
SOFTWARE Open Access

JAMI: a Java library for molecular
interactions and data interoperability
M. Sivade (Dumousseau)1, M. Koch1, A. Shrivastava1, D. Alonso-López2, J. De Las Rivas2, N. del-Toro1, C. W. Combe3,
B. H. M. Meldal1, J. Heimbach5,6, J. Rappsilber3,4, J. Sullivan5,6, Y. Yehudi5,6 and S. Orchard1*

Abstract

Background: A number of different molecular interactions data download formats now exist, designed to allow
access to these valuable data by diverse user groups. These formats include the PSI-XML and MITAB standard
interchange formats developed by Molecular Interaction workgroup of the HUPO-PSI in addition to other, use-
specific downloads produced by other resources. The onus is currently on the user to ensure that a piece of
software is capable of read/writing all necessary versions of each format. This problem may increase, as data
providers strive to meet ever more sophisticated user demands and data types.

Results: A collaboration between EMBL-EBI and the University of Cambridge has produced JAMI, a single library to
unify standard molecular interaction data formats such as PSI-MI XML and PSI-MITAB. The JAMI free, open-source
library enables the development of molecular interaction computational tools and pipelines without the need to
produce different versions of software to read different versions of the data formats.

Conclusion: Software and tools developed on top of the JAMI framework are able to integrate and support both
PSI-MI XML and PSI-MITAB. The use of JAMI avoids the requirement to chain conversions between formats in order
to reach a desired output format and prevents code and unit test duplication as the code becomes more modular.
JAMI’s model interfaces are abstracted from the underlying format, hiding the complexity and requirements of each
data format from developers using JAMI as a library.

Keywords: Molecular interactions, Protein-protein interaction, Protein complexes, Data standards, HUPO-PSI, PSI-MI

Background
Molecular interaction data is crucial to the study and
understanding of the molecular biology of a cell. These
data are large and complex, but the creation of a stan-
dardised data interchange format (PSI-MI XML) allowed
easier access, enabling users to merge data from dispar-
ate resources and encouraging the development of tools
and software that facilitated network visualisation and
analysis. Version 1.0 [1] of the format only allowed a
relatively simple description of protein interactions but
as the data grew, limitations of the original format were
identified, and an updated version, PSI-MI XML2.5 [2],
was released in 2007. It allows the description of interac-
tions between molecules other than proteins, and en-
ables the detailed capture of both experimental context

and the constructs used in each assay. This version of
the interchange format is still widely used to capture ex-
perimental data, but the need to describe more abstract
concepts has recently resulted in the release of PSI-MI
XML 3.0 [3]. PSI-MI XML3.0 allows the capture of de-
tails of cooperative or allosteric binding sites, the com-
position of protein complexes taken from multiple
publications, and more complex data types such as dy-
namic interaction networks that change with time or
with concentration of agonist. A simpler tab-delimited
representation of molecular interaction data has also
been available since 2007 but this has also grown in
complexity in response to user requests, and MITAB2.5,
2.6 and 2.7 are now all available [2]. Additionally, at the
2017 HUPO-PSI workshop, the Molecular Interaction
workgroup decided the newly developed MI-JSON will
be its recommended protocol for serving interaction
data to web pages and visualisation tools.

* Correspondence: orchard@ebi.ac.uk
1European Bioinformatics Institute (EMBL-EBI), European Molecular Biology
Laboratory, Wellcome Genome Campus, Hinxton CB10 1SD, UK
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133
https://doi.org/10.1186/s12859-018-2119-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2119-0&domain=pdf
http://orcid.org/0000-0002-8878-3972
mailto:orchard@ebi.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

PSI-MI XML, MITAB and MI-JSON are all capable of
holding the same data, in differing degrees of detail, and
are all annotated using a single shared controlled vo-
cabulary but exist to serve different user groups. The
XML format is largely used by software developers and
database managers, the MITAB by biologists interested
in simple binary representation and the MI-JSON for
visual representation. Updating any data format necessi-
tates changes to many dependent systems. A broad
range of software, including curation, editing, export,
visualisation, validation and analysis packages use the
PSI-MI formats to access and manipulate the data and
consequently need to be updated with every format up-
date. Format updates add complexity to existing soft-
ware packages, as the programs need to be extended to
utilise the new version whilst still continuing to support
those already existing and widely-used. These software
and standards are consumed by a diverse group of orga-
nisations with different levels of resources, ranging from
PhD students in small research groups to data pipeline
specialists in pharmaceutical or bioinformatics compan-
ies. Potentially some groups may end up using legacy
standards and software for many years simply because
they do not possess the skills, time, or budget to update
their software.
Supporting such diverse needs is time and resource in-

tensive, yet securing funding for software maintenance is
challenging [4]. Each new data format is useful and must
be maintained, but each update generates a new library,
with duplicated code, requiring parallel testing and gen-
erating its own bugs. In summary, while new formats
meet genuine need, they also result in an expensive cas-
cade of changes to software and tools.
The JAMI (Java Molecular Interaction framework) li-

brary was developed, using an object-orientated ap-
proach, to address these concerns. JAMI can import,
inter-convert and re-export molecular interaction data
in a variety of formats and versions. The software has
been designed to ensure that modules to read/write new
format types can easily be written and added to the li-
brary, thus providing a single change-resilient software
component to handle all molecular interaction data. It is
generally intended that the JAMI library will be used
within a Java application, rather than being made avail-
able as an API, but users could look to develop a pro-
grammatic interface using the JAMI framework, if
required. Given the change-resilient remit of the JAMI
framework, it was necessary to ensure that JAMI can
handle multiple use cases. It needs to concurrently sup-
port legacy data models, contemporary data models, and
any new changes required in the future, as interaction
data becomes ever more sophisticated in its nature. For
this reason, the data model was deliberately kept flexible
enough to expand, with all classes being interfaces with

a default implementation. Implementations may be
added, edited or removed if necessary over time. Main
entities in the data model include Complex, Interaction,
Entity, Participant, and Publication - interfaces with a
default implementation and format-specific overloaded
behaviours. For example, PSI-XML 2.5 [2] allowed ex-
periment descriptions to contain either a cross-reference
to a Publication object, or directly contain a list of attri-
butes such as author and journal, whereas in XML 3.0, it
is possible to associate both of these data members with
an experiment [3]. Since the Publication and XML ex-
port classes are only interfaces, exporting the two differ-
ent types of Publication can be handled by the same
software, with implementation classes reconciling the
two XML versions.
When included as a library in bioinformatics software,

JAMI hides the complexity of supporting multiple data
formats. It facilitates data import, integration and ana-
lysis, simplifying software development by offering a sin-
gle API. JAMI also eases the creation of new
interchange formats, like JSON-LD or RDF. Additional
formats can be added once to JAMI and are then sup-
ported in multiple software packages with little effort.
Similarly, JAMI prevents code duplication - each of
these software sources drawing from JAMI now share
code, ensuring less effort is put into the development of
multiple XML/MITAB parsing modules.

Implementation
Figure 1 shows the overall architecture of the JAMI li-
brary. JAMI is implemented in Java, using Maven for dis-
tribution and dependencies (https://www.ebi.ac.uk/intact/
maven/nexus/content/repositories/ebi-repo/psidev/psi/
mi/jami/)..The code is available under the Apache 2.0 li-
cence, and is available on GitHub [5]. The architecture is
highly modular, driven by the anticipated need to modify
or add input and output types in the future, without af-
fecting the overall function or capabilities of the frame-
work. Unit tests cover core functionality, ensuring that
code changes do not result in regression (returning bugs)
and that input/output formats and behaviours remain
consistent even when code is changed. Travis CI (https://
travis-ci.org/), performs continuous integration, automat-
ically running the test suite whenever the codebase is
changed.

JAMI-Core and JAMI-commons
JAMI-Core forms the foundation of JAMI, comprising
of standalone modules for each data input/output type
that JAMI is capable of handling, alongside appropriate
listeners and factories to instantiate JAMI’s classes. For
software using JAMI internally, JAMI-Commons serves
as the default entry point, functioning as a thin code-
loading helper to import the XML and MITAB input/

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 2 of 9

https://www.ebi.ac.uk/intact/maven/nexus/content/repositories/ebi-repo/psidev/psi/mi/jami/
https://www.ebi.ac.uk/intact/maven/nexus/content/repositories/ebi-repo/psidev/psi/mi/jami/
https://www.ebi.ac.uk/intact/maven/nexus/content/repositories/ebi-repo/psidev/psi/mi/jami/
https://travis-ci.org/
https://travis-ci.org/

output modules, along with all relevant code dependen-
cies. Dependencies are limited where possible to prevent
potentially disruptive updates from third parties.
JAMI-Core is also the home of code that handles

spoke and matrix expansion. Spoke or matrix expansion
is used to convert interactions with more than two par-
ticipants into multiple binary interactions - this is fre-
quently needed as many tools only operate on binary
interactions.

Data input/output types
In addition to both reading and writing MITAB2.5, 2.6
and 2.7 and PSI-XML (2.5 and 3.0), JAMI is also able to
output HTML and MI-JSON (Table 1). The HTML for-
mat is intended for quick human consumption via a web
browser, and is currently hardwired in JAMI to produce
a consistent layout and appearance although further CSS
extensibility is planned in the future, if there is user de-
mand. The MI-JSON output is designed for ease of use
with JavaScript-based client applications, such as the

ComplexViewer [6] described later in the results section.
As described above, JAMI is designed to be readily ex-
tensible. For example, components are currently being
created to support semantic web formats (i.e. RDF),
which are a base to realise interoperable linked data and
an extension to enable protein complexes described in
PSI-MI XML3.0 to be converted into an SBGN repre-
sentation is also being developed (https://github.com/
MICommunity/mi-sbgn). A JAMI-JSON-LD module is
also in preparation to enable export to Wikidata.

Data enrichment
JAMI’s enricher package allows known interactors
sparsely annotated with little descriptive information to
be enriched with additional data accessed from external
sources. An example of this, as shown in blue at the top
of Fig. 1, demonstrates fetching additional data from
UniProtKB [7] to enrich protein interactors and ChEBI
[8] for small molecules.
The enrichment package communicates with external

web services via a suite of modular web service-specific
fetcher packages within the JAMI-Bridges package.
Many of these sources are biomedical ontologies and a
module (JAMI-OLS) has been developed to import data
via the Ontology Look-up Service (OLS), thus giving the
user access to the 204 ontologies (December 2017) avail-
able through the OLS API. Separating the fetcher/brid-
ges packages from the enricher provides an abstraction
layer that ensures external changes, such as adding or

Fig. 1 JAMI internal architecture and input-output formats, including web service data

Table 1 Input and output formats currently provided by the
JAMI library

Format Input? Output?

PSI-XML (2.5 and 3.0) Yes Yes

MITAB 2.7 Yes Yes

MI-JSON No Yes

HTML No Yes

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 3 of 9

https://github.com/MICommunity/mi-sbgn
https://github.com/MICommunity/mi-sbgn

removing enrichment sources, cannot unintentionally
affect the entire software architecture.

Data model
Given the change-resilient remit of the JAMI framework,
it is necessary to ensure that JAMI can handle multiple
current use cases. It needs to concurrently support leg-
acy data models, contemporary data models, and any
new changes enacted. For this reason, the data model
was deliberately kept flexible enough to expand, with all
classes being interfaces with a default implementation.
Implementations may be added, edited or removed if ne-
cessary over time.

Results/discussion
The Proteomics Standards Initiative (PSI) has developed
and actively promotes the use of open standard data for-
mats and has a proven track record in developing robust,
pluggable programming interfaces to address the issue of
data being made available in a range of formats [9].
The JAMI library has been created to address this

problem in the field of molecular interactions and has
already been adopted by a number of resources which
process, import, export and/or visualise interaction data.
We describe below a number of implementations and
use these to exemplify the utility and flexibility of the
JAMI framework.

ComplexViewer
The ComplexViewer pictured in Figs. 2 and 3 is a
powerful visualisation tool which can show its users
exactly how the molecules in complex interactions inter-
act with each other, with interactive controls to allow
data exploration [6]. Unlike other network viewers, this
interaction viewer details the binding sites and regions,
when known, and enables the topology of a macromol-
ecular complex to be fully represented. Inter-molecular
connections can be demonstrated down to the amino
acid level, in the case of proteins, or shown as binding
domains or interfaces. The JAMI-JSON module in JAMI
is used to produce the MI-JSON file required by this
specialist visualisation software. ComplexViewer is open
source and hosted on GitHub under the Apache 2.0 li-
cence and has been integrated into the Complex Portal
[10], HumanMine [11] and YeastMine [12] data
resources.

InterMine
The biological data warehouse InterMine [11] provides
another concrete example of how JAMI can be used to in-
put and output molecular interaction data. InterMine is
organism-agnostic and open source, designed to consoli-
date discrete data sources with varied data formats into a
single database. Data can be accessed via a web application
interface or more directly via APIs, with clients available
in multiple languages. Efficient and maintainable data

Fig. 2 The ComplexViewer designed by the Rappsilber lab showing the collapsed and b. the expanded view of complex participants

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 4 of 9

import and export is therefore of particular significance to
InterMine.
As shown in Fig. 4, InterMine uses the JAMI library to

read molecular interaction data in PSI-XML format, re-
trieved from IntAct [13]. JAMI then translates the inter-
action data into interaction objects. These interaction
objects are parsed by InterMine, changed into InterMine
objects and then stored into the database at build time.
InterMine’s use of JAMI to import XML removes the
need for InterMine to implement multiple PSI-XML
version-specific parsers, and future-proofs the InterMine
code against any potential new changes in the PSI-XML
specifications. InterMine also uses JAMI to export inter-
action data. In InterMine instances where complex inter-
action data is loaded, for example HumanMine and
YeastMine [11], the ComplexViewer shown in Figs. 2
and 3 is available on the InterMine report page.
As detailed above, the specialist ComplexViewer visu-

alisation software requires a custom MI-JSON data for-
mat for input. Once again, InterMine uses the JAMI
library to perform this task, by querying the database for
data related to the interaction, and transforming it to
match the JAMI data model. JAMI then is able to export
a MI-JSON file to ComplexViewer.

IntAct
The IntAct molecular interaction database [13] uses
JAMI internally for data format conversions and

imports, as well as for writing to its own internal data-
base. The IntAct Editor application is used to curate mo-
lecular interactions data, and uses JAMI extensively
(Fig. 5), utilising the JAMI-HTML, JAMI-MITAB, JAMI-
XML and JAMI-JSON modules for exporting publica-
tions, experiments, interactions and complexes in the
relevant formats. This application integrates the Com-
plexViewer described in the previous section, and like
the InterMine use case, it is fed by the JAMI-JSON
module. Using JAMI-UNIPROT and JAMI-CHEBI, the
editor can import proteins from UniProtKB and small
molecules from ChEBI. Similarly, the use of a publica-
tion’s Pubmed ID allows further details relating to that
paper to be imported into the Editor from EuropePub-
medCentral via the JAMI- EUROPUBMED CENTRAL
module. Ontology terms, e.g. from the Gene Ontology
[14] and Molecular Interactions ontologies [15], are
fetched from OLS [16] using the JAMI-OLS module. Fi-
nally, when IntAct releases curated data into the public
database, the JAMI-XML and JAMI-MITAB modules
generate PSI-XML and PSI-MITAB files and place them
on an FTP server for public access. The IntAct database
currently (December 17) contains 800,000 binary inter-
action evidences from more than 20,000 publications
and this data is updated and released on a monthly basis
using the JAMI library. The December 2017 release to-
talled 55GB of data. Over 5000 publication were recently
imported into the IntAct database from DIP [17], to

Fig. 3 The ComplexViewer designed by the Rappsilber lab showing the expanded view of complex participants

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 5 of 9

centralise the IMEx dataset, and this was performed as a
single import operation using a tool reliant on the JAMI
modules.

Complex portal
The Complex Portal [9] is a manually curated, encyclo-
paedic resource of macromolecular complexes from a
number of key model organisms, where data is freely
available for search and download. Each protein complex
entry is stored in the IntAct database but is served to a
distinct website (http://www.ebi.ac.uk/complexportal)
and the files are written to a separate FTP site, all man-
aged internally by the JAMI library (Fig. 6). The

ComplexViewer, described above, is also used in the
Complex Portal and utilises JAMI-JSON to provide visu-
alisation of the complex data.

Chord interaction diagram
Figure 7 shows the chord diagram (currently in beta de-
velopment), which is conceptually similar to the Com-
plexViewer, drawing upon MI-JSON generated by JAMI
to create an alternative visualisation of the interactions
in a protein complex. While developed independently of
the ComplexViewer, it too uses MI-JSON generated by
JAMI as its data model.

Fig. 5 Usage of JAMI in the curation tool (Editor) application of the IntAct molecular interaction database

Fig. 4 Workflow showing how JAMI library helps InterMine software import and export data

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 6 of 9

http://www.ebi.ac.uk/complexportal

HUPO PSI-MI semantic validator
Molecular interaction files can be either rapidly curated,
curated to MIMIx specifications [18] or contain the de-
tailed information captured by members of the IMEx
Consortium [19] but, in all cases, need to be semantically
valid to enable data exchange and merger. The PSI-MI se-
mantic validator (http://www.ebi.ac.uk/intact/validator)
[20] not only checks the XML syntax of a submitted file
but also enforces rules regarding the use of an ontol-
ogy class or CV terms by checking that the terms
exist in the resource and that they are used in the
correct location of a document. Previously, the valida-
tor was only able to validate PSI-PAR and PSI-XML
2.5, but using JAMI it can now also validate MITAB
2.5, 2.6, and 2.7 and PSI-XML 3.0 [3]].

Agile protein Interactomes DataServer (APID)
APID (Agile Protein Interactomes DataServer) [21] is a
database that provides a comprehensive collection of pro-
tein interactomes for more than 400 organisms based on
the integration of known, experimentally validated protein-
protein physical interactions from several primary data-
bases, e.g. BIND [22], BioGRID [23], DIP, HPRD [24], In-
tAct, and MINT. Construction of the interactomes is done
with a methodological approach to report quality levels and
coverage over the proteomes for each organism included.
The APID algorithm uses a protocol based on JAMI to
process all of the PSI-XML formatted data and then uses
the JAMI-generated interaction objects in all the workflows
which have been subsequently implemented by this re-
source. It also takes advantage of the ability of JAMI to ex-
pand complexes when multiple interactions are detected.

Future plans
The current implementation of JAMI provides the mo-
lecular interactions community with a powerful library
to enable the development and long-term maintenance
of third-party tools. It enables these formats to be up-
dated and refreshed in response to new data types and
resources, and is capable of read/writing all existing ver-
sion of the PSI-MI XML and MITAB formats and meth-
odologies without obsoleting existing tools and
resources. The PSI formats, however, are not the only
mechanisms available for exchange of molecular inter-
action data and we intend to use the robust architecture

Fig. 6 Usage of JAMI in the “Complex Portal” application of the
IntAct database

Fig. 7 JAMI-JSON driven chord diagram of a protein complex

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 7 of 9

http://www.ebi.ac.uk/intact/validator

of JAMI to provide additional read/writers for XGMML,
BioPax and RDF. Additionally, we will use the JAMI
framework to improve users’ ability to merge data from
different resources, improving the existing MImerge
software [25], and use the ability to generate a standar-
dised MI-JSON file to improve front end technologies,
in particular data visualisation.

Conclusions
JAMI is proving its value as a framework to remove the
need for redundant software development and testing
with every release of a new or updated molecular inter-
action data standard. We intend to continue its develop-
ment, extend its functionality and make it applicable to
a wider set of use cases. The further development of
JAMI is an open source project coordinated through the
‘MICommunity’ GitHub organisation (https://github.
com/MICommunity) with documentation available at
https://github.com/MICommunity/psi-jami/tree/master/
docs and also code examples at https://github.com/
MICommunity/psi-jami/tree/master/jami-examples.
Please join us if you are interested in its future
development.

Availability and requirements
Project name: PSI-MI JAMI library Project home
page: e.g. http://psidev.info/groups/molecular-interactions,
https://github.com/MICommunity/psi-jami
Operating system(s): Platform independent.
Programming language: Java.
Other requirements:
License: Apache2.0.
Any restrictions to use by non-academics: None.

Abbreviations
HUPO: Human Proteomics Organization; IMEx Consortium: International
Molecular Exchange Consortium; JAMI: Java Molecular Interaction framework;
MI: Molecular Interactions; PSI: Proteomics Standards Initiative

Acknowledgements
Not applicable.

Funding
MS, MK, AS, JS, JH and YY were funded by BBSRC MIDAS grant (BB/L024179/
1), this grant provided the funds for the design of JAMI and its
implementation by the IntAct, Complex Portal and InterMine data resources.
CC and JR were funded by the Wellcome Trust [103,139, 063412, 203,149] for
the design of the ComplexViewer.

Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated
or analysed during the current study. All software is available from https://
github.com/MICommunity/psi-jami

Authors’ contributions
MS(D), ND-T, MK, AS, JS, JH and YY designed the JAMI library and imple-
mented it in the IntAct and InterMine resources, DA-L, JDLR, AC, CC, JR up-
dated and designed tools to use the new library, SO and BM provided use
cases and example files. JS and SO drafted the manuscript with input from
all authors, YY designed the figures. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1European Bioinformatics Institute (EMBL-EBI), European Molecular Biology
Laboratory, Wellcome Genome Campus, Hinxton CB10 1SD, UK. 2Cancer
Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de
Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL),
37007 Salamanca, Spain. 3Wellcome Trust Centre for Cell Biology, School of
Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
4Bioanalytics, Institute for Biotechnology, Technische Universität Berlin, 13355
Berlin, Germany. 5Cambridge Systems Biology Centre, University of
Cambridge, Cambridge, UK. 6Department of Genetics, University of
Cambridge, Cambridge, UK.

Received: 10 September 2017 Accepted: 20 March 2018

References
1. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, et

al. The HUPO PSI’s molecular interaction format–a community standard for
the representation of protein interaction data. Nat Biotechnol. 2004;22(2):
177–83.

2. Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, et
al. Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular
interactions. BMC Biol. 2007;5:44.

3. Sivade (Dumousseau) M, Alonso-López D, Ammari M, Bradley, G, Campbell,
NH., Ceol A. et al. Encompassing new use cases - level 3.0 of the HUPO-PSI
format for molecular interactions BMC Bioinformatics. https://doi.org/10.
1186/s12859-018-2118-1.

4. Goble C. Better software, better research. IEEE Internet Comput. 2014;18(5):
4–8.

5. MICommunity. MICommunity/psi-jami [Internet]. GitHub. Available from:
https://github.com/MICommunity/psi-jami.

6. Combe CW, Sivade (Dumousseau) M, Hermjakob H, Heimbach J, Meldal B,
Micklem G, Orchard S, Rappsilber J. ComplexViewer: visualization of curated
macromolecular complexes. Bioinformatics. 2017;33(22):3673–5.

7. UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic
Acids Res. 2016;45(d1):D158–69.

8. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. ChEBI
in 2016: improved services and an expanding collection of metabolites.
Nucleic Acids Res. 2016;44(D1):D1214–9.

9. Perez-Riverol Y, Uszkoreit J, Sanchez A, Ternent T, del Toro N, Hermjakob H,
et al. Ms-data-core-api: an open-source, metadata-oriented library for
computational proteomics. Bioinformatics. 2015;31(17):2903–5.

10. Meldal BHM, Forner-Martinez O, Costanzo MC, Dana J, Demeter J,
Dumousseau M, et al. The complex portal–an encyclopaedia of
macromolecular complexes. Nucleic Acids Res. 2015;43(Database issue):
D479–84.

11. Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, et al. InterMine: a
flexible data warehouse system for the integration and analysis of
heterogeneous biological data. Bioinformatics. 2012;28(23):3163–5.

12. Balakrishnan R, Park J, Karra K, Hitz BC, Binkley G, Hong EL, et al.
YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data
as a multipurpose tool-kit 2012:bar062.

13. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al.
The MIntAct project–IntAct as a common curation platform for 11
molecular interaction databases. Nucleic Acids Res. 2014;42(Database issue):
D358–63.

14. The Gene Ontology Consortium. Expansion of the Gene Ontology
knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331–8.

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 8 of 9

https://github.com/MICommunity
https://github.com/MICommunity
https://github.com/MICommunity/psi-jami/tree/master/docs
https://github.com/MICommunity/psi-jami/tree/master/docs
https://github.com/MICommunity/psi-jami/tree/master/jami-examples
https://github.com/MICommunity/psi-jami/tree/master/jami-examples
http://psidev.info/groups/molecular-interactions
https://github.com/MICommunity/psi-jami
https://github.com/MICommunity/psi-jami
https://github.com/MICommunity/psi-jami
https://doi.org/10.1186/s12859-018-2118-1
https://doi.org/10.1186/s12859-018-2118-1
https://github.com/MICommunity/psi-jami

15. Mayer G, Jones AR, Binz P-A, Deutsch EW, Orchard S, Montecchi-Palazzi L, et
al. Controlled vocabularies and ontologies in proteomics: overview,
principles and practice. Biochim Biophys Acta. 2014;1844(1 Pt A):98–107.

16. Jupp S, Burdett T, Malone J, Leroy C, Pearce M, McMurry J et al. (2015) A
new ontology lookup service at EMBL-EBI. In: Malone, J. Et al. (eds.)
Proceedings of SWAT4LS International Conference 2015″..

17. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The
database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;
32(Database issue):D449–51.

18. Orchard S, Salwinski L, Kerrien S, Montecchi-Palazzi L, Oesterheld M,
Stümpflen V, et al. The minimum information required for reporting a
molecular interaction experiment (MIMIx). Nat Biotechnol. 2007;25(8):894–8.

19. Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S. et al. Protein
Interaction Data Curation - The International Molecular Exchange
Consortium (IMEx). Nat Methods. 2012;9(4):345–50.

20. Montecchi-Palazzi L, Kerrien S, Reisinger F, Aranda B, Jones AR, Martens L,
Hermjakob H. The PSI semantic validator: a framework to check MIAPE
compliance of proteomics data. Proteomics. 2009;9(22):5112–9.

21. Alonso-López D, Gutiérrez MA, Lopes KP, Prieto C, Santamaría R, De Las
Rivas J. APID interactomes: providing proteome-based interactomes with
controlled quality for multiple species and derived networks. Nucleic Acids
Res. 2016;44(W1):W529–35.

22. Bader GD, Betel D, Hogue CWV. BIND: the biomolecular interaction network
database. Nucleic Acids Res. 2003;31(1):248–50.

23. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, et al.
The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017;
45(D1):D369–79.

24. Goel R, Harsha HC, Pandey A, Prasad TSK. Human protein reference
database and human Proteinpedia as resources for phosphoproteome
analysis. Mol BioSyst. 2012;8(2):453–63.

25. Villaveces JM, Jiménez RC, Porras P, Del-Toro N, Duesbury M, Dumousseau
M, et al. Merging and scoring molecular interactions utilising existing
community standards: tools, use-cases and a case study. Database. 2015.
Available from: https://doi.org/10.1093/database/bau131

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Sivade (Dumousseau) et al. BMC Bioinformatics (2018) 19:133 Page 9 of 9

https://doi.org/10.1093/database/bau131

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	JAMI-Core and JAMI-commons
	Data input/output types
	Data enrichment
	Data model

	Results/discussion
	ComplexViewer
	InterMine
	IntAct
	Complex portal
	Chord interaction diagram
	HUPO PSI-MI semantic validator
	Agile protein Interactomes DataServer (APID)
	Future plans

	Conclusions
	Availability and requirements
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

