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Abstract

Background: The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy.
Many supervised learning approaches have been applied to cancer subtype classification in the past few years,
especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative
of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been
proved that the deep forest model has competitive or even better performance than deep neural networks in
some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges
when dealing with small sample size and high-dimensional biology data.

Results: In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification
on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The
BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named
multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble.
Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting
strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative
features among cascade layers to improve the classification performance. Systematic comparison experiments on both
microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-
the-art methods in application of cancer subtype classification.

Conclusions: The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease
the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model
provides a useful approach to the classification of cancer subtypes by using deep learning on high-dimensional and
small-scale biology data.
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Background
It is well known that cancer tumor is heterogeneous dis-
ease with diverse pathogeneses [1, 2]. Most cancers have
multiple subtypes with distinct molecular signatures and
likely have different prognoses and treatment responses
[3—5]. Recently, the advance of high-throughput profiling
technologies has produced huge genomic data and pro-
vided unprecedented opportunities to investigate genomic
or transcriptomic changes associated with cancers, which
makes it possible to cognize cancer subtypes at molecular
levels. In the past few years, various types of large-scale
genomic data have been used for cancer prognosis inte-
grating gene function studies [6—8] and subtype outcome
prediction [1, 4, 9-11], and numerous cancer subtype
classification methods have been proposed [5, 12-14].
However, since the complexity of cancer diseases and
limited prior knowledge of cancer subtypes [15-17], the
overall performance of most current methods still need to
be further improved. In general, the intuitive approaches
of cancer subtype classification use conventional classifi-
cation algorithms to learn prediction models based on
various types of genomic data and prior subtype know-
ledge, such as gene expression, DNA-methylation or gene
mutations, etc. [18-21]. However, three challenges may
limit the application of conventional leaning models, such
as SVM, random forest, etc., to the mission of cancer sub-
type classification on biology data. Firstly, the characteris-
tics of small sample size and high-dimensionality of
biology data strengthen the risk of overfitting in training.
Secondly, class-imbalance is very common in biology data,
which aggravates the difficulties of model learning.
Thirdly, large sequencing bias of biology data may weaken
the ability of model estimation. Although many modified
models have been proposed to ease these challenges in the
past few years [5, 22], the alternative options of available
methods towards small-scale biology data are still limited,
and more accurate and robust methods need to be further
developed for the mission of cancer subtype classification.
In recent years, the advance of deep neural networks
(DNNs) has achieved great success in various
applications, especially in visual and speech recognitions
[23, 24]. Inspired by deep neural networks, many
methods have been proposed to predict cancer subtypes
using variants of deep learning approaches [25, 26].
However, a few deficiencies may limit the applications of
deep neural networks in cancer genomic data. On the
one hand, deep neural networks are complicated models
and huge amount of training data are usually required to
train the model [23]. Nevertheless, there aren’t large
enough samples for most cancer genomic data at
present. On the other hand, it is well known that there
are many hyper-parameters in deep neural networks,
and the performance of model largely depends on the
skills of parameter tuning. This makes it is unruly to get
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anticipate classification performance using deep neural
networks in practice, especially on the small-scale
biology datasets.

To ease aforementioned deficiencies of deep neural net-
works, recently, an alternative to deep learning
framework-deep forest model, called gcForest, has been
proposed in [23]. Similar to the deep neural network,
gcForest has multi-layer cascade structure, but each layer
contains many random forests instead of neurons in deep
neural networks. Inspired by the deep neural networks,
gcForest consists of two ensemble components. The first
one is multi-grained scanning, which adopts sliding
window structure to scan local context from high-
dimensionality to learn representations of input data
according to different random forests. The second one is
the cascade forest, which learns more discriminative
representations under supervision of input representations
at each layer, thus gives more accurate predictions accord-
ing to ensemble of random forests. Unlike deep neural
networks, which defines numerous hidden neurons to
learn representations layer-by-layer by using forward and
backward propagation algorithms, the cascade forest
assembles lots of decision tree forests to learn classifica-
tion distribution (features) according to cascade layers,
supervised by input data at each layer. Figure 1 shows a
schematic illustration of cascade forest [23]. In cascade
forest, each layer of cascade assembles a number of deci-
sion tree forests, and receives features processed by its
preceding, and inputs its processed results to the next
layer. Indeed, each layer is designed to include different
types of forests to encourage the diversity of the ensemble.
Two types of forests, completely random forest and
random forest, are employed in Fig. 1. In each layer, the
number of forests and the number of trees in each forest
are hyper parameters in practice. An instance is input to a
cascade layer, each forest produces an estimate of class
distribution. The class distribution outputs by all forests
in the same layer form a class vector, and then concate-
nates with the original vector to be input to the next layer
of cascade. In practice, cross validation is used to evaluate
the overall performance when a new layer is expanded,
and the expanding progress will be automatically termi-
nated once there is no significant performance gain (More
details in [23]). As the authors pointed out, the number of
cascade layers could be adaptively determined by evaluat-
ing the performance at each layer. Therefore, there are
fewer hyper-parameters of gcForest than deep neural
networks, and it could be trained conveniently without
too much parameter tuning skills. However, two
challenges of gcForest may limit its application on small-
scale biology data. 1). by manually defining different types
of forests to encourage the diversity of ensemble in multi-
grained scanning, this strategy may raise the risk of over-
fitting on small-scale or class-imbalance data. 2). all forests
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Fig. 1 lllustration of cascade forest structure. Each level of the cascade consists of two random forests (black) and two completely random forests
(red). Suppose there are three classes to predict; each forest outputs a three-dimensional class vector, which is then concatenated for
representation of original input [23]

in ensemble have equal contributions to final prediction,
and the fitting qualities and feature importance aren’t
considered in the feature learning process. The final deci-
sion of ensemble may be affected by the votes from
under-fitting and/or over-fitting forests, especially on
small-scale data. In order to take the advantages of gcFor-
est, it is important to modify it to work better on complex
biology data.

In this paper, we propose so-called BCDForest (Boosting
Cascade Deep Forest) model to follow the mission of
cancer subtype classification. The main idea of BCDForest
model is to both encourage the diversity of ensemble and
consider the fitting quality of each random forest in multi-
grained scanning to give more informative presentations
of input. We also propose a simple strategy to boost the
weights of important features in cascade random forests,
thus to improve the overall performance of cascade
ensemble random forests. Our contributions can be sum-
marized as follows. 1). we adopt a multi-class-grained
scanning strategy to encourage the diversity of ensemble
by using different training data of classes respectively.
Different training sub-datasets are used to construct va-
rious types of forests to encourage the diversity of ensem-
ble. 2). we consider the model fitting qualities of forests in
feature representation learning by using sliding window
scanning. The out-of-bagging [27, 28] approach is used
to estimate the error of model fitting and assign a
confidence weight to each forest to correct the out-
come predictions. 3). we propose a variation based
strategy to boost important features in forest learning
at each layer of cascade forest.

Applying BCDForest to three public microarray gene
expression datasets and six RNA-Seq gene expression
datasets from TCGA [29, 30], we find that BCDForest
has better prediction performance than conventional
methods and gcForest. Importantly, BCDForest achieves
higher prediction accuracy than the standard gcForest

on small-scale (small sample size) and class-imbalance
datasets, which is crucial to the supervised learning of
cancer genomic data.

Methods

Boosting cascade forest

The cascade forest model provides an alternative to deep
neural networks (DNNSs) to learn hyper-level representa-
tions in low expense. Instead of learning hidden
variables according to complex forward and backward
propagation algorithms in DNNS, cascade forest tries to
learn class distribution features directly by assembling
amounts of decision tree-based forests under supervision
of input. The layer-wise supervised learning strategy al-
lows cascade forest can be easily trained. In addition, the
ensemble of forests hopes to obtain more precise class
distribution features, as it is well known that the random
forest has powerful classification ability in most applica-
tions. However, in the standard deep cascade forest
model, the feature importance isn’t considered in
representation learning process among multiple layers.
This may lead to the overall prediction performance is
sensitive to the quantities of decision trees in each
forest, especially on small-scale data, since it is crucial to
select the discriminative features as splitting nodes to
construct decision trees. Based on the basic architecture
of cascade forest, in this section, we introduce a novel
modified version of cascade forest, which is denoted as
BCDForest.

Inspired by the boosting idea, we assign the discri-
minative features with higher weights than uninforma-
tive features in forest training process. Obviously, it is
hard to give a meaningful weight to each feature directly
in the output concatenated vector at each cascade layer,
as it is a combinatorial class distribution of global and
local features. On the one hand, different random forests
may offer different estimations, we don’t have any weight
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information about their estimations. On the other hand, ex-
tensive weight estimations of features will introduce add-
itional expense. In this study, alternatively, we try to
emphasize the discriminative features in the concatenated
vector to boost the possibility of these features to be se-
lected as splitting features of decision trees in each random
forest, thus to encourage generating better fitting forests. In
fact, the importance of each feature can be predicted by the
structures of decision trees in their fit random forest. In de-
tail, the features in high level of decision trees tend to be
more important to discriminate different classes on training
data, so they should be boosted as more important features
that need to be reconsidered in the next layer. Given a fit
forest, by combining all decision trees, the importance of
features can be easily predicted by considering the average
height rank of features in all decision trees of forest. We se-
lect the top-k most important features in each forest, and
use the standard deviation of the k features to compose a
new feature. Then, we combine the new variance feature
with the output class distribution vector together to boost
its class distribution in the concatenated input vector of
next layer, thus to reduce the false discovery rate of estima-
tion in the next propagation layer. The reasons for using
the standard deviation of top-k features instead of using
top-k features directly are: 1). to reduce the sensitivity of
model to the k parameter; 2). the variance can present the
difference of instances on top-k features in some extent.
This boosting operation can be implemented at each layer
of cascade forest, and it doesn’t introduce additional com-
putational expense, since the importance of features can be
easily estimated by generating forests.

Figure 2 illustrates the basic architecture of our boos-
ting cascade forest model. Given an instance, each forest
produces an estimate of class distribution as described
in [23]. Meanwhile, we select top-k features from each
fit forest and construct the standard deviation feature on
each forest, and then concatenate all new features with
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their corresponding output class distribution vectors to
generate boost class distribution vectors. Finally, we con-
catenate all of boost estimate vectors of forests at each
layer with the original feature vector as the input of the
next layer of cascade. In detail, the same as the standard
cascade forest model, we set up two completely random
forests (using all features, gini value based) and two
random forests at each layer of cascade, and 1000 deci-
sion trees in each forest. We define the default value of
boosting parameter k=5. To ease the risk of the overfit-
ting, we use cross-validation method to evaluate the
overall performance at each layer, and the propagation
of cascade will be automatically terminated once the
performance turns to decrease. At last, the final fitting
cascade forest model will be used to estimate class labels
of new instances.

Multi-class-grained scanning

Inspired by deep neural network in handling feature
relationships, cascade forest employs multi-grained
scanning strategy, a sliding window based approach, to ex-
tract local features by scanning raw input to generate a
series of local low-dimensional feature vectors, and then
train a series of forests by using those low-dimensional
vectors to obtain class distributions of input vectors (more
details in [23]). Although it has been proved the multi-
grained scanning is effective on local feature recognition, a
few drawbacks may affect the quality of the extracted fea-
tures in applications. 1). to consider a class-imbalance data,
the decision trees of forests tend to underline the classes
with most instances, and block the recognition of small-
size classes in training, especially on the high-dimensional
data. 2). the diversity of forests depends on manual hard-
definition, not automatically determines in data-driven
way. This may weaken the ability of classification, as the di-
versity is crucial to ensemble construction [23], especially
on small-scale data. 3). all scanning forests in ensemble
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Fig. 2 lllustration of boosting cascade forest structure. Each level of the cascade consists of two random forests (black) and two completely random
forests (red). The standard deviation of top-k important features in each forest will compose a new feature to be concatenated in the next cascade
level to emphasize the discriminative features
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have equal contributions in multi-grained scanning, and it
may lead to the estimation of classification distribution is
sensitive to the fitting quantities of forests. To ease these
issues, in this study, we propose a multi-class-grained scan-
ning approach to encourage the diversity of ensemble for-
ests by using different training data of classes.

As shown in Fig. 3a, suppose there are m instances
from 4 classes in training data. We first simulate mul-
tiple sub-datasets according to different class labels. In
detail, for each class, we produce a sub-dataset, which
consists of positive and negative instances respectively.
For example, assume there are n, instances in class c4,
the instances in class ¢4 are the positive set, and the
non c, instances are the negative set. Therefore, in each
sub-dataset, only two types of instances are denoted. At
last, 4 sub-datasets are produced, and each sub-dataset
is used to train a forest to sense a specific class.
Similarly, for each instance in sub-dataset c; assume
there are 500 raw features and the slide window size is
100, then 401 feature vectors are produced by sliding
the window for one feature each time. All feature vectors
extracted from positive/negative raw instances are
regarded as positive/negative instances. The instances
from the same sub-dataset will be used to train a
random forest, and 4 forests will be produced for all 4
sub-datasets. For each raw instance, all of sliding feature
vectors are input to all of 4 forests and generate their class
distribution vectors, and then concatenate them as trans-
formed features. As shown in Fig. 3b, 100-dimensional
window size is used, and 401 feature vectors will be ex-
tracted from each raw instance. For each 100-dimensional
vector, each forest generates a 2-dimensional class vector,
and 4 class vectors are generated in total. We select the
possibility of positive estimation in each of 2-dimensional
class vector and concatenate them to generate a 4-
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dimensional transformed class vector. Importantly, since
the difference of training data, such as sample size, etc.,
may affect the quality of model, it is important to consider
the fitting qualities of scanning forests when predicting
the class distribution of input instances. We use the out-
of-bagging (OOB) [27, 28] method to measure fitting
quantity of each scanning forest, thus produce a quantity
weight to each scanning forest.

Formally, we normalize each 4-dimensional vector into
a class distribution space. Suppose X = (x1, x5, x3, x4) is a
4-dimensional class vector, W= (wy, wy, w3, wy) is the
vector of out-of-bagging fitting score for all scanning
forests, W' = (w}, w), wh,w),), where w,=w;/ S w;,
is the weight vector of forests, and the normalized class
vector is defined as X' = (x], %, x5, 4} ), where x} = x;w}/
Sot xw,. Each 100-dimensional vector is transformed
into a 4-dimensional normalized class vector, and all of
401 4-dimensional class vectors are concatenated to a
401 x 4-dimensional class vector, corresponding to the
original 500-dimensional raw feature vector. Figure 3
shows only one window size, but multiple window sizes
could be defined by user to result in more features in
the final transformed vectors.

In addition, if there are many classes in the training
data, we still can divide the raw data into different class
groups by the principle of leaving label balance, and thus
simulate multiple sub-datasets, and train multiple types
of forests. Note, the most difference between our multi-
class-grained scanning and the standard multi-grained
scanning is that we use different sub-datasets to train
different forests to encourage the diversity of ensemble.
It is a data-driven way to train different forests, thus to
extract more meaningful local features from raw fea-
tures. The three most advantages of our approach can
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be summarized as: 1). dividing training data into
different sub-datasets can ease under estimation caused
by class-imbalance data. 2). the number of forests is
determined by the classes in raw data instead of a hyper-
parameter to ease the risk of overfitting. 3). it
encourages the diversity of forests and heartens to give
more accurate classification by assembling more simple
classifiers.

Overall procedure of BCDForest

The general BCDForest framework includes two main
components. The first one is the multi-class-grained
scanning, which learns the local-context based on class
distribution representations of input data according to
different forests. The second one is the boosting
cascade forest structure, which considers feature
importance in cascade layers and learns more
discriminative representations under supervision of
input at each layer. Figure 4 illustrates an example of
overall procedure of BCDForest. Suppose the input is
of 500-dimensional data, and two window sizes (100,
200) are used in multi-class-scanning. There are 4 clas-
ses and m instances in training data. 4 sub-datasets are
simulated based on the positive and negative instances
of each class, and 4 forests (each contains 50 trees) can
be learned from all sub-datasets. The window size of
100 features generates 401 x 100-dimensional feature
vectors for each raw instance in training data, and each
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100-dimensional vector is transformed to a 4-
dimensional class vector. Then a 1604-dimensional
transformed feature vector is obtained at last. Similarly,
the sliding window with 200 size generates a 1204-
dimensional feature vector for each original instance.
By concatenating those two vectors, a 2808-
dimensional feature vector is produced, which is a
representation of the original 500-dimensional feature
vector. All m 500-dimensional original vectors are
presented by m 2808-dimensional feature vectors, and
then they are input to the boosting cascade forests.
Suppose top-k features are selected to extract the
standard deviation boosting feature in each forest,
and 4 forests are assembled at each layer of cascade,
then for each raw 500-dimesional feature vector, a
2828-dimensional feature vector is output at the first
layer of cascade. All these 2828-dimensional feature
vectors are input to the next layer of cascade as
training data; and this process is repeated until the
validation performance suggests that the expanding of
cascade should be terminated. Finally, given a test in-
stance, it is transformed into 2808-dimensional repre-
sentation vector at first by using multi-class-grained
scanning. Then, the representation is input into the
boosting cascade forest structure to get its final pre-
diction by aggregating the four 4-dimensional vectors
at the last layer of cascade, and taking its class with
the maximum aggregated value.
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Fig. 4 Overall procedure of BCDForest. Suppose there are four classes, and the sliding windows are 100-dim and 200-dim. Two cascade layers are
used to give final prediction
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Results

Datasets and parameters

To investigate the effectiveness of BCDForest, we con-
ducted cancer subtype predictions on both microarray and
RNA-Seq gene expression datasets. We downloaded three
microarray gene expression datasets of adenocarcinoma,
brain and colon cancer types respectively [31]. The detail of
these three datasets are shown in Table 1. We also down-
loaded RNA-Seq gene expression data of five cancer types
(BRCA (breast invasive carcinoma), GBM (glioblastoma
multiforme), LUNG (lung cancer), COAD (colon adenocar-
cinoma) and LIHC (liver hepatocellular carcinoma)) and
integration of pan-cancers (includes 11 cancers) data from
TCGA [29, 30]. We selected these cancer data because
these cancer types were well studied over the past decade
years. For the integration of pan-cancers data, we filtered
out the genes having missing values in samples, and
logarithm transformed data to normalized values were used
in downstream analyses. For the five cancer types data, the
gene expression were logarithm transformed data, and we
selected the informative genes as transcriptome features in
classification analyses by two categories: 1) average gene
expression>5.0; 2) variance of gene expression among
samples >1.0. The details of the datasets are shown in
Table 2. For each dataset, we downloaded the correspond-
ing clinical data from TCGA, and used the clinical subtype
information to label each sample, thus to be used to evalu-
ate the performance of our method. In all experiments of
this study, we set 50 decision trees in each forest of multi-
class-grained scanning, and 1000 decision trees in each for-
est of boosting cascade forest at default. The completely
random forest is generated based on gini values using all
input features in gcForest and BCDForest. Two completely
random forests and two random forests were set in each
layer of boosting cascade forest, and the top-5 most im-
portant features were considered.

Overall performance on microarray datasets

We compared the classification performance of
BCDForest with four conventional methods (KNN,
SVM, Logistic Regression (LR) and Random Forest (RF))
and the standard gcForest on three microarray datasets.
To perform the classification estimate, the most chal-
lenge of those three datasets is the data characteristics of
small sample size but high-dimensional gene features.
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We used 5-fold cross validation to evaluate the overall
accuracy of different methods on these three datasets. In
fair, in each class of datasets, we randomly selected 4/5
samples for training data, and 1/5 samples for testing
data. As shown in Table 1., BCDForest consistently out-
performs other methods in overall accuracy prediction.
This illustrates that our method is effective to cancer
subtype classification on small-scale data. This may be
for the reason that BCDForest uses simple binary forests
to learn the classification distribution features in multi-
class-grained scanning, and it can ease the risk of over-
fitting in some extent. In addition, we find both gcForest
and BCDForest outperform other conventional methods
on these three small-scale datasets, especially on the
adenocarcinoma dataset, which includes 9868 genes, but
only 76 samples, both gcForest (85.7%) and BCDForest
(92.8%) obtain higher accuracy. This demonstrates that
the deep forest framework has powerful ability to cancer
subtype classification than others on small-scale
microarray datasets.

Overall performance on RNA-Seq datasets

To systematically investigate the robustness of BCDFor-
est, we examined the estimate performance on more
datasets, comparing with four conventional methods and
the standard gcForest. In order to test the performance
of BCDForest on relatively large-scale dataset, we down-
loaded the integrated pan-cancers dataset from TCGA,
which included 3594 samples from 11 different cancer
types, and the class sample size ranged from 72 to 840
respectively. We used the tumor cancer type to label
each sample, and trained each model based on these
labels. We used 5-fold cross validation to evaluate the
performance of each method on these datasets. In fair,
in each class, we randomly selected 4/5 samples to
compose the training data, and 1/5 samples to compose
the testing data. Table 2. shows the overall accuracy per-
formance of different methods on integrated pan-cancer
dataset. We also downloaded gene expression and clin-
ical data of other five cancer types (BRCA, GBM, LUNG,
COAD and LIHC) from TCGA. Specifically, the BRCA,
GBM and LUNG datasets have cancer subtype label
information in the clinical data. We used their subtype
labels directly in experiments. For the COAD and LIHC
datasets, there wasn’t known subtype information in the

Table 1 Comparison of overall accuracy on microarray gene expression datasets

Code Dataset Sample Gene Class Overall Accuracy
KNN LR RF SVM gcForest BCDForest
1 Adenocarcinoma 76 9868 2 0.842 0.736 0.841 0.842 0.857 0.928
2 Brain 42 5597 5 0.784 0.858 0.796 0.690 0.892 0.964
3 Colon 62 2000 2 0.801 0.660 0.846 0.885 0916 0916
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Table 2 Comparison of overall accuracy on RNA-Seq gene expression datasets
Code Dataset Sample Gene Class Overall Accuracy
KNN LR RF SVM gcForest BCDForest
1 PANCANCER 3594 8026 1 0.955 0.979 0.960 0.968 0.965 0973
2 BRCA 514 3641 4 0.778 0.854 0.845 0.793 0.881 0.920
3 GBM 164 3180 4 0.694 0651 0.702 0619 0.741 0.806
4 LUNG 275 4000 3 0.710 0.744 0.791 0.786 0.830 0.867
5 COAD_I 264 3010 6 0.348 0.287 0377 0372 0.392 0411
6 COAD_N 270 3006 3 0.699 0631 0.696 0.700 0.711 0.730
7 COAD_T 282 3014 3 0.766 0.701 0.767 0.765 0.767 0.785
8 LIHC_I 347 4401 3 0.532 0491 0.536 0527 0.558 0.588
9 LIHC_N 400 4398 2 0.695 0.519 0.698 0.696 0.708 0.759
10 LIHC_T 347 4347 3 0.574 0.503 0.579 0.561 0.608 0.652

clinical data, while the pathologic states were depicted.
We used three of clinical pathologic states (pathologic
stage (I), pathologic N and pathologic T) to define three
different cancer sub-datasets, which stated different
pathologic class labels. In particular, we filtered out the
pathologic subtypes with few samples in each data to
reduce the effect of outliers. Table 2. shows the details of
each dataset and the overall performance of each
method on each dataset.

As shown in Table 2., on the large-scale pan-cancers
dataset, all methods have similar prediction perform-
ance, although the LR (97.9%) and BCDForest method
(97.3%) have slightly higher accuracy than others. The
reason may be that there are different gene expression
patterns among different cancer types. However, on the
other small-scale cancer datasets, BCDForest is consist-
ently better than other methods, especially comparing
with the conventional methods. For example, on the
GBM data, BCDForest method obtains the highest ac-
curacy (80.6%), and it is better than gcForest (74.1%)
over 6.5%, and better than RF (70.2%) over 10%. In
addition, it is interesting that both BCDForest and
gcForest are better than other conventional methods on
all five cancer types of datasets. This indeed demon-
strates that the deep forest methods are more powerful
to the classification of cancer subtypes since more com-
plex features can be learned to discriminate different
classes.

Cancer type classification on pan-cancers dataset

To examine the robustness of BCDForest on differ-
ent class sample sizes, we conducted experiment of
cancer type classification on TCGA pan-cancers
dataset. For each cancer type, we randomly selected
4/5 samples for training, and 1/5 samples for testing.
In total, 2875 samples derived from all of 11 cancer
types were used for training, and 719 samples

derived from all of 11 cancer types were used for
testing. Then, we investigated the precision and re-
call performance of each method on each cancer
type data. As shown in Fig. 5, our BCDForest
method has the best precision and recall perfor-
mance on most of cancer types comparing with
other methods, although most of other methods also
have good performance. In addition, BCDForest
tends to give higher precision performance than
other methods on most of cancer subtypes (as the
dash line shown). This illustrates BCDForest is more
robust to various cancer types since it could sense
more information in training data.
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Fig. 5 Comparison of different methods on large-scale pan-cancers
dataset. Each dot presents the performance of each corresponding
method on each cancer type. 11 cancer types were included in the
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Cancer subtype classification on BRCA, GBM and LUNG
datasets

Since BCDForest was proposed based on the gcForest,
we conducted two experiments to examine the perfor-
mance of BCDForest and the standard gcForest on three
cancer datasets (BRCA, GBM and LUNG), respectively.
It is well known that the class balance of training data is
very important for model learning. However, the situ-
ation of class-imbalance is very common in many fields,
especially in biology data, and it can affect the perform-
ance of model learning and prediction [32]. To evaluate
the robustness of our method to class-imbalance data,
we investigated the sensitivity of the two deep forest
methods to proportion of sample size on each of three
datasets. Then, we evaluated the average precision, recall
and F-1 score performance of each method in all classes
of each dataset. We selected BRCA, GBM and LUNG
cancer datasets because these datasets included cancer
subtype information in clinical data. Specifically, in
BRCA data, there are four basic subtypes in 514 samples
(Basal-like: 98/~ 19.06%, HER2-enriched: 58/~ 11.28%,
Luminal-A: 231/~ 44.94%, Luminal-B: 127/~ 24.71%); in
GBM data, there are four basic subtypes in 164 samples
(Classical:  42/~25.61%, Mesenchymal: 55/~ 33.5%,
Neural: 28/~ 17.07%, Proneural: 39/~ 23.78%); in LUNG
data, there are three basic subtypes in 275 samples
(Bronchioid: 104/~ 37.81%, Magnoid: 72/~ 26.18%, Squa-
moid: 99/~ 36.0%). In each cancer subtype, we randomly
selected 4/5 samples for training, and 1/5 samples for
testing. As shown in Fig. 6, comparing with gcForest,
BCDForest has better performance for both precision
and recall on most of subtype classes of three datasets.
Importantly, BCDForest seems to be more robust to the
class-imbalance data. For example, even on the smallest
subtype class in GBM (cl, ~17.07%), BCDForest has
higher precision and recall prediction comparing with
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gcForest. On the BRAC data, BCDForest has higher pre-
cision and recall performance on three out of four sub-
type classes comparing with gcForest. Particularly, on
the smallest subtype class (cl, ~11.28%), although the
precision performance of BCDForest is not better than
gcForest, it has higher recall performance than gcForest.
This illustrates that BCDForest tends to be more sensi-
tive to the positive samples in class-imbalance cases. To
evaluate the overall performance of the two deep forest
approaches on the three datasets, we examined the aver-
age precision, recall and F-1 score performance of each
method in all classes of each dataset. As shown in Fig. 7,
BCDForest consistently outperforms the standard
gcForest in cancer subtype prediction on all three
datasets, especially on GBM cancer data (the average F-1
score higher than gcForest over 7.0%). This demon-
strates that BCDForest is more robust than the standard
gcForest to discriminate the cancer subtypes on small-
scale cancer datasets, since it considers more feature
information in estimation.

Pathologic cancer subtype classification on COAD and
LIHC datasets

The different pathologic states of cancer tumors could
be used to define pathologic meaning subtypes in some
extent. To systematically investigate the robustness of
our method in discriminating of cancer subtypes, we
also examined the performance of BCDForest and the
standard gcForest for pathologic subtype prediction on
COAD and LIHC datasets. For the COAD and LIHC
datasets, since there were not specific cancer subtype
information in the clinical data, we used different types
of pathologic states of patients to define different patho-
logic subtypes on each dataset. We used the same
method (4/5 samples for training; 1/5 samples for test-
ing) to evaluate the overall performance of BCDForest

-
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Fig. 7 Comparison of overall performance of BCDForest and gcForest on BRCA, GBM and LUNG datasets. The average precision, recall and F-1
score on all subtype classes of each dataset were evaluated

and gcForest respectively on each dataset. Specifically,
we evaluated the average precision, recall and F-1 score
in all classes on each dataset. For these two datasets, we
used three different types of pathologic states (patho-
logic N, pathologic T, pathologic stage (I)) to define dif-
ferent subtype labels of patients, thus to build different
classification missions on six sub-datasets. In detail, we
filtered out the subtype classes which had too few sam-
ples in all of datasets. At last, we performed classifica-
tion on all six sub-datasets which defined by different
types of pathologic states on the two cancer types. Spe-
cifically, for COAD data, three sub-datasets were

generated based on different types of pathologic stages
(pathologic_N (NO, N1, N2), pathologic_T (T2, T3, T4),
pathologic_I (I, II, IIA, IIB, LIC, 1V)); for LIHC data,
three sub-datasets were generated based on different
types of pathologic stages (pathologic_ N (NO, NX),
pathologic_T (T1, T2, T3), pathologic_I (I, II, IIIA)). The
details of each sub-dataset are shown in Table 2. As
shown in Fig. 8, BCDForest consistently outperforms
gcForest on three sub-datasets of COAD. Especially, on
the pathologic I and pathologic T sub-datasets,
BCDForest has significantly higher F-1 score than gcFor-
est. This illustrates our method is more robust on small-
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Fig. 8 Comparison of overall performance of BCDForest and gcForest on COAD datasets. The average precision, recall and F-1 score on all
subtype classes of each dataset were evaluated
J
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scale datasets. As shown in Fig. 9, on the three LIHC
sub-datasets, we see similar performance except on the
sub-dataset of pathologic N. On the sub-dataset of
LIHC_N, although the average precision of our method
is not as good as gcForest, the average recall and F-1
score are better than gcForest. This indeed demonstrates
that our method is more sensitive to the positive
samples. In conclusion, based on systematical evalua-
tions on six of pathologic sub-datasets, our BCDForest
is more effective and robust than gcForest working on
small-scale cancer datasets.

Discussion

The deep forest framework provides an alternative to
deep learning in practice. The standard deep forest
model may face overfitting and ensemble diversity
challenges working on small-scale biology data.
BCDForest is a novel modification of the standard
deep forest model (gcForest), and it provides an
effective solution to ease the overfitting challenge and
improves the robustness of the standard deep forest
model working on small-scale biology data. We
compared BCDForest with the standard gcForest and
several conventional classification methods on both
microarray and RNA-Seq gene expression cancer
datasets. We found: 1). the deep forest methods
(BCDForest and gcForest) consistently outperformed
other conventional classification methods on most of
cancer datasets. This may be because the deep forest
methods can learn more meaningful high-level
features in supervised learning. 2). BCDForest consist-
ently outperformed the standard gcForest on most of
cancer datasets. This illustrates that our boosting
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strategies are effectively to improve the classifying
ability of the standard deep forest model on small-
scale biology cancer datasets, and it provides a robust
model to the classification of cancer subtypes. In
addition, although our BCDForest model tends to give
better prediction performance than the state-of-the-
art methods in cancer subtype predictions, some chal-
lenges still need to be further fixed, such as working
on extremely class-imbalance and high-dimensionality
small-scale datasets and improving the stability further,
etc. Besides, it has been proved that integrating mul-
tiple types of genomic data can benefit the perform-
ance of cancer subtype prediction in recent years
[33-35]. In this study, we only focused on cancer
subtype classifications based on gene expression data.
It will be useful to extend the deep forest model to
integrate multiple types of genomic data to advance
the performance of cancer subtype classification.

Conclusions

The classification of cancer subtypes is vital to cancer
diagnosis and therapy. In this paper, we proposed a
deep learning model, so-called BCDForest, to address
cancer subtype classification on small-scale biology
data, which can be viewed as a modification of the
standard gcForest presented recently in [23]. On the
one hand, instead of manually defining different types
of complex random forests, we proposed a named
multi-class-grained scanning strategy to encourage the
diversity of ensemble by training multiple simple bin-
ary classifiers using the whole training data. Mean-
while, we considered the fitting quality of each simple
classifier in representation learning to encourage the
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Fig. 9 Comparison of overall performance of BCDForest and gcForest on LIHC datasets. The average precision, recall and F-1 score on all subtype
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accuracy of estimations. On the other hand, we pro-
posed a boosting strategy to emphasize the important
features in cascade forests, thus to propagate the ben-
efits of discriminative features among cascade layers.
Systematic comparison experiments on both micro-
array and RNA-Seq gene expression datasets demon-
strate that our method consistently outperforms the
state-of-the-art methods. In conclusion, our BCDFor-
est method provides an option to investigate cancer
subtypes by using deep learning on small-scale biol-
ogy datasets.
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