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Abstract

Background: In-depth study of the intron retention levels of transcripts provide insights on the mechanisms
regulating pre-mRNA splicing efficiency. Additionally, detailed analysis of retained introns can link these introns to post-
transcriptional regulation or identify aberrant splicing events in human diseases.

Results: We present IntEREst, Intron–Exon Retention Estimator, an R package that supports rigorous analysis of
non-annotated intron retention events (in addition to the ones annotated by RefSeq or similar databases),
and support intra-sample in addition to inter-sample comparisons. It accepts binary sequence alignment/map
(.bam) files as input and determines genome-wide estimates of intron retention or exon-exon junction levels.
Moreover, it includes functions for comparing subsets of user-defined introns (e.g. U12-type vs U2-type) and its plotting
functions allow visualization of the distribution of the retention levels of the introns. Statistical methods are adapted
from the DESeq2, edgeR and DEXSeq R packages to extract the significantly more or less retained introns. Analyses can
be performed either sequentially (on single core) or in parallel (on multiple cores). We used IntEREst to investigate the
U12- and U2-type intron retention in human and plant RNAseq dataset with defects in the U12-dependent
spliceosome due to mutations in the ZRSR2 component of this spliceosome. Additionally, we compared the
retained introns discovered by IntEREst with that of other methods and studies.

Conclusion: IntEREst is an R package for Intron retention and exon-exon junction levels analysis of RNA-seq
data. Both the human and plant analyses show that the U12-type introns are retained at higher level compared to the
U2-type introns already in the control samples, but the retention is exacerbated in patient or plant samples carrying a
mutated ZRSR2 gene. Intron retention events caused by ZRSR2 mutation that we discovered using IntEREst (DESeq2
based function) show considerable overlap with the retained introns discovered by other methods (e.g. IRFinder and
edgeR based function of IntEREst). Our results indicate that increase in both the number of biological replicates and
the depth of sequencing library promote the discovery of retained introns, but the effect of library size gradually
decreases with more than 35 million reads mapped to the introns.

Keywords: RNA-seq, Intron retention, Alternative splicing, RNA, Expression analysis, Bioconductor, U12-type
introns, U2-type introns
Background
Alternative pre-mRNA splicing is a cellular process in
eukaryotes that generates multiple transcripts from a
single gene. Of the various types of alternative splicing
(reviewed by Hamid and Makeyev [1]) intron retention
(IR) events have been less characterized than the alterna-
tive splicing events that are more frequent in mammals,
such as exon skipping and choice of alternative 5' splice
site (5'ss) and 3' splice site (3'ss). While the best charac-
terized IR events have been detected from humans with
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diseases caused by mutations in the core pre-mRNA
splicing machinery, recent work has established that reg-
ulated IR events are also part of the normal regulation
of gene expression [2, 3] and function in important bio-
logical processes such as cellular differentiation [4]. Fur-
thermore, in some taxa such as plants, IR is one of the
most prominent mechanisms of alternative splicing [5].
A well-established example of IR involves U12-type

introns (also called minor introns), which are spliced less
efficiently compared to the U2-type (major) introns [6].
The classification to major U2-type introns and minor
U12-type introns derives from the coexistence of two
parallel pre-mRNA splicing machineries in the cells of
most metazoan species. Majority of metazoan introns
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2122-5&domain=pdf
http://orcid.org/0000-0002-1732-4808
mailto:Mikko.Frilander@Helsinki.Fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Oghabian et al. BMC Bioinformatics  (2018) 19:130 Page 2 of 10
are excised by the "major" U2-dependent spliceosome,
and are therefore referred as the U2-type or major introns.
A small subset of metazoan introns, approximately 0.35%
or roughly 700-800 introns in mammals, are excised by a
parallel U12-dependent spliceosome, also known as the
minor spliceosome [7]. The targets of the U12-dependent
spliceosome are minor introns, which feature highly con-
served, but divergent 5'ss and branch point sequences
(BPS), which makes it possible to identify these introns
computationally [8, 9]. One of the main characteristics of
the minor spliceosome is that it is less efficient compared
to the major spliceosome [10–12]. As a result of the
inefficient splicing, elevated levels of transcripts con-
taining unspliced minor introns are retained in the
nucleus and targeted by nuclear RNA decay pathways
[6]. Moreover, disease-causing mutations in the
snRNA and protein components of the minor spliceo-
some (e.g. U4atac and U12 snRNAs, U11/U12-65K
and ZRSR2 proteins) show, among other splicing de-
fects, a further increase in IR levels of the U12-type
introns [13–19].
Various alternative splicing analysis tools have been devel-

oped [20–22], however few tools exist that focus on extract-
ing novel intron retention (IR) events and perform
differential IR analysis [23]. For a robust analysis of retention
levels of introns within and between various samples we
developed IntEREst, i.e. Intron–Exon Retention Estimator
that is based on the intron retention analysis used in Niemelä
et al. [6]. IntEREst accepts standard binary sequence align-
ment/map (.bam) files as an input and estimates the
genome-wide retention levels of the introns using sequencing
reads mapping to introns, intron-exon boundaries, or to
exon-exon junctions. The results are provided both as IR fold
changes and relative PSI or Ψ (percent spliced in) [24] values
and can be further analyzed by any of the several statistical
packages included, e.g. differential intron retention test based
on the “exon usage test” provided by DEXSeq [25, 26], differ-
ential IR test based on count data differential analysis tools
provided by DESeq2 [27], or exact test, generalized linear
models and quasi-likelihood test adapted from edgeR [28,
29]. The statistical tests calculate p-values based on the null
hypothesis that IR does not vary across the analyzed sample
groups. The resulting p-values estimated for each intron
allow subsequent identification of introns that show
statistically significant difference of IR between the
sample groups. IntEREst also provides tools for plot-
ting the distribution of retention levels of the introns
of interest within single or multiple samples. In
addition, large datasets that demand significant com-
putation time can be analyzed in parallel on multiple
computing cores. IntEREst is available as a Biocon-
ductor package and together with the manuals are ac-
cessible through https://bioconductor.org/packages/
release/bioc/html/IntEREst.html.
Implementation
IntEREst is an R package that supports various functions
to measure the retention levels of the introns, perform
statistical differential intron retention analysis across
various samples, and plot the distribution of retention
levels of different types of introns across various sam-
ples. The main design aim of IntEREst has been to sup-
port analysis of relative low level IR values (>10%) that
are more challenging to implement with the existing
software [24] but are typical for the U12-type introns [6]
and for U2-type introns in human diseases with a mild
defects with spliceosome function. In such cases the
commonly used Ψ values, particularly with default cut-
offs, may underestimate the extent of IR. Specifically, the
advantages of IntEREs are the ability to use multiple test
samples and controls, possibility to define compli-
cated design experiments (incorporating various sam-
ple annotations such as age, sex, and etc.) for IR
comparisons across samples, parallelization of the
computation and running on multiple nodes/cores,
integration to Bioconductor environment and the use
of both intronic and exon junctions reads, either
alone or together, to estimate the IR levels. Addition-
ally, besides providing a global IR analysis, IntEREst
supports analysis of user-defined subset of introns, e.g.
U12-type and U2-type introns.
The RNAseq read summarization functions (i.e. inter-

est() and interest.sequential()) accept a .bam read align-
ment file and a reference as inputs, and output the raw
(un-normalized) and normalized number of fragments
mapping to each exon or intron. The reference includes
coordinates of exons and introns together with their an-
notations, such as gene and transcript names, and intron
type identifier. The reference can be built using the
referencePrepare() function supported by IntEREst. Note
that the intron identifiers used in our analysis are U12-
and U2-type introns, but the application of IntEREst is
not limited to the comparison of these intron types.
Other classifications can be defined by the user and the
retention levels of the introns can be plotted and com-
pared across the user-defined classes. The functions in
the IntEREst package that are specific to the compari-
sons of the U2- vs U12-type introns, e.g. u12Boxplot(),
u12DensityPlot(), u12Index() start with “u12”.
IntEREst features two functions that estimate the raw

and normalized intron retention levels: 1) interest(),
capable of running in parallel on multiple computing
cores and 2) interest.sequential(), that runs sequentially
on a single computing core. These functions use the bpi-
terate() function from the BiocParallel R Bioconductor
package [30] to read and analyze the mapped reads, m
reads at a time (by default m = 1 million) to comply with
the limitations of the memory usage in the running
environment. When running interest.sequential(), the
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mapped reads are analyzed as batches of m reads (or
read pairs if the isPaired parameter is set TRUE) at a
time on a single computing core. With interest() it is
possible to analyze n batches of m reads (i.e. m×n reads
or read pairs) simultaneously while they are distributed
over n computing cores and repeat this process until all
reads have been analyzed.
The summarization functions interest.sequential() and

interest() support two distinct analysis modes: 1) intron-
exon junction estimation and 2) exon-exon junction esti-
mation. It is possible to configure the analysis to include
only the reads that map to intron-exon or exon-exon
junctions, however with default settings reads that map
entirely to the intronic or exonic regions are also in-
cluded in the calculation of retention level estimates. For
a typical intron-exon junction estimation analysis, we
recommend to collapse the overlapping exonic coordi-
nates across various splicing isoforms in the reference to
avoid any biases in the IR calculation that may be intro-
duced by the read counts of alternative exons, or by ex-
onic regions overlapping with sequences annotated as
introns in other transcripts. To improve the running time
and avoid repetitive processes, in exon-exon junction ana-
lysis mode, we recommend using a filtered reference
resulting from the unionRefTr() function. This function
identifies all repeating exons and uses only a single copy
of each. Moreover, because repetitive sequence elements
may bias the read mapping and thus affect the IR esti-
mates, the read summarization functions support the pos-
sibility to exclude the repeat regions and reads that map
to such regions. The default normalization method ap-
plied in the read summarization functions is Fragments
Per Kilobase per Million mapped fragments (FPKM) how-
ever, it is scaled at transcript level (formula 1). For every
intron i of gene g with I introns, if the length of the intron
is Lig and the number of fragments mapped to the intron
is Xig its normalized retention value will be FPKMig:

FPKMig ¼ Xig

Lig �
XI

k¼1

Xkg

� 109 ð1Þ

IntEREst provides a function lfc() that estimates the
log2 FC of the retention levels across two various condi-
tions, moreover it includes a function psi() to measure
the Ψ values, i.e. the percent spliced in, for all studied
introns. We have adapted several statistical tests from
multiple sources for intron retention and exon-junctions
analysis: DESEq2 [27], edgeR [21, 22], and DEXSeq [25,
26]. All these methods can be used to study the intron
retention changes across the samples in a genome-wide
scale. However, the DEXSeq based method (i.e. DEXSe-
qInterest() function) differs from the others as it uses the
differential exon usage method to perform gene-wise
comparisons

Results and discussion
Genome-wide analysis of retention of U2 and U12-type
introns
To demonstrate the application of IntEREst in compar-
ing retention levels of various types of introns across
several samples, we reanalyzed the RNAseq data from
myelodysplastic syndrome (MDS) patients and control
subjects included in Madan et al. [17] study. Specifically,
we compared the genome-wide retention levels of U12-
type introns vs U2-type across the MDS samples. This
disease is caused by mutations in the ZRSR2 gene that
encodes an integral protein component of the minor
spliceosome. Moreover, the original analysis of the data-
set reported that the ZRSR2 mutations in the patient
samples led to increased retention of primarily U12-
type introns while the U2-type introns were reported
to be less affected [17]. The dataset represents 16
individuals: 8 were diagnosed with MDS and featured
mutations in the ZRSR2 gene (referred to as
ZRSR2mut), 4 were diagnosed with MDS but lacked
the ZRSR2 mutations (referred to as ZRSR2wt), and 4
were healthy individuals (HEALTHY).
We ran genome-wide retention comparison of U12-

type introns to U2-type introns. To carry out the ana-
lysis, we used RefSeq as a reference and identified and
annotated 510 U12-type introns using the annotateU12()
function that uses Position Weigh Matrices (PWM)
extracted from the U12DB database [9]. Next we per-
formed the differential IR analysis using the DESeq2-
based function of IntEREst (comparing the ZRSR2mut
samples vs ZRSR2wt and HEALTHY). The DESeq2
test was run by considering both results from intron
retention and exon-exon junction runs of interest()
function. Initially, by using the interestResultIntEx()
function a result object was built that includes infor-
mation of both intron retention and exon-exon junc-
tion levels (see Additional file 1 for more details).
The results show an increased retention of U12-type

introns in the ZRSR2mut samples as opposed to U2-
type introns. Specifically, after the low retention filtering
and using a 0.01 adjusted p-value cutoff on the DESeq2
results, we identified 1521 introns representing either
the U12- or U2- type that displayed higher retention
levels in the ZRSR2mut samples compared to the
controls (i.e. ZRSR2wt and HEALTHY samples). Of the
510 U12-type introns in the data, 269 (i.e. 52.7% of the
U12-type introns) showed significant up-regulation of IR
in the ZRSR2mut samples when compared to the
controls, while none of the U12-type introns showed a
significant reduction in IR (see Fig. 1a). In contrast, only
1252 of the 228524 (~0.54%) of U2-type introns



Fig. 1 Intron retention level distribution. Retention log2 fold change (ZRSR2mut vs control) vs normalized retention levels of U12-type introns (a)
and U2-type introns (b). Introns showing significantly higher and lower IR values have been indicated with green and red color, respectively
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analyzed showed a significant increase of IR and 89 (~0.
03%) showed a significant decrease (see Fig. 1b). Our
analysis also confirmed the earlier observation of in-
creased intron retention levels with U12-type introns
compared to U2-type introns [6, 11, 31] since we ob-
served that the overall FPKM retention values (formula
1) of U12-type introns were higher than that of U2-type
in all the samples of the MDS study, including the
ZRSR2mut, ZRSR2wt and HEALTHY samples (Fig. 2a,
b). However, this effect was more prominent in the
ZRSR2mut samples, suggesting that the ZRSR2 muta-
tions were exacerbating the IR of the U12-type introns.
Similar increase in IR was not observed with the U2-
type introns between ZRSR2mut and controls, regardless
of whether they were located in the genes containing
U12-type introns or other genes, or in the close proxim-
ity of U12-type introns (immediately up- or downstream
position). Rather, the median log2 fold-change of the
U2-type introns was approximately zero whereas the
median log2 fold-change of U12-type introns was ~1.5
(see Fig. 2c). Moreover, the Jonckheere Trend test [32,
33] with 10000 number of permutations, under the null
hypothesis that the values are similar (and with the
alternative that the values for the U12-type introns are
higher) returned a highly significant p-value of 0.0001.
In line with these results, the median of ΔΨ values (i.e.
the increase of percentage spliced in when comparing
ZRSR2mut samples to the controls) for all U12-type
introns was about 1% as compared to 0.6% with U2-type
introns (see Fig. 2d). Moreover, the average ΔΨ values for
introns showing a significant increase in IR were ~33%
and 23% for U12-type and U2-type introns, respectively.
To further evaluate the validity and generality of our

results, we compared the MDS results to the similar re-
sults that we obtained from analyzing an additional
Maize data [34] (see Additional file 1 for more details).
The Maize data is constructed of 6 samples (i.e. 3 roots
and 3 shoots referred to as RGH3mut) that feature mu-
tations in the gene RGH3 (ortholog of Human ZRSR2
gene) and 6 samples (3 roots and 3 shoots referred to as
RGH3wt) that lack the mutation. The results of the
Maize data analysis mirror our findings with the MDS
data. Analogous to MDS data, the RGH3mut samples
showed increased IR with ~46% of U12-type introns,
while only a ~0.46% of the U2-type introns showed an
increase in IR (see Additional file 1: Figure S7).



Fig. 2 (See legend on next page.)
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Fig. 2 FPKM-scaled retention levels of U12-type and U2-type introns across various samples in MDS data, excluding transcripts that feature only
introns with low average read counts over all samples (i.e. 1 read or less). a Boxplot showing FPKM-scaled retention levels of the U12-type introns
(middle) as compared to their upstream and downstream U2-type intron. The thick horizontal lines in boxplots represents the median values and
the whiskers represent 1.5 times the interquartile range. The box extends from the first quartile to the third quartile. b Boxplot showing the distribution
of the FPKM-scaled retention levels of U12-type introns compared to the U2-type intron in ZRSR2mut, ZRSR2wt, and HEALTHY samples. c Density plot
illustrating the frequency of the fold change (log2) of the retention levels of U12-type introns, randomly picked U2-type introns, U2-type
introns upstream and downstream of the U12-type introns when comparing ZRSR2mut to the control samples of the MDS data. d Density plot illustrating
the frequency of the ΔΨ values (increase of percentage spliced in) of the U12- and U2-type introns when comparing ZRSR2mut to the control samples.
The Ψ values are between -1 and 1
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Together, our results suggest that IntEREst provides
reliable quantification of differential IR events; Specific-
ally, our results are not only consistent with the well-
documented increased retention levels of U12-type in-
trons [6, 11, 31], but are also in concordance with the
molecular function of the ZRSR2 protein (and its Maize
ortholog, i.e. RGH3) in the recognition of U12-type
introns [17, 34].

Benchmarking and comparison to other methods
We evaluated the performance of the IntEREst in two
ways using the MDS benchmark dataset. First, we car-
ried out internal analysis comparing IntEREst results in
conjunction with different statistical analysis packages
implemented in IntEREst. Subsequently, we carried out
comparison with both, the published results of the MDS
analysis [17] and IRfinder [23], i.e. dedicated software for
IR analysis. Note that all comparisons described in the
following are based on the introns that were available in
the both references used by the compared counterparts.

Differential up- and down–regulated introns in methods
implemented in IntEREst
We compared the three methods implemented in IntER-
Est for differential intron retention analysis, i.e. DESeq2,
GLM function of edgeR and DEXSeq, referred hereafter
as IntEREst-DESeq2, IntEREst-edgeR and IntEREst-
DEXSeq, respectively. The DESeq2 and edgeR have been
previously reported to result in somewhat dissimilar
results in differential gene expression analysis [35]. In
contrast, DEXseq method differs in its application (see
above). For IntEREst-DESeq2 and IntEREst-edgeR
comparison, we first merged the intron-exon and the
exon-exon junction results (obtained by running
interest() in its two running modes) using interestResul-
tIntEx(). Subsequently, we used deseqInterest() and
glmInterest() functions (i.e. the IntEREst functions based
on DESeq2 and edgeR-GLM) to analyze the change of
IR relative to the change of the junction levels of their
flanking exons. We used an adjusted p-value (Benjamini
and Hochberg [36]) threshold cutoff of 0.01 to identify
introns that are retained at significantly higher or lower
level in the ZRSR2mut samples compared to controls
(see Additional file 1 for more details).
We found that there is a significant overlap both with
upregulated and downregulated introns between the
IntEREst-DESeq2 and IntEREst-edgeR (Fig 3a, b), with a
bias towards upregulated introns. Furthermore, of the
introns not shared between the two methods, the
IntEREst-DESeq2 identified more introns with an in-
crease in IR, while the IntEREst-edgeR identified more
downregulated IR events. The majority of the IR events
not shared by the two methods (specifically those dis-
covered by IntEREst-DESeq2 and missed by IntEREst-
edgeR) display a weaker IR fold-change compared to
those in the shared intron group (See Additional file 1:
Figure S3). The observed differences between the two
methods are in line with the recent DEG analysis results
[35] and are due to the variability of the methods used
and an extra filtering step based on Cook’s distance
which is used in DESeq2 by default.
Comparison of the IntEREst-DESeq2 to IntEREst-

DEXSeq revealed a considerable overlap between the two
methods (Fig. 3 c). However, IntEREst-DEXSeq identified
a large number of significantly less retained introns not
identified by the IntEREst-DESeq2 (Fig. 3 d). This out-
come reflects the gene-wise method adapted in DEXSeq
where the variation in the retention levels of each intron
is compared to the relative retention variation of all other
introns within the same gene, rather than solely compar-
ing the genome-wide changes of IR levels. This results in
a more symmetric distribution of up/down regulated in-
tron retention signals (Fig. S4). As a consequence, the sig-
nificantly more and less retained introns discovered by
IntEREst-DEXSeq were more than twice more frequently
observed in the same genes compared to those identified
by IntEREst-DESeq2. Furthermore, the IntEREst-DEXSeq
only consider the reads that map to either introns or
exons (here the intron read counts were used) and does
not support the usage of both intron retention and exon-
exon junction information.

IntEREst-DESeq2 and IRFinder show extensive overlap
We next compared the IntEREst-DESeq2 to IRFinder, a
dedicated IR analysis software, which also uses DESeq2
package in its downstream analysis [27]. Since IntEREst-
DESeq2 counts reads that map to the exons, we used
the mean of the number of reads mapping to the 5’ and



Fig. 3 Venn diagrams showing the comparisons of: (a) Significantly more retained introns (labeled with “up”) discovered by Interest-DESeq2 and
Interest-edgeR (b) As in panel A, but showing data for the significantly less retained introns (labeled with “down”). (c) Significantly more retained
introns using the IntEREst-DESeq2 and IntEREst-DEXeq (d) As in panel C, but showing the significantly less retained introns. (e) Significantly retained
introns discovered by IntEREst-DESeq2 and the IRFinder [23]. (f) Significantly retained introns discovered by IntEREst-DESeq2 and the significantly
retained introns reported by Madan et al. [17], labeled with “MDS”. All the significant more/less retained introns were extracted from the unfiltered
MDS data, comparing the ZRSR2mut to the control samples
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3’ flanking exons. In contrast, the IRFinder counts the
junction reads that map across the flanking exons. Run-
ning IRFinder with the default parameters extracted 250
introns showing significantly increased IR in ZRSR2mut
samples, most of which (i.e. 235) overlapped with the in-
trons discovered by the IntEREst-DESeq2 (Fig. 3 e). Note
that IntEREst utilized more intron/exon-mapped reads
compared to IRFinder. This was particularly evident with
introns with lower retention levels, thus providing
better-supported fold-change estimates for such introns
(Additional file 1: Figure S5).

Enhanced discovery of IR events in MDS samples
We further compared our IR results with the original ana-
lysis of the MDS dataset by Madan et al. [17]. We found
that IntEREs-DESeq2 was able to identify most (i.e. 177
out of 205 introns) of the significant IR events reported by
Madan et al. [17], but it also discovered a large number of
additional events not reported in the original study (Fig.
3f), representing both U12-type (149) and U2-type (1195)
introns. On the contrary, the events that were reported in
the original study, but missed in our analysis all represent
borderline cases featuring low fold-changes and statistical
significance (Additional file 1: Figure S6).
Together, our results revealed that the different methods

implemented in IntEREst are able to identify a highly
overlapping set of high-confidence differentially retained
introns. Additionally, each method also identified IR
events that are unique to a particular method. This pro-
vides the flexibility to select an approach best fitting to the
particular research questions.

Sample size and sequencing library size sensitivity
Finally, we studied the effect of the number of biological
replications and the intron read coverage levels again using
the MDS dataset. To investigate the effect of biological rep-
lication, we randomly picked 2 to 8 MDS, ZRSR2mut and
control samples for our analysis with IntEREst-DESeq2 (i.e.
DESeq2Interest() ) and repeated this 10 times. As expected,
the results reveal that increasing numbers of biological
replicates lead to a discovery of an increased number of sta-
tistically significant IR events (Fig. 4a, b). This observation
is similar to what has been observed earlier with gene ex-
pression analyses [35].
A similar trend was also observed when analyzing the

effect of intron/exon read coverage levels. Here we
distributed 5-50 million reads according to the relative
retention levels of the introns and exon-exon junction
levels (based on the complete data) in each sample,
followed by analysis with IntEREst-DESeq2. In our
analyses we assumed that the quality and read coverage
is equal in all the individual MDS datasets. As a result,
we observed that an increase in the sequencing library
size leads to a discovery of increasing numbers of in-
trons showing statistically significant deviation in the IR
levels. However, the slope of increase of the number of



Fig. 4 The effect of sample size and sequencing library size sensitivity. a The number of significantly higher retained introns in ZRSR2mut
samples vs controls, relative to the various number of biological replicates. b Similar to the panel A but for the significantly less retained
introns in ZRSR2mut samples. c The significantly higher retained introns in ZRSR2mut samples vs controls, relative to the number of reads
mapped to the introns and exons. A padj < 0.01 threshold was used for all analyses. The data points on the far right in each panel (8
biological replicates in panels a and b; ~60M reads in panel c represent the complete MDS dataset used in the analysis. This leads to
zero variance in panels a and b because the resampling size for the complete data is 1 (8 ZRSR2mut vs 8 controls), and less significantly
differential IR events compared to the resampled in panel C due to variable size datasets. The conditions of the resampled data in panel
C are idealistic, as in these analyses the overall mapped reads for all samples are assumed to be equal (as opposed to in the MDS data
where it varies from 51-75 million); hence their number of retained introns are higher compared to the real MDS data

Oghabian et al. BMC Bioinformatics  (2018) 19:130 Page 8 of 10
discovered IR events decreases and levels off at the high-
est library sizes (more than 35M; Fig. 4c).

Conclusion
Here we present IntEREst, an R package for intron reten-
tion and exon-exon junction analysis. Our method is able
to extract the significantly retained introns and carry out
intra- and inter-sample comparisons of the retention
levels of the introns and exon junction levels. We used
IntEREst to analyze the publicly available MDS data [17]
and our results confirm that mutations in the ZRSR2 gene,
a component of the minor spliceosome involved in recog-
nition of 3΄ splice site of the U12-type introns, leads to
increased IR particularly with the U12-type introns. Fur-
thermore, our results show that compared to the U2-type
introns, the IR of U12-type introns is already higher in the
control samples, but the mutations in the ZRSR2 gene fur-
ther exacerbate the IR in the patient cells. These conclu-
sion are further supported by our analysis of Maize data
with a mutations in plant ortholog of the ZRSR2 gene,
which, similarly to human data, also show strong bias
towards increased IR of the U12-type, but not U2-type
introns. The introns showing significantly higher or lower
IR in the ZRSR2mut samples vs control samples in MDS
dataset that we discovered using the IntEREst-DESeq2
(Additional file 2) overlap with the introns identified by
IRFinder and IntEREst-edgeR. Furthermore, our results
not only detect the same IR events reported in the original
study by Madan et al. [17], but we also discovered add-
itional significant IR events featuring both the U12- and
U2-type introns.
The resampling analysis of ZRSR2mut vs control sam-

ples show that by including more biological replications
and considering a larger sequencing library size, increas-
ing number of significant IR events can be discovered.
While the maximum number of biological replicates
(eight) used in this study is not sufficient to estimate the
optimal required for IR discovery, we note that library
sizes with more than 35M mapped reads start to ap-
proach the point where the improvements in detect-
ing novel IR events are marginal. In sum, we believe
that IntEREst is a reliable tool in R/Bioconductor
environment for detailed intron retention analysis of
RNAseq datasets.
Availability and requirements
IntEREst is implemented as an R package freely available
at the Bioconductor repository.
Project name: IntEREst
Archived version: 1.2.2
Project home page: https://github.com/gacatag/IntEREst/

https://github.com/gacatag/IntEREst/
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and https://bioconductor.org/packages/release/bioc/
html/IntEREst.html
Operating system(s): Platform independent
Programming language: R
Other requirements: R v 3.4 or higher
License: GPL
Any restrictions to use by non-academics: No

restrictions

Additional files

Additional file 1: HTML file including all the running scripts and
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Additional file 2: Tab delimited text file that includes the differentially
retained introns, when comparing the ZRSR2mut samples to the controls
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