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Abstract

Background: Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a
better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational
methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods
predict PPIs under the assumption that the training network should be connected. However, this assumption greatly
affects the prediction power and limits the application area because the current golden standard PPl networks are
usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is
sparse and disconnected remains a challenge.

Results: In this work, we developed a novel PPl prediction method based on deep learning neural network and
regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the
evolutionary processes of a PPl network. Neurons of the output layer correspond to proteins and are labeled with
values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPl network.
Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori
knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during
evolution. After the training step, an evolved PPl network whose rows are outputs of the neural network can be
obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon
the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for
yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the
baseline. Moreover, the evolved PPl network can also help us leverage complementary information from the disconnected
training network and multiple heterogeneous data sources. Tested by the yeast data with six heterogeneous feature
kernels, the results show our method can further improve the prediction performance by up to 2%, which is very close
to an upper bound that is obtained by an Approximate Bayesian Computation based sampling method.
Conclusions: The proposed evolution deep neural network, coupled with regularized Laplacian kernel, is an effective

tool in completing sparse and disconnected PPI networks and in facilitating integration of heterogeneous data

sources.
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Regularized Laplacian

Background

Studying protein-protein interaction (PPI) can help us
better understand intracellular signaling pathways, model
protein complex structures and elucidate various bio-
chemical processes. To aid discovering more denovo PPIs,
many computational methods have been developed and
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can generally be categorized into one of the following
three types: (a) pair-wise biological similarity based
computational approaches by sequence homology, gene
co-expression, phylogenetic profiles, three-dimensional
structural information, etc.; [1-7]; (b) pair-wise topologi-
cal features based methods [8—11]; and (c) whole network
structure based methods [1, 12-20].

For the pair-wise biological similarity based methods,
without resort to determining whether two given proteins
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will interact from first principles in physics and chemistry,
the predictive power of those methods is greatly affected
by the features being used, which may be noisy or incon-
sistent. To circumvent limitations of pair-wise biological
similarity, network structure based methods are playing
an increasing role in PPI prediction since these methods
can not only get the whole network structure involved and
topological similarities implicitly included, but also utilize
pair-wise biological similarities as weights for the edges in
the networks.

Along this line, variants of random walk [12-15] have
been developed. Given a PPI network with N proteins, the
computational cost of these methods increases by N times
for all-against-all PPI prediction. In Fouss et al. [16], many
kernel methods for link prediction have been systemat-
ically studied, which can measure the similarities for all
node pairs and make prediction at once. Compared to the
random walk, kernel methods are usually more efficient.
However, neither random walk methods nor kernel meth-
ods perform very well in predicting interaction between
faraway node pairs in networks [16]. Instead of utilizing
network structure explicitly, many latent features based on
rank reduction and spectral analysis have also been used
to do prediction, such as geometric de-noise methods
[1, 17], multi-way spectral clustering [18], matrix factor-
ization based methods [19, 20]. Note that the objective
functions in these methods should be carefully designed
to ensure fast convergence and avoid being stuck in local
optima. What is advantagous for these methods is that
biological features and network topological features can
complement each other to improve the prediction perfor-
mance, such as by weighting network edges with pair-wise
biological similarity scores [19, 20]. However, one limita-
tion for these methods is that, only the pair-wise features
for the existing edges in the PPI network are utilized,
whereas from a PPI prediction perspective what is partic-
ularly useful is to incorporate pair-wise features for node
pairs that are not currently linked by a direct edge but may
become linked. Recently, Huang et al. proposed a sam-
pling method [21] and a linear programming method [22]
to find optimal weights for multiple heterogeneous data,
thereby building weighted kernel fusion for all node pairs.
These methods applied regularized Laplacian kernel (RL)
to the weighted kernel fusion to infer missing or new edges
in the PPI network. These methods improved PPI pre-
diction performance, especially for detecting interactions
between nodes that are far apart in the training network,
by using only small training networks.

However, almost all the methods discussed above need
the training network to be a single connected component
to measure node-pair similarities, despite of the fact that
existing PPI networks are usually disconnected. Conse-
quently, these traditional methods only keep the maxi-
mum connected component of the original PPI network
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as golden standard data, which is then divided as a con-
nected training network and testing edges. That is to say,
these methods cannot effectively predict interactions for
proteins that are not located in the maximum connected
component. Therefore, it is of great interest and util-
ity if we can infer PPI network from a small amount of
interaction edges that do not need to form a connected
network.

From our previous study of network evolutionary anal-
ysis [23], we here designed a neural network based evolu-
tion model to implicitly simulate the evolution processes
of PPI networks. Instead of simulating the evolution of
the whole network structure with the growth of nodes
and edges as models discussed in Huang et al. [23], we
only focus on the edge evolution and assume all nodes
are already existing. We initialize the ancient PPI network
as an all-zero adjacent matrix, and use the disconnected
training network with interaction edges as labels. Each
row of the all-zero adjacent matrix and the training matrix
will be used as the input and label for the neural net-
work respectively. We then train the model to simulate
the evolution process of interactions. After the training
step, we use outputs of the last layer of the neural net-
work to represent rows of the evolved contact matrix.
Finally, we further apply the regularized Laplacian ker-
nel to a transition matrix that is built upon the evolved
contact matrix to infer new PPIs. The results show our
method can efficiently utilize the extremely sparse and
disconnected training network, and improve the predic-
tion performances by up to 8.4% for yeast and 14.9% for
human PPI data.

Methods

Problem definition

Formally, a PPI network can be represented as a graph
G = (V,E) where V is the set of nodes (proteins) and
E is the set of edges (interactions). G is defined by the
adjacency matrix A with | V| x |V| dimension:

Lif(i,j) e E

Al)) = { 0,if(i)) ¢ E

(1)

where i and j are two nodes in the nodes set V, and (i, )
represents an edge between i and j, (i,j) € E. We divide
the golden standard network into two parts: the training
network Gy, = (V, Ey,), and testing set Gy = (Vi Egr),
such that £ = E;;, U Ey, and any edge in G can only belong
to one of these two parts. The detailed process of dividing
the golden standard network is shown by Algorithm 1. We
set the o (the preset ratio of Gy, (, E) to G(, E)) less than a
small value to make the Gy, extremely sparse and with a
large number of disconnected components.
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Algorithm 1 Division of edges

Input: G < PPI network
m < The number of nodes
a < The preset ratio of Gy, (, E) to G(, E)
Output: Gy, and Gy
1: for each node w € shuffle(V') do

2. nb < neighbors(w) // nb is neighbor set of node w

3. nb < shuffle(nb) // Randomly shuffle the neighbor
set

4.t < length(nb) x o // Set a threshold for dividing
neighbors of w

5. fori=1to length(nb) — 1 do

6: if i < t then

7: if (w,nbli]) ¢ Gy then

8: Gy < Gy U (w,mbli]) // (w,nbli]) indi-

cates an edge between w and nb|i]

9: end if

10: else

11: if (w,nbli]) ¢ Gy, then

12: Gy <~ Gy U (w, nbli])

13: end if

14 end if

15:  end for

16: end for

Figure 1 shows the flow chart of our method, which
is named as evolution neural network based regularized
Laplcian kernel (ENN-RL) to reflect the fact that it con-
tains two steps. The first step, ENN, uses the sparse
disconnected training network of PPIs to train a deep
neural network in order to obtain an “evolved” and more
complete network, and this “evolved” network is then used
as a transition matrix for the regularized Laplacian ker-
nel in the second step to predict PPIs for node pairs that
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are not directed connected. Inspired by the structure of
autoencoder [24], the architecture of the neural network
is designed to “evolve” a partial PPI network, guided by its
current connection, via a smaller proteome (i.e., a smaller
hidden layer) at an “ancient” time , asssuming zero a pri-
ori knowledge of existing PPIs at the input. Specifically, as
shown in Fig. 2, with respect to the smaller hidden layer in
the middle, the input layer looks like a symmetric mirror
image of the output layer. But all nodes in the input layer
have zero value input, reflecting the assumption of zero
a priori knowledge about interactions between proteins
that these nodes represent, i.e., the input m x m adja-
cency matrix in Fig. 1 contains all zeros, where m = |V/|.
And the output layer nodes have labels from the training
PPI adjacency matrix. Then, deep learning is adopted to
drive and guide the neural network from a blank input to
first “devolve” into a smaller hidden layer (representing an
interactome at ancient time) and then “evolve” into the
output layer, which has the training PPI network Gy, as
the target/label. The rationale is that, if PPI interactions in
the training network can be explained (or reproduced) via
a smaller ancient interactome, the such trained neural net-
work should be also capable of generalizing and predicting
unobserved de novo PPIs. To avoid exactly producing the
training PPI networks, a blank adjacency matrix is used as
the input.

After the training process is completed, we build the
evolved PPI network/matrix EA with the outputs of neu-
ral network’s last layer. Based on EA, we build a transition
matrix using Eq. (2), where EA + EA’ makes the transi-
tion matrix symmetric and positive semi-definite. Finally,
we apply the regularized Laplacian (RL) kernel defined
by Eq. (3) to the transition matrix T to get the inference
matrix P, in which P;; indicates the probability of an inter-
action for protein i and j. For Eq. (3), L = D — T is the

0 0 0 « ¢ =« 0 01 0 ¢ 0 ¢ 1
0 0 0 10 1
0 . 0 Deep 0 o 1 0
. . . :> Learning <: . 1. .
. . . Model (ENN) 0 . 1
0 0 0O o o o 0 Evoﬂion 1T 1 0 « 1 « 0
Ancient PPIN Adj (all zeros) {} Training PPIN Adj
0 0902 ¢« 0 < 06
08 0 0.78
0.1 « 08 0
Matrix EA (evolved PPIN Adj) = o 08 e . ::> P = RL(sigmoid(EA+EA"+trainingAdj))
0 . 0.9
0.7 065 0 <« 07 « 0
Fig. 1 The flow chart of ENN — RL method
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Algorithm 2 describes the detailed training and prediction
processes.

Evolution neural network
The structure of the evolution neural network is shown
in the Fig. 2, which contains five layers including the
input layer, three hidden layers and the output layer. Sig-
moid is adopted as the activation function for each neu-
ron, and layers are connected with dropouts. Dropouts
can not only help us prevent over-fitting, but also indi-
cate the mutation events during the evolution processes,
such as which nodes (representing proteins) at a layer
(corresponding a time during evolution) may be evolved
from some nodes from the previous layer, as indicated by
edges and corresponding weights connecting those nodes.
For specific configuration of the neural network in our
experiments, the number of neurons in the input and
out-put layer depends on the network size m = |V| of
specific PPI data. Each protein is represented by the cor-
responding row of the adjacency matrix trainingAdj of
Gy, that contains the interaction information for that pro-
tein with other proteins in the proteome. We train the

Algorithm 2 ENN-RL PP inference

Input: ENN < Evolution neural network

RL < Regularized Laplacian prediction kernel
Gy < Training network

Gy < Testing set

m < The number of nodes

Output: Inferred interactions

1:

intialAdj < allzero(m, m) /| intialAdj a m x m all-
zero matrix

. trainingAdj < edgesToAdjMatrix(Gy,) // Transform

edges into adjacency matrix

3: forieO0,..,.m—1do

4 input; <« initialAdj[i][:] // input; is i row of
initial Adj

5. label; <« trainAdjli]l[:] /] label; is i" row of
trainAdj

6:  ENN (input;, label;) /| Training the evolution neural
network ENN

7: end for

8: EA < allzero(m,m) /| EA is a m x m all-zero matrix

12:
13:

14:

. forie0,..,m—1do
10:
11:

input; < initialAdj[i] [ :]
EA[i] < ENN (input;) // EA[i] is the output of last
layer of ENN given the input input;
end for
P <« RL(sigmoid(EA + EA’ + trainAd))) // Get the
inference matrix P based on RL
Rank P and infer Gy
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Table 1 PPl network information

Species Proteins Interactions
Yeast 5093 22,423
Human 9617 37,039

evolution neural network by each row of the blank adja-
cency matrix as the input and the corresponding row of
trainingAdj as the label. A typical autoencoder structure
is chosen for the three hidden layers, where encoder and
decoder correspond to the biological devolution and evo-
lution processes respectively; and cross entropy is used
as the loss function. Note that, the correspondence of
encoder/decoder to biological devolution/evolution is at
this stage more of an analogy in helping with the design of
the neural network structure than a real evolution mode
for PPI networks. It is also worth noting that different
with the traditional autoencoder, we did not include the
layerwise isomorphism pretraining to initial the weights
for our neural network since the inputs are all zero vec-
tors. The neural network is implemented by the Tensor-
Flow library [25], deployed on Biomix cluster at Delaware
Biotechnology Institute.

Data

We use yeast and human PPI networks downloaded
from DIP (Release 20140117) [26] and HPRD (Release 9)
[27] to train and test our method. After removing the
self-interactions, the detailed information of these two
datasets are shown in the Table 1.

Results
Experiments on yeast PPl data
To show how well our model can predict PPIs from
the extremely sparse training network with disconnected
components, we set «, the ratio of interactions in Gy,
to the total edges in G, to be less than 0.25. As shown
in Table 2, the Gy, has only 4061 interactions, and con-
tains 2812 disconnected components, where the mini-
mum, average and maximum size of components are 1,
1.81 and 2152 respectively. Based on the Gy,, we train our
model and predict the large testing set G that has 18,362
interactions according to the Algorithm 2.

We then compared our ENN-RL method to the con-
trol method ADJ-RL which applies regularized Laplacian
kernel directly to the training network G,. As shown

Table 2 Division of yeast golden standard PPl interactions

o G G (#O) Gin(minC, avgC, maxC) Gy
0.25 4061 2812 (1,1.81,2,152) 18,362
0.125 1456 3915 (1,1.30, 1,006) 20,967

Gn (#C): the number of components in Gy,
Gin(minC, avgC, maxC): the minimum, average and maximum size of components
in G
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in Fig. 3, the AUC increase from 0.8112 for the control
method to 0.8358 for ENN-RL. Moreover, we make the
prediction task more challenging by setting the « to be less
than 0.125, which makes the G;, sparser with only 1456
interactions, but 3915 disconnected components; and the
maximum component in Gy, only has 1006 interactions.
The results in Fig. 4 shows the gap between ENN-RL ROC
curve and ADJ-RL ROC curve is obviously increased; and
our ENN-RL gained 8.39% improvement in AUC. If com-
paring Figs. 3 and 4, it is easy to see that the AUC of
ADJ-RL decreases by 0.055 from 0.8112 in Fig. 3 to 0.7557
in Fig. 4. However, our ENN method performs stably with
only 0.016 decrease in AUC. This suggests that traditional
random walk methods usually need the training network
to be connected; and the prediction performance largely
depends on the size and density of the maximum con-
nected component. However, when the training network
becomes sparse and disconnected, the traditional random
walk based methods will lose the predictive power likely
because they cannot predict interactions among those
disconnected components. We repeated the whole exper-
iments up to ten times, Table 3 shows the average perfor-
mance with the standard deviation. All these results show
our method performs stably and effectively in overcoming
the limitation of traditional random walk based methods;
and the improvements are statistically significant.
Moreover, we further analyzed how our ENN-RL
method can effectively predict interactions to connect
disconnected components, and how its intra-component
and cross-component predicting behaviors adaptively
change with different training networks. As defined in the
“Methods” section, the value P;; in the inference matrix
P indicates the probability of an interaction for protein i
and j. We ranked all the protein pairs by their value in
the inference matrix P; ideally we can choose a optimal
threshold on the value of P;; to make prediction. Since
it is difficult to find the optimal threshold without prior
knowledge, we used a ratio p instead. Specifically, for the
ranked protein pairs, the top p * 100 percent can be con-
sidered as predicted positives Gy, and the predicted true
positive Gy, is the intersection set between G, and Gy.
We then added the interactions in Gy, to the training
network Gy, to see how many disconnected components
can become reconnected. The results are shown in the
Fig. 5, the dashed lines indicate the number of discon-
nected components in the training networks Gy,; the solid
lines with markers indicate that how the number of dis-
connected components would change based on prediction
with different p (The red color is for the case o = 0.125,
the blue color is for @« = 0.25). As it shows, our methods
can effectively predict interactions to reconnect those dis-
connected components in the training networks for both
cases; especially, for the training network of « = 0.125.
The comparison of the results of those two cases shows
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Fig. 3 Yeast: ROC curves of predicting G; ~ 18362 with @ = 0.25

that the red solid line decreases significantly faster than
the blue solid line. It demonstrates that, for the train-
ing network @ = 0.25 that has fewer but larger size
disconnected components, the prediction of our method
recovers more intra-component interactions; whereas for
the training network o = 0.125 that has more and smaller
size disconnected components, the prediction of our
method can more effectively recover cross-component

interactions, which are more difficult for the traditional
random walk methods to detect. Therefore, to a large
extent, this explains why the performance difference
between our method and the traditional random walk
method ADJ-RL is relatively small in Fig. 3 but more
pronounced in Fig. 4, because in the latter case our
method has clear advantage in detecting cross-component
interaction.
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Fig. 4 Yeast: ROC curves of predicting Gy ~ 20967 with & = 0.125
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Table 3 AUC summary of repetitions for yeast PPI data

Methods Avg £ Std (@ = 0.25) Avg £ Std (@ = 0.125)
ENN-RL 0.8339+£0.0016 0.8195 + 0.0023
ADJ-RL 0.8104 £ 0.0039 0.7403 + 0.0083

Experiments on human PPl data

We further tested our method by the human PPI data
downloaded from HPRD (Release 9) [27], which is much
larger and sparser than the yeast PPI network. Similarly,
we carried out two comparisons by setting the o to be less
than 0.25 and 0.125 respectively to divide G in to training
network Gy, and testing set G. The detailed information
about the division can be found in the Table 4.

The prediction performances in Figs. 6 and 7 show our
ENN-RL has obviously better ROC curves and higher
AUC than that of ADJ-RL. Especially for the test with o =
0.125, our ENN-RL method obtains up to 14.9% improve-
ment for predicting 34,779 testing interactions based on a
training set Gy, with only 2260 interactions but 7667 dis-
connected components. Similar tendency is also observed
from Figs. 6 and 7. When « is decreased from 0.25 to
0.125, the AUC of ADJ-RL decreases by up to 0.072, while
our ENN-RL only decreased by 0.021. We also did ten
repetitions as shown in Table 5 to demonstrate the stable
performance of the ENN-RL. All these results on human
PPI data further indicate our ENN-RL model is a promis-
ing tool to predict edges for any sparse and disconnected
training network.

Moreover, similar to the experiments we did for
the yeast data, we also analyzed the cross-component
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interaction prediction performance on HPRD human
data. The result shown in the Fig. 8 is consistent with the
result of yeast data. Our method can effectively predict
interactions to connect disconnected components in both
training networks (¢ = 0.125 and « = 0.25); and the red
solid line decrease remarkably faster than the blue solid
line. All these results further support the conclusion we
made in the last section.

Optimize weights for heterogeneous feature kernels
Most recently, Huang et al. [22, 28] developed a method
to infer de novo PPIs by applying regularized Lapla-
cian kernel to a kernel fusion that based on optimally
weighted heterogeneous feature kernels. To find the opti-
mal weights, they proposed weight optimization by linear
programming (WOLP) method that based on random
walk over a connected training networks. Firstly, they
utilized Barker algorithm and the training network to
construct a transition matrix which constrains how a ran-
dom walk would traverse the training network. Then the
optimal kernel fusion can be obtained by adjusting the
weights to minimize the element-wise difference between
the transition matrix and the weighted kernels. The mini-
mization problem is solved by linear programming.
Given a large disconnected network, although Huang
et al. [22] demonstrated that the weights learned from
the maximum connected component can also be used
to build kernel fusion for that large disconnected net-
work, the weights will not be optimal when the maximum
connected component is very small compared to the orig-
inal disconnected network. As we all know that current

4000 T T
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Fig. 5 Yeast: connecting disconnected components
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Table 4 Division of human golden standard PPl interactions

o Gin Gin (#O) Gin(minC, avgC, maxC) Gyt
0.25 6567 5370 (1,1.79,3,970) 30,472
0.125 2260 7667 (1,1.25,1,566) 34,779

Gn (#0): the number of components in Gy,
Gin(minC, avgC, maxC): the minimum, average and maximum size of components
in G

available golden standard PPI networks are usually dis-
connected and remains far from complete. Therefore, it
would be of great interest if we can obtain the transi-
tion matrix directly from these disconnected components,
including but to limited to the maximum connected com-
ponent, and use that transition matrix to help us find the
optimal weights for heterogeneous feature kernels. To ver-
ify this idea, we use the transition matrix 7 obtained by
Eq. (2) to find the optimal weights based on the linear
programming Eq. (4) [22].

n
(WOGm +y W,ﬁ) - T

i=1

2

(4)

W* = argmin
W

We tested this method by the yeast PPI network with same
setting in Table 2; and six feature kernels are included:
Gu: Gy is training network with & = 0.25 or 0.125 in
Table 2.

Kjaccard [29]: This kernel measure the similarity of protein
neigbors(i)Nneighbors(j)
neighbors(i)Uneighbors(j) *

pairs i, j in term of
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Ksn: It measures the total number of neighbors of protein
i and j, Ksny = neighbors(i) + neighbors(j).

Kp [30]: It is a sequence-based kernel matrix that is gener-
ated using the BLAST [31].

Kg [30]: This is a gene co-expression kernel matrix con-
structed entirely from microarray gene expression mea-
surements.

Kpfam [30]: Similarity measure derived from Pfam HMMs
[32]. All these kernels are normalized to the scale of [0, 1]
in order to avoid bias.

Discussion

To make a comprehensive analysis, we also included pre-
diction results based on the kernel fusion built by the
approximate bayesian computation and modified differ-
ential evolution sampling (ABCDEP) method [21], and
the kernel fusion built by equally weighted feature ker-
nels EK for comparison. Similar to the comparison in
[22], the ABCDEP and EK based results can serve as
the upper bound and lower bound of the prediction per-
formance. Comparisons for two settings @ = 0.25 and
a = 0.125 are shown by the Figs. 9 and 10 respec-
tively, where ENN-RL is our proposed method without
integrating any heterogeneous feature kernels; ENNIp-
RL is a kernel fusion method and is a combination
of ENN-RL and the linear programming optimization
method WOLP [22], which use the transition matrix T
obtained by ENN-RL as the target transition matrix to
find the optimal weights for heterogeneous feature kernels

1 T T
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0.9

© o 9
[¢2) ~ ©
T T T
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Fig. 6 Human: ROC curves of predicting Gy ~ 30742 with & = 0.25
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0.2 i
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by linear programming; ABCDEP-RL is also a kernel
fusion method and finding the optimal weights based
on a sampling method [23]; ADJ-RL is the traditional
random walk method; and EW-RL is a baseline kernel
fusion method that weights all heterogeneous feature ker-
nels equally. Note that, the transition matrix T obtained
from ENN-RL is not a feature kernel and only serve as
the target transition matrix for ENNIp-RL to optimize
weights.

As shown in Fig. 9, ENNIp-RL benefits from a more
complete and accurate target transition matrix pro-
vided by ENN-RL, outperforms other methods and
gets very close to the upper bound 0.8529 achieved
by ABCDEP-RL. Similarly, in Fig. 10, although the
maximum component of Gy, is very sparse — with
1006 proteins and only 1456 training interactions, the
ENNIp-RL still is enhanced from the ENN-RL and gets
very close to the ABCDEP-RL. Therefore, all these
results indicate that the transition matrix T learned
by our ENN model can further improve the predic-
tion performance for other downstream tools like WOLP
in leveraging useful information from heterogeneous
feature kernels.

Table 5 AUC summary of repetitions for human PPl data

Methods Avg =+ Std (@ = 0.25) Avg =+ Std (@ = 0.125)
ENN-RL 0.8320+£ 0.0012 0.8140+ 0.0013
ADJ-RL 0.7795 £ 0.0047 0.6970 £ 0.0059

Conclusions

In this work we developed a novel method based on deep
learning neural network and regularized Laplacian kernel
to predict de novo interactions for sparse and discon-
nected PPI networks. We built the neural network with a
typical auto-encoder structure to implicitly simulate the
evolutionary processes of PPI networks. Based on the
supervised learning using the rows of a sparse and dis-
connected training network as labels, we can obtain an
evolved PPI network as the outputs of the deep neural
network, which has an input layer identical to the out-
put layer but with zero input value and a smaller hidden
layer simulating an ancient interactome. Then we pre-
dicted PPIs by applying regularized Laplacian kernel to
the transition matrix built upon that evolved PPI net-
work. Tested on DIP yeast PPI network and HPRD human
PPI network, the results show that our method exhibits
competitive advantages over the traditional regularized
Laplacian kernel that based on the training network
only. The proposed method achieved significant improve-
ment in PPI prediction, as measured by ROC score,
over 8.39% higher than the baseline for yeast data, and
14.9% for human data. Moreover, the transition matrix
learned from our evolution neural network can also help
us to build optimized kernel fusion, which effectively
overcome the limitation of traditional WOLP method that
needs a relatively large and connected training network
to obtain the optimal weights. Then we also tested
it by the DIP yeast data with six feature kernels, the
prediction result shows the AUC can be further improved
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HPRD Human PPI: Connecting Disconnected Components
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Fig. 8 Human: connecting disconnected components

and very close to the upper bound. Given the current
golden standard PPI networks are usually disconnected
and very sparse, we believe our model provides a promis-
ing tool that can effectively utilize disconnected networks
to predict PPIs. In this paper, we designed the autoen-
coder deep learning structure analogous to the evolution

process of PPI network, which, although should not be
interpreted as a real evolution model of PPI networks,
would nonetheless be worthwhile to explore further for
the future work. Meanwhile, we also plan to investigate
other deep learning models for solving PPI prediction
problems.

DIP Yeast PPI Prediction (All Comparison) with a = 0.25
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Fig. 9 Yeast: ROC curves of predicting G ~ 18362 with « = 0.25
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