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Abstract

Background: The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent
role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental,
and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to

outliers.

Results: We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites
from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the
proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially
generated data with outliers reveal that the proposed method results in a lower misclassification error rate and
a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally
measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces
only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57

non-overlapping differential metabolites.

Conclusion: Our data analyses show that the performance of the proposed differential metabolite identification
technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of
metabolomics data with outliers. The R package and user manual of the proposed method are available at

https://github.com/nishithkumarpaul/Rvolcano.
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Background

In bioinformatics, molecular omics studies- like genomics,
transcriptomics, proteomics and metabolomics are playing
a prominent role in life sciences, health and biological re-
search [1]. Among these approaches, metabolomics is fre-
quently used to understand biological metabolic status,
making a direct link between genotypes and phenotypes
[2]. Many metabolomics-based biomarker discoveries have
explored the key metabolites to discriminate between
metabolic diseases, such as diabetes, cardiovascular dis-
eases, and cancers [3]. The metabolites showing different
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concentrations among the given groups (e.g. healthy and
disease subjects) is called as differential metabolites. Com-
binations of these metabolites can be used to identify sub-
jects with a high risk of suffering from diabetes [4]. Thus,
one of the most important tasks of metabolomics research
is to identify a differential metabolite or a set of differen-
tial metabolites which have ability to differentiate patients
with a disease from healthy subjects. The accurate iden-
tification of differential metabolites, or molecules that
reflect a specific phenotype, is a cornerstone of many
applications, such as predicting disease status and drug
discovery [5-8].

To generate high-throughput metabolomics data, nu-
clear magnetic resonance (NMR) and hyphenated mass
spectrometry (MS), such as gas chromatography-MS
(GC-MS) and liquid chromatography-MS (LC-MS), are
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commonly used. These platforms can simultaneously
identify and quantify hundreds of metabolites. All these
analytical platforms can result in missing values in the
observed data and outliers, which are caused by various
reasons including analytical, experimental, and human
errors, low quality measurements, malfunctioning equip-
ment, and overlapping signals [9-20]. Thus, subsequent
metabolomics data analysis should consider the presence
of these problems in the given data.

Four types of statistical procedure have primarily been
used to identify differential metabolites: (i) classical para-
metric approaches, such as Student’s ¢-test [21], classical
volcano plot (CVP) [22] and fold change rank ordering
statistics (FCROS) [23], (ii) classical non-parametric ap-
proaches, such as significance analysis of microarrays
(SAM) [24], and the Wilcoxon [25] and Kruskal-Wallis (K-
W) [26] tests, (iii) Bayesian parametric approaches, such as
Bayesian robust inference for differential gene expression
(BRIDGE) [27], empirical Bayes methods for microarrays
(EBarrays) [28], and linear models for microarrays (Limma)
[29], and (iv) Bayesian non-parametric approaches [30, 31].
In classical procedures, differential metabolites are identi-
fied using p-values (significance levels) that are estimated
based on the distribution of a test statistic or a permuta-
tion, whereas in Bayesian procedures, differential metabo-
lites are identified using posterior probabilities. However,
most of the aforementioned techniques are not robust
against outliers [27, 32]. Thus, they may produce mislead-
ing results in the presence of outlying samples or irregular
concentrations of metabolites. Moreover, outlying samples
or irregular concentrations of metabolites may violate the
normality assumption in metabolomics datasets. Several
nonparametric approaches (Wilcoxon and K-W test) and
some Bayesian approaches (BRIDGE and Robust limma)
are robust against outliers; however, increases in the num-
ber of outliers in these techniques reduce the accuracy of
differential metabolite identification. One of the easiest
ways to overcome this problem is to delete the outlying
metabolites or outlying samples from the dataset. However,
the deleted metabolites may be important metabolites in
some cases, while deleting samples and metabolites can
make the dataset much smaller or even vanish.

Comparatively, CVP [22] is a good technique for iden-
tifying differential metabolites because it can control the
false discovery rate [33]. The volcano plot is based on p-
values from a t-test and fold-change (FC) values [34],
both of which depend on classical location and scatter,
and thus volcano plot is affected by outliers. Therefore,
in this paper, we develop an outlier-robust volcano plot
by unifying CVP and a kernel weight function to over-
come the problem of outliers. The advantage of the pro-
posed method compared to existing methods is that it
performs considerably better in the presence of outliers.
We introduced a kernel weight function, which plays a
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key role in the performance of the proposed method.
Robust volcano plot ensures robustness by producing
smaller weights for outlying observations from the ker-
nel weight function. Appropriate selection of the tuning
parameter for the kernel function also improves the per-
formance of the proposed method, as discussed later.

Since metabolomics dataset frequently contains outliers
and all of the existing differential metabolite identification
techniques are more or less influenced by outliers; as a re-
sult, outliers reduce the accuracy of differential metabolite
identification. Therefore, in this paper we develop a kernel
weight based outlier-robust volcano plot for detecting dif-
ferential metabolites from metabolomics datasets in the
presence of outliers. To measure the performance of the
proposed method in comparison with other techniques,
we consider nine existing differential metabolite identifica-
tion techniques: three classical parametric approaches (¢
test, FCROS, CVP), three nonparametric approaches
(Wilcoxon test, K-W test, SAM) and three Bayesian ap-
proaches (BRIDGE, Limma, EBarrays). We also evaluate
the performance of the proposed method using both arti-
ficially generated and experimentally measured metabolo-
mics datasets in the absence and presence of outliers.
Every metabolite identification method has a specific cut-
off and its choices are sensitive to determine the metabol-
ite identification which has large effect on the statistical
analyses. In this paper, the cutoff of t-test, SAM, Wilcoxon
test and K-W test have been taken as Bonferroni corrected
p-value <0.05. According to Dembélé et al. [23] we de-
clared those metabolites as differential whose f-value is
close to 0 or 1 and if f-value is close to 0.5 we took those
metabolites as non differential. For CVP, a metabolite was
said to be differential if p-value <0.05 and | log, (fold-
change) | > 1. For Bayesian approaches we took the cutoff
of Bonferroni corrected posterior probabilities > 0.95.

Methods

In this paper, a kernel weight based outlier-robust volcano
plot is developed for detecting differential metabolites. To
reduce the family wise error rate when comparing the per-
formance of the proposed method with existing differen-
tial metabolite identification techniques, the p-values are
adjusted using Bonferroni correction. The algorithm for
outlier-robust volcano plot is given below.

Outlier-robust volcano plot (proposed)

We extend volcano plot by introducing a kernel weight
function behind CVP. Classical volcano plot identifies dif-
ferential metabolites using the z-test and fold-change (FC)
methods, and plots log, (fold-change) on the X-axis
against -logo (p-value) from the ¢-test on the Y-axis. Be-
cause the t-statistic depends on mean and variance and
fold-change depends on mean, CVP is heavily influenced
by outliers. Therefore, we use the kernel weighted average
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and variance instead of the classical mean and variance in
the ¢-statistic and fold-change functions, and also plot log,
fold-change on the X-axis and -logy( (p-value) from the t-
test on the Y-axis. We refer to this procedure as robust
volcano plot (RVP).

Let X=(x;); i=1 2 ..,pand j=1 2 ..., n, be a meta-
bolomics data matrix with p metabolites and # samples.
The rows and columns of X represent the metabolites
and samples, respectively. In metabolomics data analysis,
differential metabolites are the metabolites that show
different concentrations between two groups (disease
and control) of samples in a metabolomics dataset. Ac-
cording to the control and disease groups, the dataset
can be expressed as

Control Disease

ML X2 Mg A4 Xigy) 0 X
X = Xo1 X2ttt Xog)
= . Xo(g,+1)  X2(g,+2) 7 Kam |
Xpl  Xp2 't Xpg ' '
b Xplg+1) Kple+2) Xpn

where g; is the number of subjects in the control group
and (n-g;) is the number of subjects in the disease
group. In CVP, log,(fold-change) and -logo(p-value)
from the t-test are calculated as follows.

The log, (fold-change) value for the i-th metabolite is

<
log,(FC;) = log, <_lc>v (1)
X;
where )_(? represents the average interclsity of the i-th
metabolite for the disease group and X, represents the
average intensity of the i-th metabolite for the control
group.

The ¢-statistic for testing the hypothesis that the i-th
metabolite is not differential, i.e.
against U =P,

Ho: uf=u H;:

for 0,2 = 0,5 is

where
& n
U o .
—C =1 —D j=g,+1 1 —C\?2
X = ! ) i =8 ; Sz‘zc = 1 (xi/_Xi> ;
&1 n-g; &1~

o _ 1 Xn: (xij—)?D)z;Sz _ (€-1)Sic + (”_81_1)512/3‘

iD= i i
n-g,-1 e n-2

The value from eq. (2) is compared with Student’s
t-value with n -2 degrees of freedom.
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X -X.
= ——t— (3)
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(5. 5)
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In both cases, the p-value is calculated using

p-value = /f(t)dt (4)

Lealculated

In CVP, the FC value from (1) and #value from (2) or (3)
are calculated using the classical mean and variance. Be-
cause the classical mean and variance are influenced by
outliers, we propose RVP using the weighted mean and vari-
ance instead of the classical mean and variance. For the
weighted mean and variance, we use the kernel weight func-

A
2(mad(x;))*
mad is the median absolute deviation. The value of this
weight function lies between zero and one, and is close to
zero if the observation is far from the median and close to
one if the observation is close to the median. In the weight
function, the tuning parameter 1 is selected using k-fold
cross validation (Fig. 1 summarizes the A selection proced-
ure). If the dataset does not contain outliers, then the value
of A is zero and all the weights are equal to 1, so the method
is the same as the classical approach. The steps for RVP are
given below.

tion w; = exp{- (xj—median(x;))*}, where

Step - 1. Calculate log, (fold change) for the i-th

metabolite as log,(FC;) = log, <§;>7 where

i
n

X, =3 wjx;/(n-g,) represents the weighted

14 .
j=g+1

average intensity of the i-th metabolite for the disease
—C & .
group and X, = > w;x;/g; represents the weighted
=1

average intensity of the i-th metabolite for the control
group.

Step - 2. Using the weighted average and weighted
variance instead of the classical mean and variance, calculate
-logio(p-value) for the i-th metabolite from the t-test

&1 2
using egs. (2), (3) and (4), where S%. = ]; w,»(x,»,»—XiC) /

n D2
(1) and S =3 wi(ayX7) / (n-g, 1)
a1

Step — 3. Draw a scatter plot with log, (fold-change) on
the X-axis and -log; (p-value) from the ¢-test on the Y-
axis. This plot is considered to be an outlier-robust vol-
cano plot (RVP). A metabolite is said to be differential
if p-value < 0.05 and | log, (fold-change) | > 1.
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Divide the dataset X in to & equally sized and similarity distributed section.

For the i-th section, compute the estimates using the i-th part of the data
(X") and the other i-1 parts of the data (X'") for different A values.

Also calculate the deviances between the estimate of the i-th part of the
data and the other i-1 part of the data as,

D(i, A;) = estimate(X h A;) —estimate(X = )
wherei=1,2, ... k;and 0<1<1.

k
Compute the average deviance using%ZD(i,/lj). Choose that A, which
i=1

produce minimum average deviance.

Fig. 1 Flowchart of A selection procedure

The R package of the proposed method with its user
manual is available at https://github.com/nishithkumar-
paul/Rvolcano.

Any user can install the “Rvolcano” package in R plat-
form from the GitHub using the following code

library(devtools)

install github("Rvolcano",

"nishithkumarpaul")

library(Rvolcano)

To draw the robust volcano plot using the package,
the user manual is available at GitHub website.

Dataset description

In this paper, we use an artificially generated dataset and
an experimentally measured metabolomics dataset to
evaluate the performance of the proposed method in
comparison with nine other methods.

Artificial data

In this study, as in [6], we generate an artificial metabo-
lomics dataset using a one-way ANOVA model y;; = ;
+g;j + €, where y;; is the intensity of the i™ metabolite,
j™ group and k™ sample, y; denotes the overall intensity
of metabolite i, g; is the j™ group effect for the i™
metabolite, and € is a random error term. In this linear
model, y; ~ wuniform (10, 20) and €5 ~ N(0,1). The
disease and control group effects for increased
concentrations of metabolites are g;=N(4,1) and g;=
N(2,1), respectively; for decreased concentrations of
metabolites, we use g; =N(2,1) and g;;=N(4, 1) for the
disease and control groups, respectively. Both group
effects for non-differential (equal concentration) metab-
olites are g; = N(0, 1). To create the artificial metabolo-
mics dataset, we designated 130 metabolites as non-

differential and 20 metabolites as differential (having dif-
ferential concentrations). The dataset contained 70 sub-
jects with 40 subjects in group-1 and 30 subjects in
group-2. To investigate the performance of the proposed
method under different conditions, outliers were ran-
domly distributed in the artificially generated data matrix
at different rates (5%, 10%, 15%, 20%, and 25%). Note that
these outliers can fall anywhere in the data matrix. The
outliers for the i-th metabolite were taken from a normal
distribution with mean 3*y; and variance of, ie. N (3*u;
0?), where y; and o7 are the mean and variance of the i-th
metabolite. In total, 500 artificial datasets were generated
for each condition, and the performance of the proposed
method was evaluated using these datasets.

Experimentally measured data

In this paper, we considered a well-known publicly avail-
able metabolomics dataset for breast cancer serum data
and control serum data containing metabolite abun-
dance level measurements from different subjects. This
dataset is available from the National Institute of Health
(NIH) data repository and was collected by the Univer-
sity of Hawaii Cancer Center under study ID ST000356.
The data were measured using a gas chromatography
with time-of-flight mass spectrometry (GC-TOFMS) in-
strument and quantified using the ChromaTOF software
(v4.33, Leco Co, CA, USA). The dataset contains 134
subjects (103 breast cancer without any treatment and
31 control subjects) and 101 metabolites. Auto-scaling
was used to reduce the systematic variation in the data-
set. To investigate the performance of the proposed
method under different conditions, we also modified the
dataset by changing 5%, 10%, and 15% of the real values
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by N(4 x u; a), where u; and o/ are the mean and
variance of the i-th metabolite in the breast cancer data
matrix.

Results and discussion

The performance of our proposed method was com-
pared with nine existing methods using both the artifi-
cial and experimental datasets.

Performance evaluation based on artificially generated
data

The performance of the proposed method was compared
with those of nine existing methods using 500 artificial
datasets. The misclassification error rates (MERs) for
differential metabolite identification were calculated for
each method. The true positive rate (TPR), false positive
rate (FPR), true negative rate (TNR), false negative rate
(FNR), the area under the receiver operating characteris-
tic (ROC) curve (AUC), and the partial AUC (pAUC
with FPR < 0.2) were also calculated. The above per-
formance indices were calculated both in the absence
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and presence of outliers. The average MER, AUC and
PAUC values for the artificial datasets are shown in the
Additional file 1: Table S1. A method with a lower MER
value and higher AUC and pAUC values is considered
better. From Additional file 1: Table S1, we observe that
our proposed method gave a lower MER value and
higher AUC and pAUC values both in the absence and
presence of outliers. We also present the ROC curves in
Fig. 2 and boxplots of the 500 MER and AUC values in
Figs. 3 and 4, respectively. Figure 2 shows that our pro-
posed method gave a higher average TPR with respect to
average FPR in comparison with the existing methods
both in the absence of outliers and with 15% outliers. In
Fig. 3, it is clear that the proposed method produced a
smaller MER with minimum variability, and in Fig. 4,
the proposed method gave higher AUC values with
minimum variability both in the absence of outliers and
with 15% outliers. To check the robustness of the differ-
ent methods, we plotted the ROC curve and a boxplot
of MER and AUC values for the artificial datasets for dif-
ferent rates (0%, 5%, 10%, 15%, 20% and 25%) of outliers.
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The graphs are shown in Additional file 2: Figures S1, S2
and S3. Further more, to measure the efficiency of the
proposed method, we also calculated the power and false
discovery rate (FDR) for small sample in both absence
and presence of outliers (Additional file 1: Table S2). In
Additional file 1: Table S2, the proposed method gave
higher power and lower FDR in absence and presence of
outliers for small sample sizes. More over, we calculated
the execution time (speed of execution) in seconds of
different methods including the proposed one for differ-
ent number of metabolites and samples (Additional file
1: Table S3). Additional file 1: Table S3 showed that it is
seen that the execution time of the proposed technique
was lower than the robust Bayesian technique BRIDGE
in all the cases, but this time is comperatively higher

than the execution time of other techniques. This is one
of the limitations of the proposed technique. Another
limitation of the proposed technique is its compatibility
only for the analyses between two groups. Although the
proposed technique has several limitations, on the basis
of above analyses of artificial datasets, we could conclude
that the proposed RVP-based differential metabolite iden-
tification technique performs better than the nine existing
methods.

Performance evaluation based on experimentally
measured data

For the experimentally measured metabolomics (breast
cancer) data, the performance of the proposed method
was measured using differential metabolite identification
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Fig. 4 Performance evaluation using box plots of 500 AUC values for different differential metabolite identification techniques a in the absence
of outliers, and b with 15% outliers
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from the experimental dataset and the modified experi-
mental datasets. The experimental data was modified by
artificially incorporating different rates (5%, 10% and
15%) of outliers. Methods that identified similar combi-
nations of differential metabolites for the experimental
dataset and the modified datasets were considered to be
more outlier-robust. Additional file 1: Table S4 shows
the number of differential metabolites identified by dif-
ferent methods for the original and modified datasets.
While Additional file 1: Table S4 shows any differences
in the number of differential metabolites identified by
each method for the datasets in the absence and pres-
ence of outliers, we also need to know which methods
identified similar combinations of differential metabo-
lites. We use Venn diagrams to find methods that gave
similar combinations of differential metabolites in the
absence and presence of outliers. From Additional file 1:
Table S4, we chose three techniques (Limma, FCROS
and the proposed method) according to the lowest
variability in the number of differential metabolites.
The corresponding Venn diagrams are presented in
Fig. 5. Venn diagrams for all methods are given in the
Additional file 2: Figure S4. From Fig. 5, we observe
that our proposed method produced similar combina-
tions of differential metabolites in the absence and
presence of outliers. Therefore, we conclude that our
proposed method performs better than the nine exist-
ing techniques.

Because we modified CVP to create an outlier-robust
version called RVP, we also examine the results of these
two methods for the experimental data. For the experi-
mental dataset, CVP identified 36 metabolites as differen-
tial, whereas our proposed RVP identified 37 metabolites
as differential (Fig. 6). The same 36 metabolites were iden-
tified by both methods, while RVP also identified
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cyclohexanone. From reviewing the literature, we found
that cyclohexanone is a metabolite that is associated with
breast cancer as well as several other cancer diseases
(Table 1) [35—40]. This suggests that our method is more
reliable for differential metabolite identification.

Sometimes, a set of metabolites may show the same
pattern of behavior, in that if one of them is differential
then the whole set is identified as differential. To iden-
tify the potential biomarkers from the 37 differential
metabolites identified by RVP, we clustered the differ-
ential metabolites using hierarchical clustering (Fig. 7)
and found the most important metabolites in each clus-
ter (the importance score is calculated using a support
vector machine (SVM) classifier with radial basis kernel
function) (Fig. 7). From Fig. 7 (b), we obtained four
clusters and chose the most important metabolite from
each cluster according to the importance score in Fig. 7
(c). For the first cluster in Fig. 7 (b), there are 15 me-
tabolites of which the most important is glutamate.
Similarly, ethanolamine is the most important metabol-
ite for the second cluster, pyruvic acid for the third
cluster and cyclohexanone for the fourth cluster. These
four metabolites (glutamate, ethanolamine, pyruvic
acid, and cyclohexanone) may thus be biomarkers for
breast cancer. Laboratory-based targeted metabolomics
analysis to test this hypothesis could be an avenue for
future research.

Conclusions

Outlying observations weaken the performance of
existing differential metabolite identification tech-
niques. In this paper, we have proposed a new outlier-
robust differential metabolite identification technique
for identifying differential metabolites in the presence
of outliers. To investigate the performance of our

Table 1 Literature review of cyclohexanone metabolite associated diseases

Authors Disease Title of the paper

Journal name

Westhoff et al.,, 2010 [35] Lung cancer

Differentiation of chronic obstructive pulmonary disease (COPD)
including lung cancer from healthy control group by breath

International Journal for lon
Mobility Spectrometry

analysis using ion mobility spectrometry

Wei et al,, 2012 [36] Prostate cancer

Effects of cyclohexanone analogues of curcumin on growth,

Oncology letters

apoptosis and NF-kB activity in PC-3 human prostate cancer cells

Leung et al. 2012 [37] Breast cancer

Identification of cyclohexanone derivatives that act as catalytic

Investigational new drugs

inhibitors of topoisomerase I: effects on tamoxifen-resistant

MCF-7 cancer cells

Wang et al, 2014 [26]

Mochalski et al, 2014 [38]

Liu et al,, 2014 [39]

Silva et al,, 2017 [40]

Breast cancer

Renal disease

Lung cancer

Breast cancer

Volatile Organic Metabolites Identify Patients with Breast Cancer,
Cyclomastopathy, and Mammary Gland Fibroma

Blood and breath profiles of volatile organic compounds in
patients with end-stage renal disease

Investigation of volatile organic metabolites in lung cancer pleural
effusions by solid-phase microextraction and gas chromatography/
mass spectrometry

Volatile metabolomic signature of human breast cancer cell lines

Scientific Report (Nature)
BMC Nephrology

Journal of Chromatography

Scientific Report (Nature)
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Fig. 7 Metabolomic biomarker identification for breast cancer. a Heatmap plot of up-regulation and down-regulation for the 37 differential
metabolites identified by the proposed method (red indicates cancer samples and blue indicates control samples). b Clustering of the 37
differential metabolites for the experimental dataset. Hierarchical clustering was used after normalizing the experimentally measured breast
cancer dataset by auto-scaling. ¢ Ranking of the 37 differential metabolites according to the importance score calculated using an SVM classifier with

proposed method, we analyzed artificial data and ex-
perimental data in the absence and presence of out-
liers. We also compared the performance of our
proposed method with nine existing differential me-
tabolite identification techniques using the ROC
curve, and the average MER, AUC and pAUC values.
Both the artificial and experimental data analysis
show that our proposed method performed better.
The proposed RVP also identified an additional me-
tabolite (cyclohexanone) that was overlooked by CVP,
and it has been shown that this metabolite is associ-
ated with several cancer diseases. We recommend
using the proposed method to identify differential
metabolites from noisy metabolomics datasets.
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Additional file 1: Table S1. Performance evaluations for different
methods using average MER, AUC and pAUC values. Table S2. Efficiency
Calculation of different techniques using power and FDR in both absence
and presence of outliers for small sample sizes. For this analysis 1500
metabolites have been taken in the dataset. Table S3. Execution time
calculation in seconds of different methods including the proposed one
for different number of metabolites and different number of samples
(Computer Configuration: Processor-Intel Core i7 3.6 GHz, RAM-16.0GB,
OS- 64 bit & Windows 8). Table S4. Number of differential metabolites
identified by different methods. (DOC 136 kb)

Additional file 2: Performance evaluation of the proposed technique
compared to other techniques using ROC curves and MER and AUC
values for the artificial datasets in the absence and presence of outliers.
Figure S1. Performance evaluation using ROC curves for different
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differential metabolite identification techniques (a) in the absence of
outliers, (b) with 5% outliers, (c) with 10% outliers, (d) with 15% outliers,
(e) with 20% outliers, and (f) with 25% outliers. Figure S2. Performance
evaluation using box plots of 500 MERs for different differential metabolite
identification techniques (a) in the absence of outliers, (b) with 5% outliers,
() with 10% outliers, (d) with 15% outliers, (€) with 20% outliers, and (f) with
25% outliers. Figure S3. Performance evaluation using box plots of 500
AUC values for different differential metabolite identification techniques (a)
in the absence of outliers, (b) with 5% outliers, (c) with 10% outliers, (d)
with 15% outliers, (e) with 20% outliers, and (f) 25% outliers. Figure S4.
Performance evaluation using Venn diagrams for the number of differential
metabolites identified by different differential metabolite identification

methods for the experimental dataset. (DOC 6677 kb)
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