best results, and this is
the method used for all experiments reported below. For
this method, the distance between two clusters is equal to
the largest distance between a point from the first cluster
and another point from the second cluster.

Separation score

The separation score effectively serves as a distance
metric between two clusters, quantifying how different
they are (see the supplementary material for further
discussion). The cell-type assumption discussed in the
“Background” section can also be phrased as: if two cell
populations are of different types, then projection along
one of the M axes should result in two distinguishable
point clouds. For all experiments performed in this work,
we defined the separation score between the N; x M
population X and the Ny x M population Y as

S(X, Y) = — loglo (mlnp(xl’ Yl))
14

where p(X;,Y ;) represents the p-value achieved using a
Welch’s ¢-test for gene i. X; represents the ith column
of X corresponding to the expression of gene i in popu-
lation X. Welch’s ¢-test is similar to Student’s z-test but
is more reliable when the two populations have unequal
variance and size [43]. Compared to other differential
expression approaches, Welch’s ¢-test is computationally
cheap.

As an implementation note, if for a given split two or
more genes have the exact same score, these genes are
ranked by the magnitude of the ¢ statistic. We note that
because we are using Welch’s ¢-test rather than Student’s
t-test, the degrees of freedom associated with each test
is different, and hence outputting the largest ¢ statistic is
only approximately sound. Two genes may have the exact
same score for larger datasets and for splits near the root
of the dendrogram where p-values may be quite small,
resulting in an underflow issue and a score of occ.

Handling singletons

In addition to the split and merge thresholds, the two
major hyperparameters discussed in the “Background”
section, the DendroSplit framework can also be cus-
tomized using three minor hyperparameters. These three

Page 4 of 12

hyperparameters are relevant for finding singletons (clus-
ters containing one point), which are analogous to
outliers.

Two of these hyperparameters are relevant for the split
step. The first is the minimum cluster size. During a
split, if one of the two candidate clusters contains less
points than the minimum cluster size, that cluster is dis-
banded (each of its points are labeled as “Singleton”)
and the algorithm continues on the other candidate. The
second hyperparameter is the disband percentile. If a can-
didate split does not produce a subtree that meets the
minimum cluster size requirement or if the candidate
split does not achieve a high enough separation score,
we look at the pairwise distances amongst samples in
this final cluster. If all of them are greater than a cer-
tain percentile of distances in D, the original N x N
distance matrix, then all points in this final cluster are
marked as singletons. For all experiments performed
in this work, the minimum cluster size was set to 2
(the smallest value) and the disband percentile was set
to 50.

Before merging clusters, each singleton obtained dur-
ing the split step is assigned to the same cluster as its
nearest neighbor. If the distance between a singleton and
its nearest neighbor is greater than a certain percentile
of all pairwise distances in D, then the singleton remains
unclassified. This percentile is the third minor hyperpa-
rameter and was set to 90 for all experiments performed
in this work.

Hyperparameter sweeping

When choosing hyperparameters for DendroSplit, a rel-
atively small split threshold such as 20 and a merge
threshold set to half the split threshold often yields
reasonable initial results. The DendroSplit approach
can also rapidly generate several clusterings based on
different split thresholds. Since DendroSplit saves the
p-values and cell IDs considered at each split, we can
obtain several split-step clustering results by exploiting
the fact that the clusters generated with a smaller score
threshold partition the clusters generated with a larger
score threshold. The merge threshold can then be cho-
sen by looking at pairwise separation scores between
clusters.

Results

Data preprocessing

For all single-cell datasets, we apply a logarithmic trans-
formation log;,(X + 1) to the raw expression levels. We
analyze 9 datasets in this paper. For each dataset, genes
that have 0 expression across all cells were removed.
Additionally, all datasets consisting of over 1000 cells
undergo feature selection based on the method proposed
by Macosko et al. [20] The M genes are sorted into
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equal-sized bins depending on their mean expression
values. Within a bin, genes are z-normalized based on
their dispersions, where the dispersion for a gene is
defined as the variance divided by the mean. Only genes
corresponding to a z-score above a certain cutoff are
retained. For the Zeisel et al. [12], Birey et al. [17], and
Zheng et al. [21] datasets, we use DendroSplit’s default
setting of 5 bins with a z-cutoff of 1.5. For the Macosko
et al. dataset, we first remove cells with less than 900
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approach, reducing the original 44808 cells to 11040. We
then use Macosko et al’s gene-filtering settings of 20 bins
with a z-cutoff of 1.7. For the Zheng et al. dataset, reduc-
ing the number of genes results in several of the original
68579 cells having few and even 0 counts across all genes.
We remove cells with less than 50 counts across all genes,
resulting in 17426 cells, and again filtered out genes
with 0 counts across all remaining cells. We also experi-
mented with standardizing all log-transformed genes to

counts across all genes just like in Wang et al’s [30] have 0 mean and unit variance across all cells, but the
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Fig. 2 Synthetic Datasets. a The DendroSplit approach is applied to a synthetic 2-dimensional dataset where pairwise distances are equal to the
Euclidean distances between points. The dendrogram splitting process can be visualized using a tree, and each box in the tree represents a step in
the algorithm where a larger cluster is partitioned into the red and green clusters. For each of the two features (dimensions), the split is evaluated
based on the distributions of that feature within the candidate clusters. Teal points are “background” points and not considered for a given step.

b DendroSplit is evaluated on two other 2-dimensional synthetic datasets and recovers the correct number of clusters both times. Euclidean
distance is used. € We note that DendroSplit cannot overcome poor preprocessing and distance metric selection. Directly computing Euclidean
distances for the points in the concentric circle dataset would yield poor performance, but using Euclidean distance after some preprocessing (e.g.
mapping each point to its distance from the center) yields the correct results. For the examples shown here, the merge thresholds are 10, and the
split thresholds are 40 for (a) and 30 for (b, €)
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increased computational overhead did not yield better
results.

Adjusted Rand index

The adjusted Rand index (ARI) is used to quantify how
our clustering results match another given set of labels.
The ARI ranges from 0 for poor matching to 1 for perfectly
matched labels. For a set of n elements, we let X and Y
represent two partitions of the elements. X; represents the
set of elements in partition i according to X. The adjusted
Rand index is defined as:
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Ground-truth datasets

To test the effectiveness of the DendroSplit framework, we
first test the approach on datasets where the ground truth
is known.

Runtime: 46.29 s
Split threshold: 10
Merge threshold: 10

Runtime: 3.64 s
Split threshold: 30
Merge threshold: 15

include computation of the pairwise distance matrices

Biase (FPKM) Yan (RPKM) Pollen (TPM) Kolodziejczyk (CPM)
N =49, M = 24070 N =124, M = 34146 N =249, M = 6982 N =704, M =13473
3 clusters 8 clusters 11 clusters 3 clusters
~N .e
Y = ey )
@ § e e
Q o ..;
5 3 g g g
o a a & s a
=1 1 o
2
= . z
: & K
e, ¥ + K
PC1 PC1 t-SNE component 1 PC1
3 clusters (ARI = 0.95) 16 clusters (ARl = 0.53) 13 clusters (ARl = 0.81) 3 clusters (ARI = 0.96)
= 25 ~
= * . ] ¥
) (9]
5 5
£ 9 5 - g 8
g a o " 5 & o
G . .;': ". 3 “ . ot
e . DT
PC1 PC1 t-SNE component 1 PC1
3 clusters (ARI = 1.00) 9 clusters (ARI = 0.80) 11 clusters (ARl = 0.84) 3 clusters (ARI = 0.99)
% 3 ¢ ™
7] » c
:
2 g ’ 5 . g 8
% a a . g a
w ”1 ©
a e w
2 . =4
g ; 2
S A ¥ =
PC1 PC1 t-SNE component 1 PC1

Runtime: 13.77 s
Split threshold: 40
Merge threshold: 20

Runtime: 9.55s
Split threshold: 15
Merge threshold: 7.5

Fig. 3 Gold standard datasets. DendroSplit is evaluated on four single-cell RNA-Seq datasets where the labels are highly likely to be correct [2, 5, 8, 9, 34].
In addition to visual inspection, cluster quality is evaluated using the adjusted Rand index (ARI) based on the true labels. We observe here that the
split step tends to generate more clusters than expected, shrinking the ARI. Additionally, due to how the dendrogram is constructed, a cell may end
up in its own cluster and is consequentially labeled as a “Singleton”. The merge step treats both these cases. The cells are visualized using either the
first two principal components (PC) or the first two t-distributed stochastic neighbor embedding [63] (t-SNE) components. The reported runtimes




Zhang et al. BMC Bioinformatics (2018) 19:93

Synthetic datasets

Figure 2 shows the performance of DendroSplit on four
synthetic datasets [44]. Since the 2-dimensional data
points have clear, intuitive clustering structure, pairwise
Euclidean distance is a natural choice. Figure 2a shows
the exploratory power of DendroSplit on a toy dataset
of oddly-oriented clusters. Because DendroSplit saves the
information gathered at each valid split, we can easily
investigate how the clustering was performed. At a given
split, we can identify the points that went into each parti-
tion and look at the partition-specific distributions of the
feature that validated the split. Thus the true advantage
of DendroSplit is in its ability to justify its behavior with
interpretable results. Figure 2b shows that DendroSplit
has the power to uncover several clusters especially when
the distance metric (Euclidean) suits the type of data
(2-D Gaussian balls). Figure 2c emphasizes that, like
other methods, DendroSplit cannot automatically over-
come poor choices in preprocessing and distance metric
selection.
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Single-cell RNA-Seq datasets

Figure 3 shows the performance of DendroSplit on four
single-cell RNA-Seq datasets featuring high-quality labels.
Kiselev et al. [34] refers to these datasets as “gold stan-
dards” We chose four datasets with varying amounts of
cells, genes, and total clusters to understand how they
affect the behavior of DendroSplit. We see that when N is
on the order of 100s, the runtime is widely determined by
M, the number of independent Welch’s ¢-tests that must
be performed at every split. Figure 3 shows that for the
Biase et al. [2], Pollen et al. [8], and Kolodziejcyk et al.
[5] datasets, most of the final ARI is achieved after the
split step. Therefore most of the information captured
by the clusters lies in one of the dendrogram’s subtrees.
Due to how the dendrogram is constructed, a cell may
end up being split off into its own cluster and is tem-
porarily labeled as a non-classified “Singleton”. The merge
step cleans up singletons and small clusters, resulting in a
higher ARIL For the Yan et al. [9] dataset, the ARI increases
dramatically after the merge step. This is due to the fact
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Fig. 4 Exploratory analysis on Patel et al. dataset. a DendroSplit is evaluated on Patel et al.’s dataset of 430 cells, 5948 features (genes) from five
primary human glioblastomas [7]. Gene expression is quantified using TPM. The split and merge thresholds are 20 and 15, respectively, and the
analysis takes 9.64 seconds to run. The numbers in the legends represent the number of points in the corresponding clusters. For the split step, the
names of the clusters are generated based on the position of the subtrees in the dendrogram. “r" represents the root node, and “rRL" represents the
subtree found at the left child of the right child of the root. b We can evaluate how cells were partitioned at each step of the split procedure, and
DendroSplit can also show us the within-cluster distributions of the gene that validates the split. ¢ We can also evaluate how clusters obtained after
the split step were combined during the merge procedure, and DendroSplit can show us the distributions of the most distinguishing gene
between two merged clusters
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that after the split step, 1) 15 of the 124 cells ended up as
singletons, and 2) splitting generated twice as many clus-
ters as needed. In fact, for this dataset, dividing each true
cluster into two equal-sized parts would result in an ARI
of 0.74 when compared with the original labels. A more
detailed visual analysis of the Yan et al. dataset is given
in Additional file 1: Figure S1. Under certain conditions,
some cells may remain in their own clusters even after the
merge step (see “Implementation” section). These cells are
analogous to outliers.

Exploratory analysis

We further demonstrate the exploratory power of Den-
droSplit on Patel et al’s [7] dataset of 430 cells, 5948
features from five primary human glioblastomas. With-
out any further preprocessing, DendroSplit recovers five
clusters corresponding to the five glioblastomas (Fig. 4a).
Furthermore, DendroSplit can justify its findings by show-
ing us the gene that plays the largest role in validating
each split. Splits 4 and 5 in Fig. 4b show distinctively
how SEC61G, for example, distinguishes MGH26 cells
from MGH29 and MGH31 cells. The analysis also gives
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insight on how the hierarchical clustering was performed.
The cells from MGH26 were split in half during earlier
stages of clustering, which is why they end up in sepa-
rate superclusters at the root node. This is an artifact of
the greedy nature of hierarchical clustering where clusters
that should be close together may end up far apart. Merge
1 in Fig. 4c shows DendroSplit fixing this. At the same
time, we see that PAN3 may be a valid marker for distin-
guishing these two subtypes within MGH26 cells. Further
analysis and perhaps side information would be needed to
decide whether or not these two subtypes are truly dif-
ferent. DendroSplit handles the subjectiveness associated
with clustering by showing the factors that contribute to
its decisions.

Performance on larger single-cell datasets

We use DendroSplit to re-analyze three large single-
cell RNA-Seq datasets that utilize unique molecular
identifiers (UMIs) for quantifying genes [12, 17, 20].
Unlike for previous single-cell RNA-Seq datasets, the
labels for these datasets were assigned using diverse com-
putational methods. Figure 5 first shows that performing
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Fig. 5 Larger datasets. DendroSplit is evaluated on three large single-cell datasets where the labels were assigned using computational methods
[12,17,20]. Because M independent Welch's t-tests are performed at each potential split, the runtime of the algorithm scales linearly with M. As
demonstrated with the Zeisel et al. dataset, decreasing M by a factor of 16.6 likewise decreases the runtime by the same factor. The datasets here are
preprocessed by filtering out genes using the procedure described by Macosko et al. [20]. This preprocessing step also improves the quality of the

distance metric used, resulting in better performance
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a feature selection step prior to analysis with DendroS-
plit decreases the runtime dramatically. In fact, for the
Zeisel et al. dataset, filtering out genes using the proce-
dure described by Macosko et al. reduces both M and the
runtime by a factor of 16.6. Additionally, the filtering out
of noisy features improves the quality of the distance met-
ric, and we see that the ARI improves dramatically. We
also report that using a much smaller split threshold of
15 results in 43 non-singleton clusters. When compared
with Zeisel et al’s 47 subclasses, we achieve an ARI of 0.42.
The gene filtering procedure is used for the all datasets
presented in Figs. 5 and 6.

For the three datasets analyzed in Fig. 5, DendroSplit
generates similar but not identical labels. Figure 6a shows
that DendroSplit disagrees even more strongly on Zheng
et al’s dataset of 17426 cells, 908 features from fresh
peripheral blood mononuclear cells (PBMCs). Noting that
the merge step does not increase the ARI significantly,
we focus on the split step labels. Although 15 valid splits
were recorded, we investigate only the 5 shown in Fig. 6b.
For the remaining splits, see Additional file 1: Figure S2.
Split 1 was validated due to a lack of expression of sev-
eral genes (FCGR3A, LY86, FCN1, and IFI30) in the red
population, which we match to the authors’ CD34+ cells.
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Split 2 shows the separation of the red cells from the
green cells based on high expression of NKG7 and GNLY,
markers for natural killer (NK) cells. The green cluster in
split 5 likely corresponds to cytotoxic T cells based on
increased expression of GZMH. The red cluster in split
9 shows greater expression of CD79A and may therefore
represent B cells. Finally, the red cluster in split 14 does
not have an obvious match with any of Zheng et al’s set
of labels. DendroSplit shows us that the existence of this
cluster is justified based on increased expression of several
genes including FCGR3A, CFD, and LST1. A one-versus-
rest differential expression analysis based on independent
Welch’s t-tests (see Additional file 2: Table S1) further
shows that PSAP and SERPINAI are also overexpressed,
indicating that the red cluster (cluster 6 after the merge
step in Fig. 6a) corresponds to some type of monocyte. We
also repeat this analysis with the full 68579 cells, 20374
genes dataset, and the results are shown in Additional
file 1: Figure S3.

Finally, Fig. 7 demonstrates the score threshold sweep-
ing procedure for the Kolodziejcyk et al. and Zeisel et al.
datasets. As observed in the experiments, larger datasets
often require larger thresholds due to the ¢-statistic gen-
erally increasing with N.

b split 1

Zheng et al.’s labels
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Fig. 6 Exploratory analysis on PBMC dataset. a After gene selection and removal of cells with less than 50 counts across all genes, DendroSplit
generates clusters for Zheng et al.'s remaining dataset of 17426 cells, 908 features (genes) from fresh peripheral blood mononuclear cells (PBMCs)
[21]. Gene expression is quantified using UMI counts. The split and merge thresholds are 200 and 100, respectively, and the analysis takes 119.97
seconds to run. b 5 of the 15 recorded valid splits are shown along with the expression levels of the top 4 genes used for validating each split. The
reported runtimes include computation of the pairwise distance matrices
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Fig. 7 Split threshold sweeping. Since DendroSplit saves all relevant information at each valid split (e.g. p-values from Welch's t-tests and IDs of cells
being compared), we can run the method with a small split threshold to gather information about several potential splits. From this information, we
can generate the labels we would have obtained after the split step had we run the algorithm with a larger split threshold. a For the 704 x 13473
Kolodziejczyk et al. [5] dataset, running DendroSplit using a split threshold of 2 takes 37.63 seconds, and generating a set of new labels takes 0.032
seconds. b For the 3005 x 1202 Zeisel et al. dataset, running DendroSplit using a split threshold of 2 takes 13.48 seconds, and generating new labels

takes 0.403 seconds. For both datasets, the DendroSplit runtimes include computation of the pairwise distance matrices

Conclusion

In this work, we presented a novel interpretable frame-
work for tackling the single-cell RNA-Seq clustering
problem. We demonstrated that a dendrosplit-splitting
approach based on a separation score was key for uncov-
ering the multiple layers of biological information within a
dataset. In addition to recovering results from a diverse set
of single-cell studies, we showed that the framework could
cheaply produce several clusterings of the same dataset.
Most importantly, the algorithm could justify each of its
decisions in an interpretable way. Thus, DendroSplit is
suitable as a backend algorithm for interactive analysis and
interpretation.

With single-cell RNA-Seq technology improving, we
can only expect increased cell throughput and larger
datasets. While DendroSplit is able to generate clusters
without expensive hyperparameter tuning, its optimal
split and merge thresholds do depend on the size of
the dataset since larger datasets tend to yield smaller
p-values. To remove this size dependence, one could
subsample a larger dataset to the same fixed size mul-
tiple times, run DendroSplit on each subsample, and
ultimately report some consensus result. Another strat-
egy for handling this dependence is in choosing a
dataset-size-correcting statistical test rather than the
naive Welch’s ¢-test when computing the separation
score.

For the analyses in this work, we used a separation
score based on a computationally cheap method of
performing differential expression and a simple defi-
nition of cell type. Separation scores based on more
complex methods of evaluating differential expression
such as those presented by [31, 45-51] may vyield better
results at the cost of greater computation. Additionally,
just like for other clustering approaches, existing
tools including those designed for outlier detection
[13, 52], drop-out imputation [53], and correcting other
sources of technical noise [54—62] can be easily incorpo-
rated into the DendroSplit framework by applying the
desired correction procedures before the clustering step.

Availability and requirements

Project name: DendroSplit

Project home page: https://github.com/jessem-
zhang/dendrosplit

Operating system(s): Platform independent
Programming language: Python 2.7

Other requirements: Python modules numpy 1.12.1,
scipy 0.19.0, matplotlib 1.5.3, sklearn 0.18.1,
networkx 1.11, community

License: Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International license

Any restrictions to use by non-academics: License
needed
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Additional file 1: Supplementary figures and separation score analysis. A
file containing a distance-metric interpretation of separability score along
with the three supplementary figures described in the main text: 1) visual
analysis of the Yan et al. dataset, 2) further analysis for the splits generated
for the Zheng et al. dataset, 3) analysis on the full Zheng et al. dataset.
(PDF 3707 kb)

Additional file 2: PBMC differential expression analysis. A one-versus-rest
differential expression analysis based on independent Welch's t-tests for
the Zheng et al. PBMC dataset of 17426 cells, 908 features described in the
main text. (TSV 10 kb)
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