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Abstract

Background: The cooperation of cells in biological systems is similar to that of agents in cooperative multi-agent
systems. Research findings in multi-agent systems literature can provide valuable inspirations to biological research.
The well-coordinated states in cell systems can be viewed as desirable social norms in cooperative multi-agent
systems. One important research question is how a norm can rapidly emerge with limited communication resources.

Results: In this work, we propose a learning approach which can trade off the agents’ performance of coordinating
on a consistent norm and the communication cost involved. During the learning process, the agents can dynamically
adjust their coordination set according to their own observations and pick out the most crucial agents to coordinate
with. In this way, our method significantly reduces the coordination dependence among agents.

Conclusion: The experiment results show that our method can efficiently facilitate the social norm emergence
among agents, and also scale well to large-scale populations.

Keywords: Cell system, Cooperative multi-agent system, Reinforcement learning, Social norms, Limited
communication

Background
All living systems live in dynamical environments. The
biological system behaviors [1–9] result from the interac-
tions among millions of cells and their environments. For
example, The human immune system is designed to pro-
tect us from infection by many different kinds of organ-
isms, including bacteria, fungi and parasites. The immune
process is the interaction and cooperation of different
immune cells. Different cells have different functions, and
the cooperation of the different cells makes up life. Sim-
ilarly, a cooperative multi-agent system (MAS) [10, 11] is
composed of a set of autonomous agents that interact with
each other within their communication capacity to reach
a common goal or to optimize the global performance. For
example, in the sensor network shown in Fig. 1, to reach
the accuracy, two sensors are needed to observe the same
place. If location 1, location 2 and location 3 always have
targets with resulting reward +30, +50, +40 respectively,
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then by using the independent policy sensor 2 and sen-
sor 3 prefer to observe the location 2 for a higher reward
+50. However, the optimal policy is sensor 1 and sensor
2 always observing location 1 and sensor 3 and sensor 4
always observing location 3 which results in the highest
global reward +70.

In the research of the cooperative MAS, social norms
play an important role in regulating agents’ behaviors to
ensure coordination among the agents. For example, in
our life, we should drive on the left (or right) according
to the traffic rules. When it comes to biological systems,
this corresponds to coordinating on the well-coordinated
states for better survival. In biology, different cells are
designed for different functions and cells should coordi-
nate their functions to ensure that the overall biological
system functions correctly.

Many researches have investigated biological systems
which are composed of cells and environments via
modeling and simulation [1, 12]. If we regard cells in bio-
logical system as agents in multi-agent system, the well-
coordinated states among cells can be viewed as social
norms in multi-agent systems. Thus, investigating how
social norms can emerge efficiently among the agents in
multi-agent systems would provide valuable insights for
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Fig. 1 Sensor network with 4 sensors

better understanding how cells can interact to achieve
well-coordinated states. One commonly adopted descrip-
tion of a norm is that a norm serves as a consistent equi-
librium that all agents follow during interactions where
multiple equivalent equilibriums may exist. Until now,
significant efforts have been devoted to studying norm
emergence problem [13–20]. However, most of the exist-
ing approaches require significant communications and
intensive computations.

Considering the fact that the communications between
the cells are limited in biological systems (by sending elec-
trical or chemical signals), we develop a learning approach
based on the individually learning methods and the DCOP
algorithm under limited communication bandwidth to
facilitate the norm emergence in agent societies. In many
practical applications, although the agents may interact
with many others over time to make a better decision,
they usually only need to coordinate with very few agents
which strongly affect their performance. Based on previ-
ous research [21, 22], we first define a criteria to measure
the importance of different subgroup of neighbors by esti-
mating the maximum potential utility each subgroup can
bring. Based on this, each agent can estimate the utility
loss due to the lack of coordination with any subgroup of
agents. Furthermore, each agent dynamically selects the
best subset of neighbors to coordinate with for minimiz-
ing the utility loss. At last, each agent trades off learn-
ing performance and communication cost by limiting
the maximum of the miscoordination cost. Experiments
results indicate that (1) with the limited communication
bandwidth and in different networks (e.g., regular net-
work, random network, small-world network, scale-free
network) our method can efficiently facilitate the emer-
gence of norms compared with the existing approaches.
(2) Our method allows agents to trade off the norm
emergence performance and the communication cost by
adjusting the parameters. (3) Compared with the previous
methods, our method can significantly reduce the com-
munication cost among agents and result in efficient and
robust norm emergence.

The remainder of this paper is organized as fol-
lows. “Methods” section first discusses the basic domain
knowledge, and then formally gives the definition of
the single state coordination problem and the symbolic
representation, and at last presents the architecture and
the details of our method. “Results and discussion” section

presents experimental evaluation results. Finally, we con-
clude in “Conclusion” section.

Methods
Game theory and Nash equilibrium
Game theory
Game theory is a mathematical theory concerned with
the optimum choice of strategy in situations involving
a conflict or cooperation of interest (Also called theory
of games). To be fully defined, a game must specify the
following elements.

• players, the players of the game.
• actions, the actions available to each player at each

decision point.
• payoffs, the feedback of making a decision and taking

the selected action.
• strategies, also called policy, is a high level plan to

achieve the goal under conditions of uncertainty.

Normal form games
The normal (or strategic form) game is usually repre-
sented by a matrix which shows the players, strategies, and
payoffs (see Fig. 2 for an example). More generally it can
be represented by any function that associates a payoff for
each player with every possible combination of actions.
Usually, the normal form game can be represented as a
tuple (n, A1, . . . ,n, R1, . . . ,n),

• 1, . . . , n, n players of the game.
• Ai, a finite of actions for each player i.
• A, A = A1 × . . . × An is the set of joint actions,

where × is the Cartesian product operator.

Fig. 2 Payoff matrix of a 2-player, 2-action normal form game
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• Ri, A1 × . . . × An → R, the reward received by agent
i with a join action �a ∈ A.

• πi, Ai →[0, 1], the probability of player i to select
each action in Ai.

• pure strategy, π(ak) = 1 for action ak ,and for other
actions π

(
aj,j �=k

) = 0.
• mixed strategy, the probability of selecting an action

is under some distribution. And the pure strategy is a
special case of the mixed strategy.

Nash equilibrium
Use a two-player normal form game with pure strategy to
describe the definition.

• Best Response:
when player 1 selects an action a1, the best response
of player 2 is that player 2 select an action which
maximizes its reward, that means
a2 = argmaxa2∈A2 R2.

• Nash Equilibrium:
If each player has chosen a strategy and no player can
benefit by changing strategies while the other players
keep theirs unchanged, that means the chosen action
for each player is the best response to the other
player’s choice, then the current set of strategy
choices and the corresponding payoffs constitutes a
Nash equilibrium.

Reinforcement learning
Markov decision process
A basic Markov Decision Process (MDP) can be repre-
sented as a tuple (S, A, T , R),

• S, a finite set of states representing the state space.
• A, a finite set of actions for the agent.
• T, a state transition probability function,

T : S × A × S →[0, 1], which specifies the probability
of transition from state s ∈ S to s′ ∈ S when action
a ∈ A is taken by the agent. Hence,
T

(
s, a, s′

) = Pr
(
s′|s, a

)
.

• R, a reward function R : S × A × S → R, the
immediate reward for being in state s ∈ S and taking
the action a ∈ A and then transfer to state s′ ∈ S.

When the state, action, transition function and the
reward function are all known, we can use some search-
ing methods (e.g., Monte Carlo Tree Search) to solve the
problem. And this is one of the classes of reinforcement
learning, saying model-based methods. And the other one
is model-free, which means the model is unknown.

Introduction of reinforcement learning
In simple terms, reinforcement learning (RL) is a class
of methods that the agent continuously interacts with
the environment and according to the feedback reward,
dynamically adjusts its policy to maximize the expectation

of the long-term feedback reward. Explore the environ-
ment through trial and error, the methods will gradually
improve its performance and finally converge to an opti-
mal policy. Trail and error and the delayed reward is
important characteristics of the RL. RL methods always
include the 4 basic elements: (1) agent: subject of learning
and the object interacting with the environment. (2) envi-
ronment: the environment that the agents reside in (static
and dynamic). (3) action space: the actions available for an
agent at certain states (discrete or continuous). (4) feed-
back reward: a method to measure the utility of an action
at certain states.

Q-learning
Q-Learning is an important milestone of RL study which
is a kind of model-free methods. It’s the alias of the TD(0).
The core equation of Q-Learning can be described as:

Q(st , at) = Q (st , at)

+ α

[
rt + γ max

at+1
Q (st+1, at+1) − Q (st , at)

]

(1)

where α ∈ [ 0, 1] is the learning rate, rt is the imme-
diate reward of doing at at state st , γ ∈[0, 1] is the
discount factor, which is usually set to 1 for a finite hori-
zon. Q(st , at) is the state-action value function, which
represents the expectation of the long-term accumu-
lated feedback reward when in state st and selects action
at . An typical procedure of Q-Learning is described as
Algorithm 1.

Algorithm 1 Single Q-Learning procedure
1: Initialize Q(a, a) = 0;
2: for each episode do
3: Initialize s0;
4: repeat
5: Under state st , select an action at using policy

derived from Q(s, a)(e.g., ε-greedy);
6: Take action at , and observe reward rt and the

next state st+1
7: Q(st , at) = Q(st , at) + α[ rt + γ maxat+1 Q(st+1, at+1) − Q(st , at)]

8: st = st+1
9: until st is terminal

10: end for

Topology of networks
Regular network
Regular network is built upon ring network, in which each
node (n nodes in total) connect with the nearest m nodes.
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And when m = n − 1, it’s a fully-connected network. See
Fig. 3 for an example.

Random network
Random graphs may be described simply by a probabil-
ity distribution, or by a random process which generates
them. A typical model is the ER-model in which each edge
has a fixed probability of being present or absent, inde-
pendently of the other edges. See Fig. 4 for an example.

Small world network
Small-world network is proposed to describe the interper-
sonal relationship in which each person is a node, and the
relationship (e.g., familiar or not) between two persons is
an edge. A certain category of small-world was developed
by Duncan Watts and Steven Strogatz. See Fig. 5 for an
example.

Scale free network
The nodes in scale-free network do not connected ran-
domly. Only a few of nodes serve as the center of the graph
which have higher degree and the others connect with
fewer nodes. See Fig. 6 for an example.

Coordination problem
In cooperative multi-agent systems, agents share common
interests. The agent will make its choice according to the
neighbors’ actions. Each agent in the environment makes
a choice and selects an action ai at each time step, then the
join action is �a = (a1, . . . , an), and afterwards, the whole
receives a join reward R(�a). The target of the coordination
problem is to find the best �a∗ which maximizes the total
reward R(�a)

( �a∗ = argmax�aR(�a)
)
. For the sake of expo-

sition, we define a cooperative multi-agent problem with

Fig. 3 Regular network

Fig. 4 Random network

only one state for each agent. Each of the two adjacent
agents play a two-agent n-action normal form game. In a
two-player, two-action, general-sum normal-form game,
the payoff for each player can be specified by a matrix as
show in Fig. 2. The agents have the same action space.
When the adjacent agent i, j select the same action, they
will both receive a reward of r(ai, aj) = +1, otherwise
r(ai, aj) = −1. We assume that agent i can observe each
neighbor’s action selection during the interaction and so
that can get some statistical information of each neighbor.
The symbols used in the following sections are described
bellow.

• n, number of agents.
• Ai, the action space of each agent i.
• Si, the state space of each agent i, each agent only

have one state here, that means no state transition.
• ri, the immediate reward of agent i.
• πi, the policy of agent i, πi → ai.
• �A, �A = A1 × ... × An, the joint action space of all

agents.
• �S, the joint state space of all agents.
• Qi(s, a), the local expectation of the discounted

reward for agent i selecting action a in state s.
• Q(�s, �a), the global expected reward of selecting joint

action �a in joint state �s.
• τ(i), all neighbors of agent i.
• CS(i), the coordination set of agent i, and agent i

should coordinate its action selection with the agents
in CS(i), CS(i) ⊆ τ(i).

• NC(i), the neighbors of agent i that are not in CS(i),
NC(i) = τ(i) \ CS(i).

• CG, coordination graph which is composed of the CS
of all agents.
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Fig. 5 Small world network

Coordinated learning with controlled interaction
Coordination graph
To solve the coordination problem, one straightforward
way is to loop through all the possible �a and select �a which
maximizes the total reward. However this is practically
intractable, due to the huge search space exponential to
the number of agents (which is |A1 × . . . × An|) and the
agents might not have access to the needed information
(e.g., all other agents’ actions and rewards). Luckily, in

practice, each agent’s choice only depends on a small set of
relevant agents. The coordination graphs (CGs) described
by Guestrin et al. [23] is a typical solution for this policy
dependency problem. In a coordination graph G = (V , E)

as shown in Fig. 7, each node represents an agent, and
each agent i’s reward only depend on the adjacent agents.
Each edge (i, j) ∈ E represents that the relevant agents
i, j have to coordinate their actions, and the related value
r(ai, aj) is the reward agent i, j will receive when selecting

Fig. 6 Scale free network
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Fig. 7 Coordination graph

action ai, aj respectively. The total reward R(�a) is the sum
of the individual reward r(ai, aj), as shown in Eq. (2).

R(�a) =
n∑

(i,j)∈E
r(ai, aj) (2)

Cooperative Q-learning
We use Q-learning to estimate the expectation of the long-
term feedback reward of the adjacent agents i, j choosing
action ai, aj, the bounded reward value in the edge of the
coordination graph ((i, j) ∈ E) is represented by Q(ai, aj).
An example of the modified coordination graph is shown
in Fig. 8. Our purpose is to find a policy that maximizes
the overall expected utility Q(�a)

(
π = argmax�a∈AQ(�a)

)
.

The global Q-learning update rule is shown in Eq. (3).

Fig. 8 Coordination graph with Q

Q(�st , �at) = Q (�st , �at)

+ α

[
rt + γ max

�at+1
Q (�st+1, �at+1) − Q (�st , �at)

]

(3)

Although the global join learning approach leads to an
optimal policy, it is practically intractable. In practice, it’s
possible to approximate the global utility Q(�a) by the sum
of the individual utility. Then, Q(�a) can be represented as:

Q(�st , �at) =
∑

(i,j)∈E
Qij

(
st
i,j, at

i , at
j

)
(4)

The global Q-Leaning update rule shown in Eq. (3) can
be rewritten as:
∑

(i,j)∈E
Qij

(
st
i,j, at

i , at
j

)
= (1 − α)

∑

(i,j)∈E
Qij

(
st
i,j, at

i , at
j

)

+ α

⎡

⎣
∑

(i,j)∈E
rt

ai ,aj + γ max �at+1Q (�st+1, �at+1)

⎤

⎦

(5)

where rt
ai,aj is the reward the adjacent agents i, j receive

when selecting the actions at
i , at

j respectively. Note that
the max �at+1Q(�st+1, �at+1) cannot be directly decom-
posed into the sum of the local discounted future
rewards, for it depends on the global joint action �a
which maximizes the global utility Q (�st+1, �at+1). We
should find the optimal joint action �a∗ where �a∗ =
(argmax)�aQ (st+1, �a). For �a∗ is a vector and can be
represented by

(
a∗

1, . . . , a∗
n
)
, max�at+1 Q (st+1, �at+1) =

Q (st+1, �a∗) = ∑
(i,j)∈E Qij

(
st+1
i,j , a∗

i , a∗
j

)
. So, for each pair

of agents, we have

Qij
(

st
i,j, at

i , at
j

)
= (1 − α)Qij

(
st
i,j, at

i , at
j

)

+ α
[
rt

ai,aj + γ Qij
(

st+1
i,j , a∗

i , a∗
j

)] (6)

What’s remaining unknown in Eq. (6) is the optimal action
a∗

i for each agent i. Since enumerate all the combinations
of the �a∗ is intractable, we use the message-passing DCOP
algorithm to find the optimal action a∗

i for each agent i in
next section.

Coordinated action selection
We use the Max-Plus algorithm proposed by J. R. Kok and
N. Vlassis. [21] to find a∗

i for each agent i. To compute the
optimal �a∗ for the whole, each agent sends a message to
each of its neighbors. The definition of the message from
agent i to agent j is defined as follows.

μij(aj) = max
ai

⎧
⎨

⎩
Qij(ai, aj) +

∑

k∈CS(i)\j
μki(ai)

⎫
⎬

⎭
+cij (7)

where CS(i)\j is the coordinated neighbors of agent i
except j, μki(ai) is the messages from agent i’s neighbors
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(except j) to i and the parameter ci,j is a standardization
item to prevent the value of the message being overflow.
Notice that for a given message μij(aj), the value only
depends on the target agent j’s action aj. Given an action
aj, the sender i can make a best response to maximize the
value of μij(aj). Each agent i in the CG will continuously
send an message μij(aj) to each of its neighbor j at every
decision point until the value of the message converges
to a stable value or the available time slots are used up
or the agent receives some termination signal. When the
messages over the whole network all become stable, each
message will contain the Qij(ai, aj) value bounded in every
edges (i, j) ∈ E. Therefore, maximizing the sum of the cur-
rent messages received from neighbors is to maximize the
global Q(�a) for each agent. Figure 9 gives an example of
the message passing over a 4-agent coordination graph. So
for each agent i, the best action a∗

i to maximize the global
utility is

a∗
i = (argmax)ai

∑

k∈CS(i)
μki(ai) (8)

Above all, the algorithm for each agent i to get the optimal
action a∗

i is described in Algorithm 2. For more details on
max-plus, refer to J. R. Kok and N. Vlassis’s paper [21].

Coordination set selection: random
For large problems, the messages passed in the network
are directly proportional to the number of edges of the CG
but the communication is limited. To reduce the commu-
nication times and frequency, we need to eliminate some
non-critical edges of the CG without significantly affect-
ing the system performance. In this subsection, we define
2 different methods to minimize the communication cost.

In this subsection, we use some random methods to
reduce the communication frequency.

Fig. 9 Message passing over a 4-agent graph

Algorithm 2 Coordinated action selection for each agent
i (centralized max-plus example)

1: Initialize μij = μji = 0 for each (i, j) ∈ E, m = −∞,
fixed_point = false;

2: while fixed_point = false and time slots haven’t been
used up do

3: fixed_point = true;
4: for each agent i do
5: for each neighbor j ∈ CS(i) of agent i do
6: Send message μij(aj) to agent j and

μij(aj)=maxai

{
Qij(ai, aj)+∑

k∈CSC(i)\j μki(ai)
}

+cij;
7: if μij(aj) differs from previous message by a

small threshold then
8: fixed_point = false;
9: end if

10: end for
11: determine gi(ai) = ∑

j∈CS(i) μji(ai),
and a′

i = (argmax)ai gi(ai);
12: if use anytime extension then
13: if gi(a′

i) > m then
14: a∗

i = a′
i, m = gi(a′

i);
15: end if
16: else
17: a∗

i = a′
i;

18: end if
19: set the optimal a∗

i for agent i;
20: end for
21: end while

• Random agents: For each agent i, during the learning
process, only δ percent of its neighbors τ(i) are
selected as the CS(i).

In addition to the Random methods, we add some decay
here.

• Random agents with decay: We first initialize an
δ = δ0. During the learning process, we randomly
select δ percent of the neighbors τ(i) as the CS(i) for
each agent i at each decision point. And then we
decrease the δ with some small decay (e.g.,
δ = δ − 0.01). With time going by, the δ will be
smaller and smaller until to the minimum value
specified (e.g., 0).

Coordination set selection: loss rate
To reduce the communication without significantly affect-
ing the system performance, we need to find out the
difference of communicating with an agent or not. For this
purpose, we divide the neighbors τ(i) of each agent i into
two groups: CS(i) and NC(i) as mentioned before. Each
agent i only has to communicate with the agents in CS(i)
to coordinate their actions.
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For agents in CS(i), we assume that they have coordi-
nated their actions well with agent i, and each of them
will try their best to maximize the total reward of the
group. And for agents in NC(i), each agent i will calcu-
late the expectation of the reward when ai is selected.
Qi(ai) = ∑

k∈NC(i)
∑

ak∈Ak
Pk(ak|ai)Qik(ai, ak), where

Pk(ak|ai) is the probability of neighbor k selecting action
ak when agent i selects ai. For a selected CS(i), the poten-
tial expected utility of selecting action ai PV (ai, CS(i))
is divided into two parts: agents in CS(i) and agents
in NC(i).

PVi(ai, CS(i)) =
∑

j∈CS(i)
max

aj
Qij(ai, aj)

+
∑

k∈NC(i)

∑

ak∈Ak

Pk(ak|ai)Qik(ai, ak)

(9)

Obviously, if CS1(i) ⊆ CS2(i) ⊆ τ(i), then for an action
ai, PVi(ai, CS1(i)) ≤ PVi(ai, CS2(i)).

Based on the potential expected utility, we define
the potential loss in lack of coordination with NC(i)
(PLi(NC(i)) for each agent i. It’s the difference of the
potential expected utility when agent i coordinates with
all of its neighbors τ(i) from that of agent i when it only
coordinates with CS(i).

PLi(NC(i)) = max
ai,ai∈Ai

PVi(ai, τ(i))

− max
ai,ai∈Ai

PVi(ai, CS(i))
(10)

Easily, we can find that (1) if NC1(i) ⊆ NC2(i) ⊆ τ(i),
then PLi(NC1(i)) ≤ PLi(NC2(i)). (2) PLi(∅) = 0. (3) for
each NC(i) ⊆ τ(i), 0 ≤ PLi(NC(i)) ≤ PLi(τ (i)).

Above all, each agent i will select the best coordination
set CS(i) according to the PL(τ (i)\CS(i)) to minimize the
loss of utility. The algorithm is described in Algorithm 3.
δ is the predefined loss rate. When δ = 0, each agent i will

Table 1 Parameter settings for “Norm Emergence Performance”
section

Parameter name Value

Agent number 50

Action number 2

Init explore rate 1.0

Delta explore rate 0.004 (IL:0.04)

Init learning rate 1.0

Delta learning rate 0.0005

Min learning rate 0.6

Message differ(max-plus) 0.00001

Message sent deadline(max-plus) 5

Algorithm 3 Select the best coordination set for each
agent i

1: Initialize maxLoss =
δ ∗ max{maxai PV (ai, τ(i)), PLi(τ (i))};

2: for each subset of τ(i) do
3: Find CS(i) ⊆ τ(i), such that:
4: (1) PL(τ (i)\CS(i)) ≤ maxLoss;
5: (2) PL(τ (i)\CS2(i)) ≥ maxLoss,for all CS2(i) ⊆ τ(i)

and |CS2(i)| < |CS(i)|;
6: (3) PL(τ (i)\CS(i)) ≤ PL(τ (i)\CS2(i)), for all

CS2(i) ⊆ τ(i) and |CS2(i)| = |CS(i)|;
7: end for
8: return CS(i)

coordinate with all neighbors and when δ = 1, each agent
i will not coordinate with any agent at all.
Learning processes with emergent coordination
Combining cooperative Q-learning, coordinated action
selection, and the coordination set selection, the coopera-
tive learning process is described in Algorithm 4.

Results and discussion
In this section, we evaluate the performance of our
algorithm on a large single-state problem. Firstly, we give
the common settings of the large single-state problem.

Algorithm 4 The cooperative learning process
1: Initialize Q(a, a) = 0,learning rate α = 1, explore rate

ε = 1;
2: while not converge do
3: for each agent i do
4: Randomly selects a neighbor j from its coordina-

tion set to interact;
5: Each agent selects a∗

i , a∗
j using the coordinated

action selection algorithm presented in Section
3.2;

6: Each agent selects the optimal action a∗
i , a∗

j with
some exploration (e.g., ε-greedy) and gets ai, aj
respectively.

7: Take the action ai, aj, observe the reward r(ai, aj)
and each other’s selected action.

8: Records the number of times agent i select ai and
agent j select aj to estimate Pj(aj|ai) and Pi(ai|aj);

9: Each agent updates its Q-table using the inde-
pendent Q-learning;

10: Agent i update its learning rate α and explore rate
ε with some decay;

11: Each agent updates its coordination set using the
coordination set selection algorithm;

12: end for
13: end while
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Then, we compare the norm emergence performance of
our algorithm with some existing approaches. At last,
we explore the effect of some important parameters and
the performance of different coordination set selection
methods proposed in “Coordination set selection: ran-
dom” and “Coordination set selection: loss rate” sections.

Large scale single-state problems
There is only one state for each agent, and the reward
function is defined in “Coordination problem” section
(See Fig. 2 for an example). The goal of the agents is to
learn and select a joint action which maximizes the global
reward. In the following subsections, without additional

a b

c d

e f

g h

Fig. 10 Norm emergence performance under different network topologies. Figure 10a Learning process (regular network); Fig. 10b Communication
times (regular network); Fig. 10c Learning process (random network); Fig. 10d Communication times (random network); Fig.10e Learning process
(small-world network); Fig. 10f Communication times (small-world network); Fig. 10g Learning process (scale-free network); Fig. 10h Communication
times (scale-free network)
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Table 2 Parameter settings for “The influence of random
parameter δ” section

Parameter name Value

Agent number 100

Action number 10

Init explore rate 1.0

Delta explore rate 0.003

Init learning rate 1.0

Delta learning rate 0.0005

Min learning rate 0.6

Init random rate 1, 0.5, 0.1, 0.05, 0.01

Delta random rate 0.005, 0.002, 0.0004, 0.0002, 0.000004

Message differ(max-plus) 0.00001

Message sent deadline(max-plus) 5

explanation, we consider 100 agents playing a 10-action
coordination game in which 10 norms exist. And the
agents distribute in a small-world network. The average
connection degree of the graph is set to 6.

Norm Emergence Performance
In this subsection, we compare the norm emergence
performance of our methods with two of the existing
approaches. For it’s difficult for the other two approaches
to reach the convergence, the number of agents used
here is 50 and the action number used is 2. The other
parameter settings are shown in Table 1.

• Independent Learners (IL): Each agent i uses the
independent Q-learning and adjusts its policy only
depend on its own action and reward. The
Q-function is updated according to Eq. (11).

Qi(s, ai) = Qi(s, ai)

+ α

[

r
(
s, a, s′

) + γ max
a′

i

Qi
(
s′, a′

i
) − Qi

(
s′, a′

i
)
]

(11)

• Distributed Value Functions (DVF): Each agent i
records a local Q-function based on its own action
and reward, and updates it incorporating with the
neighbors’ Q-function following equation 12. f (i, j) is
the contribution rate of agent j to agent i, and here is
1/|τ(i)|. For the stateless problem, we make an
adjustment that each agent select its action
considering the neighbors’ Q-function, that is
a∗

i = argmaxa∈Ai

∑
j∈{(i)∪τ(i)} f (i, j) maxa′

j
Qj

(
s′, a′

j

)
.

Qi(s, ai) = Qi(s, ai)

+ α

⎡

⎣r
(
s, a, s′

)+γ
∑

j∈{(i)∪τ(i)}
f (i, j) max

a′
j

Qj
(

s′, a′
j

)
−Qi

(
s′, a′

i
)
⎤

⎦

(12)

The norm emergence performance and the correspond-
ing communication times are shown in Fig. 10. The learn-
ing processes are shown in the left parts and the corre-
sponding message passing times over all agents are shown
in the right parts. Our methods show better learning per-
formance over all networks. We find that only in random
network, all the methods lead to quick norm emergency
as shown in Fig. 10c. In regular network, small-world net-
work and scale-free network, only our methods converge
to a global optimal in a few steps as shown in Fig. 10a, e
and g. The communication cost of our method is much
smaller than that of DVF (For IL, communication is not
needed).

Influence of key parameters
In this section, we investigate the influence of some key
parameters to the performance of norm emergence and
message passing times. The parameters of the compared
algorithm are the same other than the comparison one.

The influence of random parameter δ

In this subsection, we evaluate the influence of random
parameter δ introduced in “Coordination set selection:

a b

Fig. 11 Selecting the coordination sets with different randomness. Figure 11a dynamics of the average payoffs using 4 different random
parameters; Fig. 11b corresponding communication times
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a b

Fig. 12 Selecting the coordination sets with different decayed randomness. Figure 12a dynamics of the average payoffs using 5 different initialized
random parameters; Fig. 12b corresponding communication times

random” section. The parameter settings are shown in
Table 2. Figure 11 show the learning process of the agents
using different random coordination set selection meth-
ods. In Fig. 11a, we observe that all methods enable the
agents to reach a global optimal policy with an average
reward of 1. With the decrease of the random rate, more
rounds are needed to reach a global optimal. And from
Fig. 11b, we can see the corresponding communication
times over the whole network are reduced. Figure 12 show
the learning process of the agents using decayed random
methods. The 4 methods are initialized with different δ0
and different decay rate (see Table 2 for detail). Figure 12a
shows that with the decay of the initialization of δ0, more
rounds are needed. And when decay is added to the ran-
dom methods, the corresponding communication times
are significantly decreased without infecting the conver-
gence performance as shown in Fig. 12b. But when the
initialized δ0 is too small (δ0 = 0.001), the added decay
makes little difference to the communication but leads to
more learning rounds.

The influence of loss rate δ

In this subsection, we investigate the influence of the loss
rate δ defined in “Coordination set selection: loss rate”
section. The parameter settings are shown in Table 3. We
use the loss rate to identify the coordination set for each
agent. The size of the coordination set decreases with the
increase of the loss rate δ. The norm emergence perfor-
mance with different loss rate δ and the corresponding
communication times are shown in Fig. 13. From Fig. 13a,
we see that the norm emergence efficiency is reduced as
the increase of the loss rate δ. Given the other parameters
unchanged, we see that when δ <= 0.7, our method can
significantly reduce the communication without influenc-
ing the learning performance. When δ > 0.7, more time
is needed for the agent to reach a global optimal. When
δ > 0.9, our method may fail to converge in a few steps

with the same parameters and more exploration is needed.
The corresponding message passing times over all agents
are shown in Fig. 13b.

The influence of population size n
The influence of the population size is shown in Fig. 14.
We evaluate our methods in a group of agents range from
100 to 1000. The parameter settings are shown in Table 4.
We can clearly observe the norm emergence efficiency is
not influenced obviously as the increase of the population
size. Through the passing of messages, the agents coor-
dinate their actions in a few steps. And the results show
that our method scales well in large systems. Figure 14a
and b show the results using random methods and Fig. 14c
and d show the results using loss rate controlled methods.
The random rate and the loss rate here are set to 0.5. And
we can clearly observe the message passing times over
all agents are proportional to the number of agents from
Fig. 14b and d.

Table 3 Parameter settings for “The influence of loss rate δ”
section

Parameter name Value

Agent number 100

Action number 10

Init explore rate 1.0

Delta explore rate 0.004

Init learning rate 1.0

Delta learning rate 0.0005

Min learning rate 0.6

Loss rate None, 0, 0.01, 0.1, 0.5, 0.7, 0.9

Message differ(max-plus) 0.00001

Message sent deadline(max-plus) 5
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a b

Fig. 13 Selecting the coordination sets with different loss rate δ. Figure 13a dynamics of the average payoffs using different loss rates; Fig. 13b
corresponding message passing times

Conclusion
In this paper, we develop a framework based on the
max-plus algorithm to accelerate the norm emergence of
large cooperative MASs. With the limited communication
bandwidth, we propose two kinds of approaches to mini-
mize the communication cost: random and deterministic.
Random methods select the coordination set stochasti-
cally, while the deterministic methods identify the best
coordination set for each agent by limiting the utility loss

due to the lock of coordination. Both approaches signif-
icantly reduce links of the coordination graph and result
in less communication without deteriorating the learning
performance. Experiment results show that our methods
lead to better norm emergence performance under all
kinds of networks compared with the existing methods
and scale well in large populations. Thus, our methods can
efficiently accelerate the social norm emergence under
limited communication.

a b

c d

Fig. 14 Influence of population size. Figure 14a dynamics of the average payoffs(random); Fig. 14b corresponding message passing times(random);
Fig. 14c dynamics of the average payoffs(loss rate); Fig. 14d corresponding message passing times (loss rate);
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Table 4 Parameter settings for “The influence of population size n”
section

Parameter name Value

Agent number 100,200,500,1000

Action number 10

Init explore rate 1.0

Delta explore rate 0.004

Init learning rate 1.0

Delta learning rate 0.0005

Min learning rate 0.6

Message differ(max-plus) 0.00001

Message sent deadline(max-plus) 5

As future work, we will further investigate the perfor-
mance of our methods in more complicated games such
as Prisoner’s dilemma, to better reflecting the interaction
dynamics in cell systems. And we will evaluate our algo-
rithm on a simulated cell communication environment.
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