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Abstract

Background: Many biological knowledge bases gather data through expert curation of published literature. High
data volume, selective partial curation, delays in access, and publication of data prior to the ability to curate it can
result in incomplete curation of published data. Knowing which data sets are incomplete and how incomplete they
are remains a challenge. Awareness that a data set may be incomplete is important for proper interpretation, to avoiding
flawed hypothesis generation, and can justify further exploration of published literature for additional relevant data.
Computational methods to assess data set completeness are needed. One such method is presented here.

Results: In this work, a multivariate linear regression model was used to identify genes in the Zebrafish Information
Network (ZFIN) Database having incomplete curated gene expression data sets. Starting with 36,655 gene records from
ZFIN, data aggregation, cleansing, and filtering reduced the set to 9870 gene records suitable for training and testing the
model to predict the number of expression experiments per gene. Feature engineering and selection identified the
following predictive variables: the number of journal publications; the number of journal publications already attributed
for gene expression annotation; the percent of journal publications already attributed for expression data; the gene
symbol; and the number of transgenic constructs associated with each gene. Twenty-five percent of the gene records
(2483 genes) were used to train the model. The remaining 7387 genes were used to test the model. One hundred and
twenty-two and 165 of the 7387 tested genes were identified as missing expression annotations based on their
residuals being outside the model lower or upper 95% confidence interval respectively. The model had precision of 0.

97 and recall of 0.71 at the negative 95% confidence interval and precision of 0.76 and recall of 0.73 at the positive

95% confidence interval.

Conclusions: This method can be used to identify data sets that are incompletely curated, as demonstrated using the
gene expression data set from ZFIN. This information can help both database resources and data consumers gauge
when it may be useful to look further for published data to augment the existing expertly curated information.
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Background

In recent years, the biological sciences have benefited
immensely from new technologies and methods in both
biological research and computer sciences. Together
these advances have produced a surge of new data.
Biological research now relies heavily upon expertly cu-
rated database resources for rapid assessment of current
knowledge on many topics. Management, organization,
standardization, quality control, and crosslinking of data
are among the important tasks these resources provide.
It is commonplace today for these data to be widely
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shared and combined, increasing the impact that incom-
plete or incorrect data may have on downstream data
consumers. Although assessing how complete or correct
a large data set may be remains a challenge, examples
have been reported. Examples include computational
methods for identifying data updates and artifacts that
may be of interest to downstream data consumers [1],
machine learning methods to identify incorrectly
classified G-protein coupled receptors [2], and to im-
prove the quality of large data sets prior to quantitative
structure-activity  relationship modeling [3]. The
completeness and quality of curated nanomaterial data
has also been explored [4].
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What does it mean for a data set to be “complete” or
“incomplete”? Data can be incomplete in two ways:
missing values for variables, or missing entire records
which could be included in a data set. Handling missing
variable values in statistical analyses is a complex topic
outside the scope of this article. In the context of this
work, “complete” means all currently published data of a
specific type is present in the data set with no mis-
sing values for any variables. In this study, data from
the ZFIN Database has been used to find genes that
have an incomplete gene expression data set, genes
for which there exist published but not yet curated
gene expression data.

There are several reasons data repositories may not in-
clude all relevant published data, including high data
volume, selective partial curation, delays in data access,
and release of data prior to the ability to curate it. High
data volume can result in the need for prioritization of
the incoming data stream. For example, ZFIN is the
central data repository for expertly curated genetic and
genomic data generated using the zebrafish (Danio rerio)
as a model system [5]. One major data input to ZFIN is
the published scientific literature. A search of PubMed
for all zebrafish literature shows that this corpus has
consistently increased in volume by 10% every year since
1996 resulting in a greater than 10-fold increase in the
number of publications processed by ZFIN in 2016
(2865 publications) compared to 1996 . Such increases
necessitate prioritization to focus effort on the data
deemed most valuable by the research community. As a
result, curation of some publications is delayed or pre-
vented all together. ZFIN currently includes curated data
from approximately 25% of the incoming literature
within 6 months of publication.

Data sets can also be incomplete relative to what has
been published if publications are curated for selective
data types. Publications that are not fully curated when
they initially enter a database may later be partially
curated during projects focusing on specific topics. For
example, the gene functions were curated from all the
publications associated with genes involved in kidney
development [6]. In such cases, publications may get
functional data, but no other data types, curated.

Delayed data access also contributes to curated data
sets being incomplete. There is significant variation in
how soon the full text of a publication may be available.
Some journals have embargo periods which restrict pub-
lication access to those with personal or institutional
subscriptions. Delayed access to the full text of publica-
tions slows data entry into data repositories, such as
ZFIN, which require the full text to curate. ZFIN
currently obtains full text for approximately 50%, 80%,
and 90% of the zebrafish literature within 6 months,
1 year, and 3 years of publication respectively.
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Incompletely curated data sets also result when new
data types are published prior to database resources
having the ability to curate those data. Curation of gene
expression data commenced at ZFIN in 2005 [7]. Curat-
ing papers from earlier years, known as “back curation”,
is something that many curation teams don’t have
resources to support. Gene expression data published
earlier than 2005 may only be curated at ZFIN if they
were brought forward as part of an ongoing project or
topic focused curation effort in subsequent years.

Why is it important to know if a data set includes all
relevant published data? This knowledge can help data-
base resources focus expert curation effort where it is
needed. Likewise, if a researcher is aware that a data set
may be missing records, they may look further for
additional relevant published data to complete the data
set. Having knowledge of all the published data helps to
avoid wasted time, money, and effort repeating work
already done by others, and also helps to avoid flawed
hypothesis generation based on incomplete data.

In recent years, natural language processing (NLP) and
machine learning methods have been widely used in the
field of genetics and genomics on tasks such as predic-
tion of intron/exon structure, protein binding sites, gene
expression, gene interactions, and gene function [8]. In
addition, model organism databases have used NLP and
machine learning methods for over a decade to manage
and automate processing of the increasing volume of
publications that must be identified, prioritized, indexed,
and curated [9-13]. These methods are applied to the
incoming literature stream, prior to curation. Machine
learning methods can also have utility after curation in
maintaining the quality and completeness of curated
data sets. The aim of this study was to provide a statis-
tical approach to identify curated data sets that may be
incomplete relative to what has been published. The
ZFIN gene expression data set was the use case for this
study. Researchers and data management teams alike
can use the output of this method to guide resource
allocation, decision making, and interpretation of data
sets with insight into whether additional data may be
available to augment an expertly curated data set.

Results

ZFIN gene expression annotations

Gene expression annotations in ZFIN are assembled
using a tripartite modular structure composed of: 1. The
Expression Experiment; 2. The Figure number and
Developmental Stage; and 3. the Anatomical Structure
(Fig. 1). These modules are then combined to create
each complete gene expression annotation. In this study,
the count of gene expression experiments per gene was
used as a key metric in the statistical model. The
primary reason for this was largely a practical
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Fig. 1 The structure of a gene expression annotation at ZFIN. Gene expression annotations at ZFIN are built up from three primary groupings of
data: The expression experiment, the figure/developmental stage, and the anatomical structure. Each group of data contains specific pieces of

consideration. Due to the way the data are structured,
the simplest approach was to count expression experi-
ments per gene rather than to get a full count of
complete gene expression annotations per gene.

Descriptive analysis

Three data files were combined to build the predictive
model. The MachineLearningReport.txt file included one
row of data for each of the 36,655 gene records found in
ZFIN at the time the file was generated. The GenePubli-
cation.txt file included 125,871 records describing which
publications are attributed to which genes and what type
of publications they are. ZFIN includes many publication
types, but only journal publications were included in this
study because they are the source of the gene expression
annotations being modeled. The ConstructComponents.
txt file included 12,738 records describing transgenic
constructs and their components. Each construct that
was related to a gene in this file was counted towards
the number of constructs associated with a gene. There
were 76 genes which had nine or more associated con-
structs, greater than 1.5 times the interquartile range for
this data set. Summary statistics for these files are shown
in Fig. 2.

Feature selection

Strong linear correlations were observed between the
number of expression experiments per gene and the
number of journal publications per gene (R* =0.82) or
the number of journal publications curated for
expression data per gene (R> =0.98; Fig. 3a and b
respectively).

Of the 36,655 total gene records in this study, 12,851
had at least 1 expression experiment and averaged 6.8
(Std. Dev. = 32) expression experiments. These strong
linear relationships between journal publications per

gene and number of expression experiments per gene
suggested that these variables could be the foundation of
a linear model to predict how many expression experi-
ments a gene should have. The higher correlation coeffi-
cient observed between expression experiments and
journal publications curated for expression data (Fig. 3b)
rather than total journal publications per gene (Fig. 3a)
reveals that there are journal publications associated
with genes for reasons other than gene expression, and
that those are reducing the accuracy of the linear regres-
sion. For example, the locations of the tp53 and mitfa,
genes in Fig. 3a indicate that those genes have few
expression experiments associated with them relative to
the number of journal publications with which they are
associated. Accounting for the additional reasons for as-
sociating a publication with a gene would strengthen the
linear regression model. Additional variables were tested
that could account for publications being associated with
genes, including the number of Gene Ontology annota-
tions and their associated journal publications, the
number of phenotype annotations and their associated
journal publications, and the number of transgenic con-
structs each gene was associated with. The model was
trained and tested including these data, then the Azure
Machine Learning (AML) Permutation Feature Import-
ance module was used to evaluate their predictive value.
Neither the phenotype annotation data nor the Gene
Ontology annotation data provided any value towards
prediction of the number of gene expression experi-
ments per gene, so these were dropped from the model.
The number of transgenic constructs and the gene
symbol did have modest predictive value, so these were
left in the model. The predictive value of the construct
count is attributable to the 779 genes associated with
one or more transgenic constructs, the maximum being
330 constructs associated with the gene hsp70l The
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Fig. 2 Descriptive statistics for the data used in model training and testing. Descriptive statistics are shown for the three data files used as input
for training and testing the model: GenePublication.txt (top), ConstructComponents.txt (middle), and MachinelLearningReport.txt (bottom)

promoter of this gene has been used for nearly 20 years
to drive inducible expression of transgenes with heat
shock [14]. The addition of a feature for associated con-
struct count per gene would make the model more ac-
curate for those 779 genes to which this situation was
applicable and hence improve model performance over-
all. The final list of features included in the model and
their relative predictive value score as reported by the

AML Permutation Feature Importance module is shown
in Table 1.

Regression modeling

Once the model variables were established, the input
data set was split 25%/75% for model training and
testing respectively of a linear regression model using
the Azure Machine Learning Studio. The model was



Howe BMC Bioinformatics (2018) 19:110

Page 5 of 12

Expression Experiments: @ More than 200 @ Less Than 200
1400 1400
1300 a 1300 b
1200 | “paxza 1200 Vhaxza
1100 | myoat 1100 mpodt
& 1000 & 1000
5 5
E 900 1 § 900
fo ' | =
8_ 800 egr2b 1@ 8 800 /egr2b
X X y
w700 w700 5
c - { ol my/7’,’
2 600 “gatara ™7 e 2 600 “gatata
(%] . %] o
) 1)) dix2a
S 500 gse 5 500
< . o DT X myb o /s “fofea
W 400 runxt® * .+, fgfea w400 . e
b " Saeab i v/ i
300  ama gt oce 300 pg *ayf* 0tz
o o {53 * o
200 fabp2” z e 200 "3’
Foy bmp2b bmp2b
100 “aaliey ¢, . * mitta 100
ey,
0 Cr e 0
0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000
Total Publications- Journal Publications with Curated Expression Data-
Fig. 3 Correlation between the number of expression experiments and Publications. a The correlation between the number of expression
experiments and the total number of journal publications per gene. b The correlation between the number of expression experiments and the
number of journal publications having curated expression experiments per gene

trained using the count of expression experiments as
the label and set up to minimize the Root Mean
Square Error (RMSE). The result of the predictive
model run on the test data set was examined using
the AML Evaluate Model module, which reported
model performance results shown in Table 2. The
high coefficient of determination (>0.95) indicated
that the model was a good predictor of the number
of expression experiments per gene.

Residual analysis
The purpose for making this model was to locate genes
in the ZFIN database that have incompletely curated
gene expression data sets relative to what has been pub-
lished. The RMSE of the model output when run on the
test data set was 3.368747 (Table 2).

Residuals were calculated as y-flx) where y is the
actual number of expression experiments per gene

Table 1 Variables selected for model training and their
predictive value score.

and f{x) is the model predicted number of expression
experiments per gene. A scatter plot of y vs. f{x) pro-
duces a strong linear correlation (R? =0.95; Fig. 4a).
The frequency histogram of these residuals reveals a
single mode centered very close to 0, suggesting that
the major wvariables for predicting expression
experiment number per gene had been accounted for
in this model (Fig. 4b). Genes with residuals that fell
outside the 95% confidence interval (CI) of the
model, calculated as two times the RMSE, were
predicted to be missing published expression
annotations. Of the 7387 genes in the test set 122
and 165 genes had negative or positive residuals
respectively that were greater than twice the RMSE of
the model and thus outside the model 95%
confidence interval. Those genes were identified by
this method as being significantly unlikely to have the
complete set of gene expression experiments found in
their associated journal publications.

Table 2 Results of model testing

Variable Score Measure Value

Journal publications with gene expression data 18.196293 Mean Absolute Error 1.582637
Percent of journal publications with expression data 0.043752 Root Mean Squared Error 3.368747
Gene symbol 0.000215 Relative Absolute Error 0.233714
Construct count —0.000447  Relative Squared Error 0.047532
Total journal publication count —0.000692 Coefficient of Determination 0.952468
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Model validation

The model predictions were tested by manually examin-
ing journal publications associated with randomly
selected genes from inside and outside the upper and
lower 95% CI. One hundred genes having negative resid-
uals were evaluated on each side of the lower 95% CL
Fifty genes having positive residuals were evaluated on
each side of the upper 95% CI. For each gene, publica-
tions that had not already been curated for gene expres-
sion data were examined in chronological order starting
with the earliest publication. The rationale for starting
testing with the earliest publications was that publica-
tions from before 2005, when ZFIN started curating
gene expression data, could be more likely to contain
uncurated gene expression data. If that proved true,
starting testing with the earliest publications could ac-
celerate testing by identifying uncurated expression data
in the older publications early in the testing process.
After completing data validation, the count of genes ha-
ving their earliest uncurated gene expression data per
year was plotted. The data did not support the premise
that earlier papers would be more likely to have uncu-
rated expression data. Instead, a relatively random dis-
tribution was observed of earliest publication dates for
the papers that had unannotated gene expression data
(Additional file 1: Figure S1). These data are a complex
function of multiple variables which change over time,
including how many curators were working; the number,

type, and timing of curation projects involving older lit-
erature; the number of other data types being curated
concurrently; the volume of literature being managed;
how curation priorities were set, etc. There are too many
variables to draw any conclusions from this, other than
that starting testing with the earliest publications was
unlikely to have accelerated the testing process in this
case. Genes were scored as having unannotated expres-
sion data as soon as one journal publication was found
with unannotated expression data for that gene. Genes
were scored as having a complete expression data set if
all journal publications associated with the gene were
examined and uncurated expression data for that gene
was not found. Each of the manually validated genes
having a negative residual or positive residual was plot-
ted on a scatter plot of actual expression experiment
count versus the number of expression experiments pre-
dicted to be missing (the residual) (Fig. 5b and d respect-
ively). A line was drawn across the charts at 6.73
predicted missing expression experiments, which was
the 95% confidence interval (2x RMSE) for the model.
That line was used to separate genes predicted to be
missing expression experiments (above the line) from
those predicted to not be missing expression experi-
ments (below the line). Red dots and green dots indicate
genes that were or were not found to be missing gene
expression annotations respectively during the valid-
ation. For genes having negative residuals, the model
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identified genes with published, but unannotated, ex-
pression data with a precision of 0.97 and recall of 0.71
(Fig. 5a). For genes having positive residuals, the model
had a precision of 0.76 and recall of 0.73 (Fig. 5¢). It is
clear from this result that this method had high preci-
sion for finding genes in ZFIN that had published but
yet to be curated gene expression data. This result also
showed that the more expression experiments a gene
had, the more likely it was to also be missing expression
data. Additionally, there was a trend indicating that the
higher the volume of existing expression experiments,
the higher the number of predicted missing expression
experiments was (Fig. 5b and d).

Discussion

Expertly curated biological database resources contain
highly accurate data [15]. Sometimes accuracy comes at
the expense of being comprehensive due to prioritization

of resource utilization, delayed data access, or publica-
tion of data that pre-dates its ability to be stored in a
knowledge base. Efficient methods for identifying areas
where data have been published but not yet curated are
important for curators of data resources and users of
those data resources alike. In this manuscript, the ZFIN
gene expression data set was used as a test case to de-
velop such a method. This method should be broadly
applicable to any data set of sufficient size, as long as
the proper predictive features can be identified. In the
case of the ZFIN gene expression data, which has been
captured from published literature by expert curators
since 2005, the number of journal publications associ-
ated with a gene was an extremely good predictor of
how many gene expression experiments a gene should
have. This resulted in a simple linear model comprised
of five variables. When the model was initially tested,
genes associated with transgenic constructs were being
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reported with high significance as missing gene expres-
sion data, when in fact they were not. In some cases,
genes associated with transgenic constructs had many
dozens of publications associated with them which had
no gene expression data for that gene. Perhaps the pro-
moter of the gene was used in the construct for example,
as is the case for the /sp70l gene. If that transgenic line
was widely published, many publications ended up being
associated with the gene because of the construct, even
if there were no gene expression data for that gene in
those publications. This led to the identification of the
number of transgenic constructs per gene as an import-
ant variable in the model for those specific genes that
were associated with constructs.

The process used here to identify incomplete curated
gene expression data sets at ZFIN should be
generalizable to other data sets, as summarized in Fig. 6.
One key to extending this method to other data types is
feature engineering, the use of domain knowledge to
identify and craft variables having predictive value
towards the desired variable. To find those predictive
variables, data exploration and domain knowledge must
first be applied to create a list of variables that may have
predictive power. It is good to be inclusive at this point

Gather input data

Combine data, one row per record

Filter rows to focus on records of interest

Deal with missing data (remove or interpolate)
Remove duplicate rows and columns

Calculate derived variables

Isolate final input data set

Train model and evaluate variables

NV AWM

8.1. Split data into training
and testing sets

/N

8'33 Remove va.r|a'bles 8.2. Train model with
with low predictive L
training data set

value

9. Run test data through trained model

10. Evaluate model, get model RMSE

11. Export model data with model predictions

12. Compute residuals

13. Examine publications for records having
residual > 2x model RMSE

Fig. 6 Generalized view of the method to find incomplete data sets
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as it is not always possible to know which variables, vari-
able derivatives, or variable interactions may be useful.
In some cases data transformation, normalization, or
computed values, such as the number of days since a
record was last edited, may hold predictive value. There
are many feature engineering techniques outside the
scope of this paper which may be helpful in preparing
data from other data sets. Once the data are assembled,
the model training and testing process provides mea-
sures of model accuracy and predictive power of each
variable. The best model will typically be the simplest
model that still accurately represents the data. Variables
that exhibit low predictive power should be dropped and
the model re-trained and tested. This feature engineer-
ing, training and testing process is repeated iteraitively
until model performance is acceptable and further re-
moval of variables degrades model performance. A linear
model was a good fit for the data examined in this work,
but other data sets may be better fit using other types of
models. The residual histogram provides one way to
evaluate whether significant variables remain un-
accounted for. Models with adequate variable represen-
tation have a bell shaped residual histogram centered
around zero. If the histogram shape has “shoulders” or
appears multi-modal, this is an indication that one or
more variables are yet to be accounted for in the model,
suggesting that the further feature selection and engi-
neering could improve the model.

At ZFIN, every incoming zebrafish publication is asso-
ciated with the genes discussed, even though not all the
publications are fully curated. Hence, in ZFIN, the
complete available literature across all genes is well rep-
resented, and thus the volume of published literature
about a gene has a positive correlation with the amount
of published data which exists for a gene. However, not
all biological knowledgebases gather data using the same
strategies. The method described here may not work as
well for datasets that have more heterogenous represen-
tation of the published literature or other key variable.
For example, a database which is populated with data by
searching the literature for information about a specific
record (gene, protein, etc.) may have deep representation
of existing literature on the subset of records which have
been researched and shallow representation of existing
literature on other records. Heterogeneity of literature
coverage of this type would detract from the predictive
value of pure literature counts as were used for the ZFIN
example. In such cases, other types of predictive
variables would need to be identified through data ex-
ploration and feature engineering. These may include
things such as the number of days since the last record
update, number of data types associated, the presence of
publications in specific journals, and presence of other
potentially correlated data types. In some cases, it may
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be helpful to bring in additional data from external
sources that can be linked to the data being examined.
For example, UniProt records may not be associated
with the complete literature about a protein or the
associated gene. UniProt data for zebrafish proteins
could be combined with the literature set from ZFIN for
each related gene. This may increase the predictive value
of the count of publications for identifying protein re-
cords in UniProt that are missing a piece of data of
interest. Creative variable engineering will always be a
critical step in successful application of this method.

The method described here produces a binary classifi-
cation of genes that are predicted to be or not to be
missing expression data based on the residual values
being inside or outside the 95% CI of the model. A
binary classification model makes sense for this problem.
Unlike a binary classification, regression models result in
a real number prediction of the label, in this case the
number of gene expression experiments per gene. The
regression model has the added possibility of providing a
quantitative metric whose magnitude may correlate with
the level of incompleteness of the data set. Confirmation
of that possibility will require significant effort which
should be the subject of future work.

This method can provide curators with a list of genes
having published gene expression data that is yet to be
curated. Therefore, the high precision outcome is im-
portant as it ensures that curators spend time reviewing
publications for genes that are missing data. The model
resulted in a recall/sensitivity of 0.71 and 0.73 at the
lower and upper 95% CI, meaning 71% and 73% of the
genes that were confirmed to be missing gene expression
data were identified. From the perspective of a data cur-
ator, modest recall is acceptable for this method because
subsequent rounds of model training and testing could
be executed to iteratively refine and complete the data
set. Genes that were not identified as missing data in the
initial round of training and testing would eventually be
identified in subsequent cycles of training, testing, and
data updating. From the perspective of a data consumer,
it would be beneficial to correctly identify as many genes
as possible which have incomplete gene expression data
sets. If future work finds that the magnitude of the
residuals correlates well with the amount of missing ex-
pression data, then the residual itself could be provided
to downstream data consumers as a metric of data set
completeness for every gene included in the test set.

Machine learning methods are having significant im-
pact upon many areas of our experience as scientists. As
the field of data science has matured, these methods
have become powerful tools for analysis, interpretation,
and utilization of the increasingly large and interrelated
data sets available today including numeric, free text,
and image data. This work provides a machine learning
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approach to monitor data set completeness. It is
concluded that this method could be used to identify in-
complete data sets of any type curated from published
literature, assuming proper predictive variables can be
identified to build an accurate model.

Methods

Method overview

The method described here uses three data sets from
the Zebrafish Information Network as input to a linear
regression model to predict the number of gene expres-
sion experiments per gene. Figure 7 provides a flow
chart of the steps taken from data input through model
output.

Data files

Three data files were combined to build the predictive
model. All three are provided as supplementary files to
this manuscript. The MachineLearningReport.txt file
(Additional file 2) is a custom report consisting of one
row per gene in the ZFIN database, generated on Nov.
29, 2016. Data columns included the ZDB-GENE ID,
gene symbol, gene name, count of gene expression ex-
periments, count of journal publications attributed for
gene expression annotations, count of Gene Ontology
annotations, and count of journal publications attributed
for Gene Ontology annotations. The columns related to
the Gene Ontology had no value for predicting the
number of gene expression experiments, so they were
excluded from further analysis.

The GenePublication.txt (Additional file 3) and
ConstructComponents.txt (Additional file 4) files are
generated daily at ZFIN and made available via the ZFIN
downloads page (https://zfin.org/downloads). The Gene-
Publication.txt file was obtained on Nov. 30, 2016. The
columns were gene symbol, ZDB-GENE ID, ZDB-PUB
ID, publication type, and PubMed ID when available.
The ConstructComponents.txt file was obtained on Dec.
19, 2016 and included columns for the ZFIN construct
ID, construct name, construct type, related gene ZDB-
GENE ID, related gene symbol, related gene type, a rela-
tionship between the gene and the construct, and two
ontology term IDs from the sequence ontology [16] to
specify the type of construct and the type of related
marker. For this study, the only data used was a count of
constructs related to each gene, which was computed
from the ConstructComponents.txt file.

Data preparation and modeling

Manipulations of input data files, feature selection and
engineering, model building, training, evaluation, model
selection, and final model scoring were all done using
modules provided in Microsoft Azure Machine Learning
Studio  (https://studio.azureml.net) using a free
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Fig. 7 A summary of the method used to model the number of expression experiments per gene in the ZFIN gene expression data set

36655 gene records
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« Remove duplicate rows/columns
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36655 gene records
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Genes having 0 journal publications
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9870 genes records retained

4. Split Data
25% for training (2483 genes)
75% for testing (7387 genes)

5. Train & Evaluate Model

Train and evaluate with training set

6. Run Test Data Through Trained Model
. Produced expression experiment count predictions
for 7387 genes in test set

7. ldentify Genes Missing Annotation
Export model output to Excel
Compute residual expression experiment count
Examine publications for genes having residual
expression experiment counts > 2x RMSE of model

workspace level account. Features per gene used to train
and test the linear regression model included the gene
symbol, the number of journal publications attributed
for gene expression, the number of gene expression ex-
periments (the label), total number of journal publica-
tions, the percentage of journal publications with
curated expression data, and the number of transgenic
constructs associated with each gene.

The set of all gene records in the ZFIN database
(36,655 genes as of Nov. 29, 2016) was filtered to ex-
clude genes that were unlikely to be useful in this
analysis including withdrawn genes, microRNA genes,
genes with a colon in the name (typically not yet
studied), genes with symbols starting with “unm_”
(typically not yet studied), and genes with no associ-
ated journal publications as determined by data from
the GenePublication.txt file. Genes with more than
200 existing expression experiments were also ex-
cluded because they are already heavily annotated for
gene expression, many were found to be anatomical
marker genes of less interest for the purposes of this
work (eg. egr2b), and their heavy annotation may give
them undesirable leverage that could negatively affect
model performance for genes of interest which may
have few annotations. Those excluded genes having
more than 200 expression experiments have red

symbols in Fig. 3. The resulting gene set used as in-
put for model training and testing included 9870
genes. Any null numeric values generated in the data
during file joining were set to 0 using the AML Clean
Missing Data module, and no duplicate rows were
present. A stratified split keyed on the expression ex-
periment count was used in the Split Data module to
select 25% of the genes (2483 genes) for training the
model and 75% (7387 genes) for scoring the model.
The Linear Regression, Train Model, and Score Model
modules were used to train and score the model. The
Linear Regression module used the following parame-
ters: Solution method: ordinary least squares; L2
regularization weight: 10; Include intercept term: un-
checked; Allow unknown categorical levels: checked;
Random number seed: 112. Model performance was
assessed using the Azure Machine Learning Evaluate
Model module. The trained model was used to pre-
dict the number of expression experiments for the
7387 genes that were not used in model training. The
resulting prediction was appended as a new column
to the input data set.

Analysis and data visualizations
Model results, including the input data plus the pre-
dicted number of expression experiments, for the 7387
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genes were exported from Azure Machine Learning
Studio as a tab delimited file and imported into
Microsoft Excel for Mac v16.27 for data validation and
analyses (Additional file 5). Residuals were calculated as
the actual expression experiment count minus the num-
ber of expression experiments predicted by the model.
The 95% confidence interval of the model, computed as
2 times the root mean squared error (RMSE), was used
to establish significance of the residuals. Genes with re-
siduals outside or inside the 95% confidence interval
were then considered as being predicted to be missing
or not missing expression annotation respectively. One
hundred genes inside and outside the negative 95%CI
were randomly selected for manual testing by sorting
the genes in the Excel spread sheet based on a randomly
generated number column and copying the first genes
from each set into a new Excel sheet. To remain blinded
during the evaluation step, those genes were randomized
again as a set by sorting based on a randomly generated
number column. That gene selection process was re-
peated for 50 genes inside and outside the positive 95%
CIL A manual evaluation was then done for each jour-
nal publication not already curated for expression
data that was associated with each of the selected
genes. The publications for each gene were sorted
oldest to newest based on publication date and were
then evaluated in order, starting with the oldest
publications. Publication assessment for each gene
continued until either all the publications were exam-
ined for a gene or a publication with missing expres-
sion data for that gene was identified, whichever
came first. The result was recorded along with the
assessment date and the ZDB-PUB ID for the publication
that was missing the expression data, if one was found.
The results of this data validation was used to produce a
confusion matrix describing model precision and recall
around the upper or lower 95% CL

Publication records in ZFIN each have a unique
ZDB-PUB ID, for example ZDB-PUB-161203-17. The
first six digits indicate the date the record was cre-
ated in YYMMDD format. Those data were parsed
out of the list of IDs for publications that were re-
corded as containing uncurated gene expression data.
The year component was then used to group those
data to get a count of the number of genes per year
that were found to have uncurated gene expression
data. Even though it was the year of publication entry
into ZFIN that was being counted, only the first
paper encountered with uncurated expression data
was recorded per gene, so the count is equal to the
number of genes in the sample having uncurated
expression data from each year.

Data visualizations were created using both Excel and
Tableau Desktop Professional Edition v10.1.4.
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