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Abstract

Background: Transcription factor (TF) binding site specificity is commonly represented by some form of matrix
model in which the positions in the binding site are assumed to contribute independently to the site’s activity. The
independence assumption is known to be an approximation, often a good one but sometimes poor. Alternative
approaches have been developed that use k-mers (DNA “words” of length k) to account for the non-independence,
and more recently DNA structural parameters have been incorporated into the models. ChIP-seq data are often
used to assess the discriminatory power of motifs and to compare different models. However, to measure the
improvement due to using more complex models, one must compare to optimized matrix models.

Results: We describe a program “Discriminative Additive Model Optimization” (DAMO) that uses positive and
negative examples, as in ChIP-seq data, and finds the additive position weight matrix (PWM) that maximizes the
Area Under the Receiver Operating Characteristic Curve (AUROC). We compare to a recent study where structural
parameters, serving as features in a gradient boosting classifier algorithm, are shown to improve the AUROC over
JASPAR position frequency matrices (PFMs). In agreement with the previous results, we find that adding structural
parameters gives the largest improvement, but most of the gain can be obtained by an optimized PWM and nearly
all of the gain can be obtained with a di-nucleotide extension to the PWM.

Conclusion: To appropriately compare different models for TF bind sites, optimized models must be used. PWMs
and their extensions are good representations of binding specificity for most TFs, and more complex models,
including the incorporation of DNA shape features and gradient boosting classifiers, provide only moderate
improvements for a few TFs.
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Background
The interaction between proteins and genomic DNA
plays a crucial role in many important cellular processes.
For instance, the RNA polymerase interacts with DNA
during transcription and uses it as a template for RNA
synthesis [1] and the formation of nucleosomes involves
histones and DNA binding together to form a well-
defined three-dimensional structure [2]. Some epigenetic
modifications such as DNA methylation, which alter DNA
accessibility and chromatin structures, are carried out by
the DNA methyltransferase and other proteins that mainly

target CpG di-nucleotides [3]. The sequence-specific tran-
scription factors (TFs) are a special class of DNA-binding
proteins that recognize specific DNA sequences and pri-
marily regulate gene expression [4, 5]. In most species,
they constitute between 5% and 10% of all genes [6–8].
Although some prominent TFs, including Sox [9], AP-1
[10, 11] and Sp1 [12], have been studied extensively, the
binding specificities of most TFs are poorly documented
even in many well-studied species [13]. In recent years,
several high-throughput experimental techniques, such as
high-throughput SELEX (HT-SELEX), protein-binding
microarrays (PBMs) and ChIP-seq, have been developed
to estimate the relative binding affinities of large numbers
of DNA sequences both in vitro and in vivo [14–17].
These techniques have greatly accelerated the study of TF
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binding specificity [4], but the analysis of their results
proves challenging and requires the development of novel
TF binding models and motif discovery algorithms.
The specificity of TFs is commonly represented by

matrix models, of which there are several varieties [18].
In probabilistic models, such as position frequency
matrices (PFMs), the matrix elements are the probability
of each base occurring at each position in the binding
site and the probability of a specific site is the product
of those probabilities for the base at each position. In a
more general position weight matrix (PWM), the
elements of the matrix are added together to get the
score for a specific binding site. Trained on quantitative
binding data, regression methods can be used to obtain
matrix elements that correspond to energy contributions
of each base at each position [19–21]. All matrix models
have in common the assumption that the positions of a
binding site contribute independently to its activity, an
assumption that is often a good approximation but not
always [22–24]. More complex models utilize k-mers,
short DNA words of length k, to account for non-
independence between positions [21, 22, 25–27].
Recently there have been several studies showing that
variations in DNA shape can influence TF binding
affinity, and that those contributions may involve non-
independence between positions [28–31]. DNAshape is
a program that predicts DNA structural features in a
high-throughput manner based on Monte Carlo simula-
tions of DNA fragments [32]. The Genome Browser for
DNA shape annotations (GBshape), a database based on
DNAshape and related computational tools, provides
DNA shape feature predictions for a range of organisms
[33]. Those resources were used in a recent study where
motif models using gradient boosting classifiers were
trained to differentiate ChIP-seq peaks from random
background sequences, showing that adding DNA shape
features can significantly improve the accuracy of the
classifiers [34].
In this report, we replicate the results of Mathelier et

al. [34] and we compare the performance of the gradient
boosting classifiers to simple PWMs generated by
DAMO, a perceptron-based optimization method that
finds the optimal PWM with the highest area under the
receiver operating characteristic curve (AUROC).
DAMO is similar to our previously described DiMO
[35], but where DiMO provided optimized PFMs,
DAMO provides optimized PWMs which have recently
been shown to avoid the inherent limitations of prob-
abilistic models [36]. DAMO also allows for the inclu-
sion of adjacent di-nucleotides if the independence
assumption provides poor performance. Our results
confirm that adding DNA shape features in a gradient
boosting classifier does significantly improve the per-
formance over the initial JASPAR PFMs, but also show

that most of the improvement can be obtained with
optimal PWMs, and adding di-nucleotide contributions
performs nearly as well as the much more complex gra-
dient boosting classifiers including shape parameters.

Methods
JASPAR PFMs
Following the study of Mathelier et al. [34], we obtained
75 JASPAR PFMs that can be associated with ChIP-seq
datasets generated by the ENCODE project [37]. (Their
work included 76 PFMs but one of those (ID:
MA0133.1) is no longer available in the March 2017
JASPAR CORE collection).

ChIP-seq datasets
We used the same ChIP-seq datasets analyzed by
Mathelier et al. [34] and downloaded 396 uniformly
processed human ENCODE ChIP-seq datasets associ-
ated with the 75 JASPAR PFMs from the UCSC Genome
Browser [38]. For each ChIP-seq peak, we retrieved the
100 bp sequence centered on the point-source of the
peak from the human genome assembly hg19, which
serves as a positive sequence for training and testing TF
binding models. For each positive sequence, we also
constructed a negative sequence, which is the 100 bp
sequence 100 bp downstream from the positive sequence
in the human genome. We also tested performance
when the negative sequences were obtained from
5000 bp downstream. For each ChIP-seq dataset, we
constructed 10 training and 10 testing sets for 10-fold
cross-validation, where each training set is 9 times the
size of a testing set. We also tested performance when
the training set and testing set were each only 10% of
the total data.

DNA shape features
We retrieved the same DNA shape features used by
Mathelier et al. [34] from GBshape [33]. The features in-
clude the helix twist (HelT), the minor groove width
(MGW), the propeller twist (ProT), the roll (Roll), and
the corresponding second-order shape features. These
features were only used for training and testing models
designated with “+ shape”.

Motif optimization algorithms evaluated
Table 1 lists the motif optimization algorithms evaluated
in this study. Of the 9 algorithms, 5 are based on the
DNAshapedTFBS program, which trains a binary classi-
fier using the gradient boosting algorithm [34]. These 5
algorithms differ in two aspects: 1) how the feature
vector is encoded, and 2) whether the feature vector
includes DNA shape features. In the 4bit encoding,
which was used by Mathelier et al., A is encoded as
1000, T as 0100, G as 0010, and C as 0001. In JASPAR +
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shape and DAMO + shape the sequence information is
included simply as a score from a matrix model and in
Shape_only it is not included at all. The remaining 4
algorithms are simple matrix models from the single nu-
cleotide and adjacent di-nucleotide mode of the DAMO
program, the JASPAR PFMs and PFMs obtained from
the DAMO PWMs (which are equivalent to the original
DiMO PFMs). DAMO is a Python implementation of
the DiMO program, which is based on perceptron learn-
ing and finds the optimal PWM by maximizing its
AUROC score [35]. The original DiMO program outputs
a normalized PFM derived from the optimal PWM, even
though it uses a PWM internally for optimization. Be-
cause PWMs do not have the limitations of probabilistic
PFMs [36], we configured the DAMO program to
output the optimal PWM directly and we also allow for
adjacent di-nucleotides to be included to capture non-
independent contributions from adjacent positions in
the binding sites [21, 27].

Training and testing binding models
The training and testing procedures are based on the
methods described by Mathelier et al. [34].

Preprocessing
We first use the JASPAR PFM to scan all the positive
and negative sequences in both the training and testing
set, and identify the best binding site, which has the
same length as the PFM, within each sequence. Then we
use the DNAshapedTFBS program to extract the DNA
sequence of each best site and the corresponding DNA
shape features. The sequences of the best sites, instead
of the full-length positive and negative sequences, are
used in the following steps for training and testing TF
binding models. This means that we are not testing
motif discovery algorithms, because the positive and
negative sites are predefined. Rather, we are testing how
well models of different complexity can perform classifi-
cation after optimization for that task (except for the
original JASPAR PFMs).

Training
The training procedure depends on the motif
optimization algorithm. For the DNAshapedTFBS-based
methods, we first construct, for each best site in the
training set, a feature vector containing its JASPAR PFM
score, the DAMO PWM score or encoded DNA se-
quence. If the method takes account of the DNA shape
features, the feature vector also contains the normalized
values of the 8 DNA shape features at each position.
Then a gradient boosting classifier is trained on the
positive and negative feature vectors. For DAMO, the
sequences of the positive and negative sites are directly
fed into the program along with the JASPAR PFM,
which serves as a seed matrix. DAMO then finds the op-
timal PWM that maximizes the AUROC on the training
set, using the perceptron training algorithm. The percep-
tron training, described in detail previously [35], updates
the PWM by error correction on the mis-classified sites,
those in the positive set with lower scores than the best
negative site, and the negative sites with scores higher
than the lowest positive site, and training proceeds until
convergence. The sequences can be encoded using
adjacent dinucleotides to capture non-independent
contributions between those positions [18, 21, 27]. The
DAMO_PFM model is obtained by considering the
DAMO PWMs scores as energies and converting to
normalized probabilities (as in the original DiMO
approach [35]).

Testing
The testing procedure is the same for all the algorithms.
The trained gradient boosting classifiers and the differ-
ent PFM and PWM models are used to score all the
positive and negative sites in the testing set. Those
scores are used to rank the sites and compute the area
under the precision recall curve (AUPRC) and the area
under the receiver operating characteristic curve
(AUROC) based on the true labels of the ranked sites.
We report the mean values and standard deviations
from ten-fold cross-validation tests.

Table 1 Descriptions of the motif optimization algorithms evaluated

Algorithm Output Description

JASPAR Position frequency matrix PFMs from the JASPAR database

DAMO Position weight matrix Modified DiMO program that outputs PWMs instead of PFMs

DAMO_PFM Position frequency matrix PFMs derived from the DAMO single-nucleotide PWMs

DAMO_dinuc Position weight matrix The adjacent di-nucleotide mode of DAMO

DNAshapedTFBS_4bit Gradient boosting classifier DNAshapedTFBS with 4-bit encoding

DNAshapedTFBS_4bit + shape Gradient boosting classifier DNAshapedTFBS_4bit plus DNA shape features

Shape_only Gradient boosting classifier The feature vector contains only DNA shape features

JASPAR + shape Gradient boosting classifier JASPAR PFM score plus DNA shape features

DAMO + shape Gradient boosting classifier DAMO single-nucleotide PWM score plus DNA shape features
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Results
For each algorithm, the mean and standard deviation of
the AUPRC scores for the 396 samples, on both training
and testing sets, are summarized in Table 2. (AUROC
scores are reported in Additional file 1: Table S1.) As
reported previously, adding shape parameters to the
JASPAR PFMs significantly improves the AUPRC [34].
We obtain a mean increase of 0.034, equivalent to
adding shape parameters to the DAMO scores, and lar-
ger than the improvement of any other model. But just
optimizing the PFM, with the DAMO_PFM model, cap-
tures about 35% of the total improvement. The PWM
obtained by DAMO provides nearly 60% of the total
improvement and demonstrates the inherent advantage
of a PWM model over a PFM model as we showed
previously [36]. Adding parameters for adjacent di-
nucleotides captures nearly 80% of the improvement
over the JASPAR PFM model. All of those models are
simple matrix models where the positions contribute
independently to the total score of a site, except that in
the DAMO_dinuc model the adjacent dinucleotides
contribute additively to the score. The gradient boosting
classifiers, which use an ensemble of decision trees for
classification, are complex non-linear models even with-
out the shape parameters. The 4bit model, whose input
is only the sequence, increases performance to 88% of
the best model and adding shape parameters to the 4bit
classifier increases performance to essentially the same
as JASPAR + shape and DAMO + shape. Interestingly,
the Shape_only model does nearly as well as any other
gradient boosting classifier model, indicating that the
shape parameters inherently contain the sequence infor-
mation (see Discussion). We also tested performance
when the negative sequence set was selected at a
distance of 5000 bp instead of 100 bp downstream
(Additional file 2: Tables S2). In that case the perform-
ance on both the training and testing sets was increased,
probably because sequences in the negative set that are
only 100 bp downstream of the ChIP-seq peak may also
contain true binding sites. But the overall results are

consistent with the initial findings. While the increase in
AUPRC of JASPAR + shape over JASPAR PFMs is now
0.065, nearly 70% of that increase is captured using the
DAMO PWMs, and nearly 90% is captured by the
DAMO_dinuc model.
The gap between the training and testing scores is a

measure of overfitting for a model, which generally cor-
responds to the complexity of the model. Specifically,
the highly non-linear DNAshapedTFBS-based models,
with their ensemble of decision trees, have larger gaps
than the PFM and PWM models, which are linear
models (Fig. 1). In fact, the training and testing scores of
the linear models are nearly identical. The largest gaps,
> 0.03, are associated with the DNAshapedTFBS-based
models with DNA shape features, presumably because
their feature vectors are most complex. This effect also
shows up in the sensitivity of the complex models to the
size of the training data. Additional file 3: Table S3
shows results for several of the models when trained on
only 1/10 of the data, the same as the testing sample
size, and much smaller than the normal training on 9/10
of the data. All of the models, except for the JASPAR
PFMs which are untrained, increase the AUPRC and
AUROC scores on the training data and decrease those
scores on the testing data. On those small training sets
the DAMO PWMs score as well as the more complex
models on the testing sets.
Figure 2 compares graphically the results reported in

Table 2, with points for each of the 396 ChIP-seq data-
sets. The top eight panels have the JASPAR + shape
AUPRC results on the vertical axis and each of the other
eight models on the horizontal axis. Consistent with
Table 2, there is a large improvement from the JASPAR
scores alone (Fig. 2a). For the DAMO PWMs (Fig. 2b)
there are many fewer data sets with large improvement.
The DAMO PFMs are much better than the JASPAR
PFMs, as expected because those JASPAR PFMs have
not been optimized for this task, but are not as good as
the DAMO PWMs showing the inherent limitations of
PFM models [36]. The DAMO_dinuc model (Fig. 2d)
has very few datasets with large improvements. In each
of the other models, which come from the gradient
boosting classifier (Fig. 2e-h), the data points cluster
near the diagonal, indicating that the difference between
the two scores of the same sample is very small. The
bottom row of panels in Fig. 2 show the score differ-
ences, in ascending order, between similar models. Note
the differences in scale on the vertical axes. In most
cases there are very few datasets with differences > 0.02,
except for the comparison of the JASPAR scores and
JASPAR + shape, where many datasets show improve-
ments > 0.05 and a few are > 0.10. Most TFs have
multiple associated ChIP-seq data sets (median of three),
and the mean difference for every TF are shown in

Table 2 Mean AUPRC (and standard deviation) on ChIP-seq data

Algorithm Training Testing

JASPAR 0.812 (0.132) 0.812 (0.132)

DAMO 0.834 (0.119) 0.832 (0.120)

DAMO_PFM 0.825 (0.120) 0.824 (0.122)

DAMO_dinuc 0.844 (0.114) 0.839 (0.119)

DNAshapedTFBS_4bit 0.854 (0.105) 0.842 (0.115)

DNAshapedTFBS_4bit + shape 0.875 (0.090) 0.845 (0.113)

Shape_only 0.871 (0.089) 0.840 (0.112)

JASPAR + shape 0.878 (0.089) 0.846 (0.112)

DAMO + shape 0.879 (0.090) 0.846 (0.113)
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Fig. 1 Differences in AUPRC between training and testing datasets. For each model the differences are shown for each of the 396 datasets. The
box represents 1st, 2nd (median indicated with line) and 3rd quartiles and the whiskers represent 1.5 interquartile range (IQR) below or above
1st or 3rd quartiles

Fig. 2 Comparison of AUPRC scores for different models. a-h JASPAR + shape on vertical axis and each of the other eight models on the
horizontal axis. i Difference in AUPRC for DAMO PWM with and without di-nucleotides. j Difference in AUPRC for DAMO PWM and DAMO PFM.
k-l Differences with adding shape features to the 4bit model and the JASPAR PFM model
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Additional file 4: Table S4. Except for the comparison of
JASPAR + shape with JASPAR, very few of the TFs have
mean differences > 0.02, suggesting that feature vectors
based only on sequence, optimized for AUROC scores
but without including structure parameters, capture
essentially all of the discriminatory power of the motifs.
However, the motifs using the ensemble of decision trees
do contain higher-order information beyond that avail-
able to simple PWMs, most of which is captured by
using di-nucleotide extensions of PWMs.

Discussion
Our results confirm that adding DNA shape features sig-
nificantly improves the performance of JASPAR PFMs,
with a mean increase of 0.034 in AUPRC. Simply opti-
mizing the PFMs for the task of maximizing AUROC
captures over one-third of that difference. An optimized
PWM captures most of the improvement, and adding
di-nucleotide parameters helps further. The gradient
boosting approach increased AUPRC slightly more, as
did adding shape parameters, but on the vast majority of
datasets the differences between the simple PWM
models and more complex models are small, consistent
with previous work showing that optimized PWMs are
often good approximations for TF specificity [22–24].
Including DNA shape features further increases the
number of parameters in a binding model, which in-
creases the cost of training and may result in overfitting.
The fact that the performance of DAMO_dinuc is
similar to the non-linear gradient boosting classifiers
indicates that the majority of the deviations from the
assumption of position independence can be captured
by adjacent di-nucleotide interactions.
The success of the PWMs does not mean that the

structure of DNA plays no role in binding site recogni-
tion. In fact, there are good examples showing that it
does [28–30, 39]. All of the models based on sequence
features alone are agnostic with respect to the mecha-
nisms of specificity. They only describe mathematically
how much each base at each position contributes to
binding specificity, or in the case of higher-order contri-
butions, how useful those are in discriminating the posi-
tive and negative training sets. Because DNA structure
depends on sequence, redundancies arise when using
both types of parameters together. In fact, given a suffi-
ciently long sequence (such as a genome) encoded solely
with structure parameters, a good compression algo-
rithm could reconstruct the sequence exactly, demon-
strating that the structure information contains within it
the sequence information. This is also clear from our re-
sults with the Shape_only model. Certainly interactions
between the TF and the bases of the DNA sequence are
the primary contributions to binding affinity. But encod-
ing the sequence using only structural parameters

performs nearly as well as using input vectors including
both sequence and structure because the sequence is
redundant given the structure.
We advocate using the most efficient algorithm, with

the least number of parameters, that obtains the max-
imum fit to quantitative data, or the optimal discrimin-
ation between positive and negative data sets. This
reduces the complexity of the model to only the non-
redundant parameters, minimizes the training time and
reduces the susceptibility to over-fitting. Those optimal
parameters, including higher-order interactions as
needed, can be used to infer the mechanism of binding.
For example, if dinucleotides are required to obtain the
best fit, and the specific dinucleotides that correspond to
higher affinity (or better discrimination) are those corre-
lated with a narrow minor groove, then one could infer
the TF prefers binding to DNA structures with narrow
minor grooves. But doing this after the mathematically
optimal parameters are obtained removes redundancies
in the feature vectors used for training which could
confound interpretation.
Discrimination of binding sites from ChIP-seq data,

such as with AUPRC or AUROC scores, is a popular
method for assessing the accuracy of TF motifs [40].
However, those scores are inherently rank based and
miss other important aspects of binding activity such as
the relative binding affinity between different binding
sites [17, 20]. Therefore PWMs, and other motifs, ob-
tained simply by maximizing AUPRC or AUROC scores
should not be used as predictors of relative binding
affinity. To do that they should be rescaled by reference
to some external binding data, preferably from quan-
titative in vitro experiments. Alternatively, one can
assume that the majority of peaks contain binding
sites within some constrained range of binding affin-
ity, perhaps within 100-fold of the maximum, and use
that assumption to scale the PWM to approximate
binding energies [20].

Conclusions
To address the issue of whether matrix models, which
assume independent contributions across the positions
of the binding site, are adequate representations of
specificity requires appropriate comparisons. To compare
complex models that have been optimized for a specific
task, such as maximizing AUROC, to PFM/PWM models
that have been obtained from other types of data or for
other tasks, confounds the comparison between the type
of model and the method for obtaining the model parame-
ters. We show that simple PWM models, when optimized
for maximum AUROC, perform nearly as well as more
complex non-linear models. We also show the advantages
of PWMs over PFMs, and that including adjacent dinucle-
otides in the additive PWM model can further enhance its
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performance on at least some of the datasets. While DNA
structure certainly contributes to binding affinity, at least
in some cases, we advocate for finding mathematically
optimal models that are simple and efficient but agnostic
as to mechanism, and then inferring the mechanisms
that contribute to binding affinity as further steps in
the analysis.
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