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Abstract

Background: Recently, measuring phenotype similarity began to play an important role in disease diagnosis.
Researchers have begun to pay attention to develop phenotype similarity measurement. However, existing methods
ignore the interactions between phenotype-associated proteins, which may lead to inaccurate phenotype similarity.

Results: We proposed a network-based method PhenoNet to calculate the similarity between phenotypes. We
localized phenotypes in the network and calculated the similarity between phenotype-associated modules by
modeling both the inter- and intra-similarity.

Conclusions: PhenoNet was evaluated on two independent evaluation datasets: gene ontology and gene expression
data. The result shows that PhenoNet performs better than the state-of-art methods on all evaluation tests.
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Background
Recently, advances in next generation sequencing (NGS)
have significantly improved the Mendelian disease diag-
nosis [1–4]. However, disease diagnosis only using
sequence-based approach is still challenging, since lots
of diseases have complex phenotypes and high genetic
heterogeneity. It is difficult to reveal the relationship
between genetic features and complex patient phenotypic
features [5].

In medical contexts, “phenotype” often refers to the
deviation from normal morphology, physiology, or behav-
ior [6]. Phenotype carries the biologically meaningful
information [7, 8]. Disease is usually the result of con-
genital or acquired mutations [9, 10], which causes the
phenotypes of diseases [11]. Therefore, phenotype plays
an important role in disease diagnosis process. Clin-
ical practice and medical research based on pheno-
type analysis have drawn great attention in recent years
[12–14]. Measuring phenotype similarity became one of
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the key components in disease diagnosis and understand-
ing the disease mechanism [15].

In the past few years, a lot of computational meth-
ods have been proposed to calculate phenotype similarity
[7, 11, 16–24]. These approaches can be loosely grouped
into two categories: text mining-based method and
ontology-based method. Text mining-based methods
measure the phenotype similarity by comparing texts
describing phenotypes. These methods extract features
from the descriptions and construct machine learning
models [25, 26] based on these features [7, 8]. Driel et al.
classified more than 5000 phenotypes based on texts
from the OMIM database [7]. They found the similarity
between phenotypes are positively correlated with pro-
tein sequence similarity and protein-protein interaction.
However, text data always results to ambiguous mean-
ings. For example, different words may represent the same
meaning.

To avoid ambiguous representation, a unified vocabu-
lary system was developed to describe phenotype, named
Human Phenotype Ontology (HPO). HPO is widely used
to describe human phenotypic abnormalities using a
structured, controlled and unified vocabularies, which
are constructed as a directed acyclic graph (DAG). The
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ontology-based method measures the phenotype similar-
ity based on the HPO. HPO-based semantic similarity has
been used to quantify the phenotypic similarity between
patient symptoms and known phenotypes related to a
gene [27, 28]. This type of method is based on hierarchi-
cal structure of HPO and the annotations of phenotypes
[11, 29–33]. Phenomizer and Masino et al. calculated
the similarity between phenotypes based on the infor-
mation content (IC) of their lowest common-ancestor in
HPO [27, 28]. Given a term t, its IC is calculated as:
IC(t) = −log |Dt |

D , where Dt and D represent annotation
set of t and all annotations involved in HPO respec-
tively. Performance evaluation shows that this method
performs better than the term matching-based approach
that ignores the semantic relation between terms. How-
ever, this method may be hindered by the noises in the
patient phenotype data [28]. A PageRank-based method,
named PhenoSim, was proposed to model the noises
in the patient phenotype data set before applying the
ontology-based method [23]. The evaluation test shows
that PhenoSim performs better than the IC-based method.
However, the ontology-based method relies on the hier-
archical structure of HPO, which makes it hard to distin-
guish the similarities between terms that have the same
lowest common ancestor. For example, let A, B and C
be terms with the same common ancestor. The ontology-
based method can not measure whether similarity of A
and B are higher than B and C. Furthermore, aforemen-
tioned existing methods ignores the interactions between
the proteins annotated by the phenotypes, which is critical
to understand the molecular basis of phenotypes.

Recently, network-based method has been proposed to
measure the similarity between diseases [20, 34–36]. The
similarity between two diseases is measured by explor-
ing the relationships between disease-associated proteins
within the interactome. Specifically, given disease da, db
and their associated gene set Ga and Gb, the similarity
between da and db is calculated as follows.

sab = hab − haa + hbb
2

(1)

where hab is the average of shortest distances of pro-
tein pairs across Ga and Gb. haa (hbb) is the average of
shortest distances in da (db). The evaluation test shows
that the network-based similarities have high correlation
with gene co-expression patterns, symptom similarities
and gene ontology-based similarities [20].

Unfortunately, to our knowledge, the network-based
model has not been used to measure the similarity
between phenotypes. To overcome the disadvantages
in aforementioned phenotype similarity measurements,
we present a network-based method, called PhenoNet,
to calculate the phenotype similarity by comparing the
phenotype-associated modules in the protein-protein

interaction network. We localize the phenotypes in the
network and propose a network-based method consid-
ering both intra- and inter-similarity of the phenotype-
associated modules, which can effectively use the rich
information in the network to measure the phenotype
similarity. Comparing with the existing approaches, the
contributions of our work are listed as follows:

• Our work indicates that phenotypes can be
represented by the network modules.

• To the best of our knowledge, PhenoNet is the first
phenotype similarity measurement based on the
interactome.

• We proposed a novel method to calculate similarity
between phenotypes considering both the inter- and
intra-similarity of the phenotype-associated module
in the network.

Methods
We propose a new network-based method called Phe-
noNet to measure the relationships between phenotypes
based on the biological network. Our model includes
four parts. Firstly, for each given phenotype p, we iden-
tify the corresponding module in the given biologi-
cal network, labeled as np. Secondly, statistical method
is used to test whether phenotypes could be repre-
sented by network modules. Thirdly, for each network
module np, we first calculate the internal similarity by
modeling the relationships among nodes in np. Finally,
given two phenotypes p1 and p2, their relationship is
measured based on corresponding network module np1
and np2 . The diagram of the whole process is shown
in Fig. 1.

Network modules identification
In order to measure the relationship between two phe-
notypes based on a biological network N, the first step
is to identify network modules in N to represent phe-
notypes. In this step, we will generate a set of network
modules corresponding to a set of phenotypes. In general,
network module means a group of nodes that associate
with a specific function, disease or phenotype etc. Given
a biological network N, our goal is to identify a network
module corresponding to a phenotype p.

HPO is constructed as a directed acyclic graph (DAG),
in which each term represents a phenotype. Each pheno-
type term p is related to a set of proteins Gp, which can
be used to identify the phenotype module in a given bio-
logical network. Specifically, given a biological network
N(V , E), a phenotype p and a set of proteins Gp related
to p, the network module of p in N is a subnetwork of N,
labeled as Np(V ′, E′). V ′ is the intersection set of V and
Gp. E′ is a subset of E, which connects the nodes in E′.
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Fig. 1 The workflow of PhenoNet

Network localization
Given a network module, we test whether proteins in a
network module can agglomerate in specific interactome
neighborhoods. If a network module of a phenotype is
a highly interconnected group of proteins, the pheno-
type could be represented by a network module. Then,
we could measure the relations between phenotypes by
comparing network modules that represent phenotypes.

We used two metrics to quantify the localization of the
identified network module. One is the module size. Mod-
ule size is defined as the number of proteins contained
in the largest connected subnetwork of a network mod-
ule. The other is the shortest distance. For each protein,
the shortest distance is defined as the distance to the
closest protein in the same network module. Given a net-
work module NA of phenotype A, the shortest distance is
defined as follows.

dA =
∑

v∈NA
dv

|NA| (2)

where dv is the shortest distance of a protein v in the net-
work module NA. In the illustrative example in Fig. 2, the
module sizes of network modules corresponding to phe-
notype A and B are 4 and 3 respectively. The shortest dis-
tances of network modules corresponding to phenotype A
and B are 4 and 5 respectively.

To test whether the proteins in a network module
agglomerate together, we compare the module size and
shortest distance of a network module with a random con-
trol. Given a phenotype A and its corresponding network
module NA, we randomize the phenotype associations of
proteins and generate a random network module N ′

A on
the given PPI network. N ′

A includes the same number of
proteins as NA. Given a phenotype, we repeat this pro-
cedure 100,000 times to obtain 100,000 network modules
corresponding to A. Based on the randomly generated

network modules, we can calculate the statistical signifi-
cance of the real data. For both module size and shortest
distance, we estimate the mean values and standard devia-
tions. Given a network module NA, the z−score of module
size is calculated as follows.

Fig. 2 An illustration example of protein-protein interaction network.
In this network, network module of phenotype A consists of the
nodes with green circle. Network module of phenotype B consists of
the nodes filled with orange. Specifically, phenotype B is split into two
components
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zsize
A = sA − μ1

σ1
(3)

where sA is the module size of NA. μ1 and σ1 represent the
mean value and standard deviation of module size based
on the randomly generated network modules.

Similarly, the z − score of shortest distance is calculated
as follows.

zdis
A = dNA − μ2

σ2
(4)

where dNA is the shortest path of NA. μ2 and σ2 represent
the mean value and standard deviation of shortest path
based on the randomly generated network modules.

We could also obtain the corresponding p-value for each
z − score after calculating the z − score for every net-
work module identified in the network. Therefore, we
can test whether proteins in a identified network module
are highly interconnected via the statistical significance of
module size and shortest distance.

Phenotype internal similarity calculation
The similarity between two phenotypes could be mea-
sured by measuring the distance between their corre-
sponding network modules in a network. To calculate
the similarity between two network modules, we consider
both the internal similarity in each network module and
similarity between network modules. The idea is inspired
by the traditional clustering evaluation method that both
inter- and intra- similarity should be considered. Given
two network modules NA and NB, their similarity in the
network is proportional to the intra-similarity of NA (NB)
and the inter-similarity between NA and NB.

The intra-similarity of phenotype NA is defined as the
average of pairwise similarities between proteins con-
tained in NA. The similarity between two proteins i and j
is defined as follows.

Sim(i, j) = 1
ds(i, j)

(5)

where ds(i, j) is the length of the shortest path between
i and j. Mathematically, the intra-similarity of network
module NA is defined as follows.

Simintra(NA) =
∑

i∈NA

∑
j∈NA,j �=i Sim(i, j)

|NA| × (|NA| − 1)
(6)

The intra-similarity of a network module can be calcu-
lated based on Eq. 6. Intra-similarity can reflect whether a
network module agglomerate together in the network.

Similarity between phenotypes calculation
The network-based similarity of phenotype A and B can
be quantified by comparing the similarity between net-
work module NA and NB corresponding to A and B
respectively.

As we described previously, the similarity between two
network modules is determined by both intra- and inter-
similarity. The inter-similarity between phenotype NA and
NB is calculated based on pairwise similarities between
proteins in different network modules. Let i be a pro-
tein involved in NA, the similarity between i and NB is
computed with the following equation:

Si→NB =
{ ∑

j∈NB Sim(i,j)
|NB| , i �= j

1, i = j
(7)

where Sim(i, j) is the similarity between protein i and j (see
Eq. 5), |NB| represents the number of proteins involved in
the network module NB. Particularly, if i and j are identi-
cal, the similarity value is set as 1. Then, we can calculate
the inter-similarity between two network modules NA and
NB with following equation:

Siminter(NA, NB) = 1
2

(∑
i∈NA

Si→NB

|NA| +
∑

i∈NB Si→|NA|
|NB|

)

(8)

where |NA| and |NB| represent the number of proteins
involved in the network module NA and NB respectively.
Equation 8 includes two parts: the average of similarities
between each protein i ∈ NA and NB; the average of sim-
ilarities between each protein i ∈ NB and NA. Note that
the aforementioned two parts are asymmetric. To avoid
the asymmetry result, the inter-similarity of two network
modules are calculated as Eq. 8.

By considering both inter- and intra- similarity, the
similarity between two network module NA and NB cor-
responding to phenotype A and B is calculated as follows.

Sim(A, B)=Siminter(NA, NB)− Simintra(NA)+Simintra(NB)

2
(9)

where A and B are two phenotypes, NA and NB are two
network modules in the PPI network corresponding to A
and B respectively.

Results and discussion
PhenoNet implementation and data preparation
PhenoNet was implemented with Python 2.7 and networkx
library. HPO data was downloaded from the HPO website
in Apr. 2016 (http://human-phenotype-ontology.github.
io/downloads.html). HPO data contains 11786 human
phenotype terms. There exist relationships (is_a) between
HPO terms. We used this relationship to generate HPO
term tree firstly. Then we up-propagated the HPO terms
with the hierarchy of the full HPO tree. From the phe-
notype terms we selected the HPO terms with at least
25 genes based on the percolation theory, for the reason

http://human-phenotype-ontology.github.io/downloads.html
http://human-phenotype-ontology.github.io/downloads.html
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Fig. 3 Module size distribution of the random models based on phenotype “HP:0000089”. The module size of random models is less than the
phenotype

that our protein-protein interaction network is incom-
plete. Since our goal is to compute the similarity between
different phenotypes, we deleted all the parent terms from
the term sets obtained in the former step in order to elim-
inate the influence from parent-son relationships. Finally
we used 1061 HPO terms in our experiment.

GO data was downloaded from GO website in Nov.
2016 (www.geneontology.org/). We only used the annota-
tions with high confidence. Specifically, the selected anno-
tations are associated with the following evidence codes:
EXP, IDA, IMP, IGI, IEP, ISS, ISA, ISM and ISO. And we
ignored the annotations with evidence code IPI to avoid

the logical cycle of the performance evaluation, since the
protein-protein interaction network that used to calculate
the phenotype similarity is constructed by the physical
protein-protein interactions. We also removed the anno-
tations with a non-empty “qualifier” column [37]. The
annotations of a GO term includes its direct annotations
and annotations of its descendants.

The gene expression data was from (http://www.
ncbi.nlm.nih.gov/geo, downloaded Jan. 2017) [38]. We
excluded nine unhealthy tissue data of the 79 tissues in the
dataset [20]. The highest expression value is selected when
an mRNA has multiple transcripts. After mapping mRNA

Fig. 4 z − score of 1061 HPO terms based on their module size. Eight hundred seventy two phenotypes are significant. Points in the gray area
represent the phenotypes which are not significant

www.geneontology.org/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Fig. 5 Shortest distance distribution of the random set based on HP:0000089. The shortest distance of phenotype “HP:0000089” is smaller than the
randomly set. The x-axis is the shortest distance. The y-axis is the probability of each shortest distance. Let s be the size of HPO, ni be the number of
shortest distance i (i can be 1,2,3,4), then the probability is calculated by ni

100000∗s

to gene, we totally obtained 2849 genes with expression
value.

The interactome generated by Menche et al. was used in
the following tests [20], which integrated several databases
with seven types of physical interactions: regulatory
interactions [39], binary interactions [40–44], literature
curated interactions [45–47], metabolic enzyme-coupled
interactions [48], protein complexes [49], kinase net-
work (kinase-substrate pairs) [50] and signaling interac-
tions [51]. The final PPI interaction network includes
141,296 interactions between 13,460 proteins. Note that
the interactions extracted from gene expression data or
evolutionary considerations are not included.

Network localization
We used phenotype module size and the shortest dis-
tance to test whether these phenotype proteins tend to
agglomerate in the protein-protein interaction network.
Taking phenotype “Renal hypoplasia (HP: 0000089)” as
an example, the average module size of the randomly
generated models is significantly less than the real mod-
ule size (the number is 22) of term HP: 0000089 (Fig. 3,
p-value ≤ 10−5, the threshold of z − score is z − score
≥ 1.6, p-value ≤ 0.05). Overall, 872 of 1061 phenotypes
are statistically significant based on module size. The
z − score based on the module sizes of these phenotypes
are shown in Fig. 4. It shows that the module sizes of

Fig. 6 Distribution for z − score of 1061 HPO terms on shortest distance. The pink and blue bars represent the distribution of localized and
not-localized respectively. The average numbers of proteins associated with localized and not-localized phenotypes are 82 and 40 respectively
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Table 1 The Pearson correlation coefficient and R2 score
between three methods and GO-based similarity

GO term Measure Ontology-based Menche PhenoNet

BP PCC Median 0.58 0.82 0.96

Mean 0.66 0.89 0.96

R2 Median 0.35 0.69 0.93

Mean 0.43 0.79 0.92

MF PCC Median 0.43 0.61 0.94

Mean 0.48 0.66 0.95

R2 Median 0.17 0.37 0.87

Mean 0.23 0.44 0.91

The highest values were highlighted in boldface

most phenotypes are significant, indicating that proteins
involved in the same phenotype tend to be connected.

For the shortest distance, we also take phenotype
“HP: 0000089” as an example. Figure 5 shows that the
shortest distance of the randomly generated modules is

significantly larger than the real phenotype “HP: 0000089”
(z − score = -5.51, p-value ≤ 10−5). The results indi-
cate that proteins associated with one phenotype are
usually a group of interconnected nodes in the network
instead of dispersing across the whole network. Over-
all, 969 of 1061 phenotypes have significantly shorter
distances compared to the random distribution (Fig. 6).
The black and yellow line in the figure show the aver-
age number of phenotype proteins of the well-localized
phenotypes and not-localized phenotypes (82 and 40
respectively).

In summary, the proteins involved in a phenotype have
shown a statistically significant tendency to agglomerate
together in the network based on both module size and
shortest distance.

Performance evaluation on gene ontology dataset
To evaluate the performance of PhenoNet, we employed
GO-based similarity as the independent evidence to com-
pare the performance of PhenoNet with two existing

Fig. 7 Phenotype similarity versus GO term similarity. The x-axis shows the similarity calculated by three methods: ontology-based (a), Menche’s
method (b) and PhenoNet (c). The y-axis is GO term similarity based on biological process category
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algorithms, i.e. ontology-based method [29] and Menche’s
method [20]. Ontology-based method calculated the phe-
notype similarity based on the IC of the lowest common
ancestor of the phenotypes in HPO. Menche’s method
[20] is a network-based method which was used to mea-
sure the disease similarity.

The idea is that the network-based similarity between
phenotypes should be correlated with the GO-based sim-
ilarity. Given two phenotypes p1 and p2, let G1 and G2 be
the protein sets associated with p1 and p2 respectively. By
adopting the method used in [20], the similarity between
p1 and p2 is measured by the average of all protein pairs
between G1 and G2 (Equation 10).

Simphe(p1, p2) = 1
|G1| × |G2|

∑

gi∈G1,gj∈G2

Simpro(gi, gj)

(10)

Simpro(gi, gj) is the functional similarity between gi and
gj based on GO. It is defined based on the specificity of

shared GO annotations as: Simpro(gi, gj) = 2
nt

. nt is the to-
tal number of proteins annotated to the most specific GO
term t shared by gi and gj. Particularly, Simpro(gi, gj) = 1 if
gi and gj are the only two proteins annotated by a specific
GO term.

With the similarity between phenotypes based on GO
functional similarity, we can compare PhenoNet with
other existing methods. Firstly, we tested the performance
of PhenoNet with the functional similarity based on GO
biological process category. In general, PhenoNet per-
forms better than other methods (Table 1). Figure 7 shows
that similarities based on all three methods are correlated
with GO BP category-based similarities. Quantification-
ally, Pearson correlation coefficient (PCC) scores [52] of
PhenoNet on median and mean value are both 0.96, which
are higher than the second best method Menche’s (0.82
and 0.89). Furthermore, the R2 scores [53] of PhenoNet
on the median and mean value are 0.93 and 0.92, which
are 0.24 and 0.13 higher than the second best method
Menche’s respectively. Similarly, we also compared the

Fig. 8 Phenotype similarity versus GO term similarity. The x-axis shows the similarity calculated by three methods: ontology-based (a), Menche’s
method (b) and PhenoNet (c). The y-axis is GO term similarity based on molecular function category
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three methods based on the GO molecular function (MF)
category. Figure 8 shows that only PhenoNet similarities
increase steadily with the increase of the GO MF-based
similarities. In general, the performance of PhenoNet
is significantly higher than other methods. Specifically,
Pearson correlation coefficient (PCC) scores of PhenoNet
on the median and mean value are 0.94 and 0.95 respec-
tively, which are 0.33 and 0.29 higher than the second best
method Menche’s. In addition, the R2 scores of PhenoNet
on median and mean value are more than two times of
the second best method Menche’s, which are 0.37 and 0.44
respectively.

All the results indicate that PhenoNet can calculate
the similarity between phenotypes effectively and has
stronger correlation with GO term-based similarity than
other existing methods.

Performance evaluation on co-expression dataset
To evaluate the performance of PhenoNet, we also used
the expression similarity of genes associated with two

phenotypes as an independent evidence to test the com-
pared three methods. This evaluation method was bor-
rowed from previous research [20].

We first computed the Spearman correlation coeffi-
cient ρ(gi, gj) [54] between gene gi and gene gj. Given
two phenotypes p1 and p2, let G1 and G2 be the protein
sets associated with p1 and p2 respectively. The expres-
sion similarity between two phenotypes is defined as the
average of |ρ(gi, gj)| over all protein pairs between G1 and
G2 (Eq. 11).

Simphe(p1, p2) = 1
|G1| × |G2|

∑

gi∈G1,gj∈G2

|ρ(gi, gj)|

(11)

We also compared our method with ontology-based and
Menche’s method. The result shows that both PhenoNet
and Menche’s method are correlated with the expression
similarity (Fig. 9). There is no correlation trend between
ontology-based method and expression similarity. In

Fig. 9 The comparison among three methods evaluated by gene co-expression analysis. The x-axis is the result of these three methods:
ontology-based (a), Menche’s method (b) and PhenoNet (c). The y-axis is gene co-expression similarity



Peng et al. BMC Bioinformatics 2018, 19(Suppl 5):114 Page 74 of 87

Table 2 The Pearson correlation coefficient and R2 score
between three methods and gene co-expression similarity

Measure Ontology-based Menche PhenoNet

PCC Median 0.42 0.93 0.96

Mean 0.42 0.94 0.97

R2 Median 0.16 0.86 0.93

Mean 0.17 0.90 0.95

The highest values were highlighted in boldface

general, PhenoNet performs better than other methods.
We also calculated Pearson correlation coefficient (PCC)
scores of every method on the median and mean value of
scores in each bar in Fig. 9. Pearson correlation coefficient
(PCC) score of PhenoNet on median is 0.96, while the
scores of Menche’s method and ontology-based method
are 0.93 and 0.42 respectively. Pearson correlation coeffi-
cient (PCC) score of PhenoNet on mean is 0.97, while the
scores of Menche’s method and ontology-based method
are 0.94 and 0.42 respectively (Table 2). In addition, we
also calculated the R2 score for each method. The R2

scores of PhenoNet on median and mean value are 0.93
and 0.95, which are higher than the second best Menche’s
method (0.86 and 0.90 respectively).

These results indicate that PhenoNet can calculate
the similarity between phenotypes effectively and has
stronger correlation with expression similarity than other
existing methods.

Significance of differentiating similar and dissimilar
phenotypes
To test whether PhenoNet can differentiate similar
and dissimilar phenotypes efficiently, we compared the

PhenoNet score of similar phenotype pairs and dissimi-
lar phenotype pairs. The phenotype pairs with “high” and
“low” PhenoNet scores are defined as similar and dissimi-
lar set respectively. Specifically, the similar and dissimilar
phenotype pairs are defined based on the following sta-
tistical model. Firstly, 100, 000 pairs of phenotypes are
selected randomly, saved as Pran. The similarities of phe-
notype pairs in Pran are calculated to obtain the distribu-
tion of the similarities. Secondly, we computed the p-value
of each pair. Phenotype pairs with p-value ≤ − 0.05 and
p-value ≥ 0.05 are defined as dissimilar and sim-
ilar phenotype pairs respectively. Figure 10 shows
the distribution of similarities. The two red lines
in Fig. 10 represent the boundary of similarity and
dissimilarity.

After we obtain the similar and dissimilar set, we can
test whether the similar and dissimilar pairs of pheno-
types are significantly different based on different inde-
pendent evidences. The similarities of phenotype pairs
are calculated based on three GO categories (MF, CC,
BP) and gene expression data respectively. Then, we
test whether the similarities of similar set and dissimi-
lar set are significantly different. The results show that
the similarities of similar set and dissimilar set are sig-
nificantly different (Fig. 11, Mann-Whitney U test [55],
p-value ≤ 1.6 × 10−12). In Fig. 11, the bars repre-
sent the mean value of the similarities of phenotype
pairs in the similar or dissimilar set. The results show
that the mean values of dissimilar set are smaller than
the mean values of similar set based on all four inde-
pendence evidences. These results indicate that Phe-
noNet can differentiate similar and dissimilar phenotypes
efficiently.

Fig. 10 Similarity distribution of all phenotype pairs. The similarity ranges from -0.25 to 0.75, and the red lines indicate the boundary similarity scores
of significantly similar or dissimilar pairs



Peng et al. BMC Bioinformatics 2018, 19(Suppl 5):114 Page 75 of 87

Fig. 11 Comparison between similar and dissimilar phenotype pairs. We compare them(the x-axis) in terms of GO-based similarity and gene
co-expression similarity (the y-axis). p-value (Mann-Whitney U test) shows the similar and dissimilar pairs of phenotypes are significantly different

Conclusions
Phenotype similarity calculation plays a key role in disease
diagnosis. Recently, some methods have been proposed
to measure the phenotype similarity. These measures
can be grouped into three categories: text mining-based,
ontology-based. However, the existing methods can not
distinguish the similarities between terms with the same
common ancestor and ignore the interactions between
annotated proteins by phenotypes. In this paper, we
proposed a network based method, called PhenoNet, to
calculate the phenotype similarity. PhenoNet includes
three steps: network modules identification, network
localization, phenotype internal similarity calculation and
phenotype similarity calculation. The network localiza-
tion test shows that phenotypes can be represented by
network modules. We compared PhenoNet with two
existing methods: ontology-based method and Menche’s
method. Furthermore, based on two independent evalua-
tion datasets (gene ontology and gene co-expression data),
evaluation test shows that PhenoNet performs better than
existing methods. Our work opens a new window for phe-
notype similarity calculation, which may be potentially
helpful to disease diagnosis.
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