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Abstract

Background: Identification of functional elements of a genome often requires dividing a sequence of measurements
along a genome into segments where adjacent segments have different properties, such as different mean values. Despite
dozens of algorithms developed to address this problem in genomics research, methods with improved accuracy and
speed are still needed to effectively tackle both existing and emerging genomic and epigenomic segmentation problems.

Results: We designed an efficient algorithm, called iSeg, for segmentation of genomic and epigenomic profiles. iSeg first
utilizes dynamic programming to identify candidate segments and test for significance. It then uses a novel data structure
based on two coupled balanced binary trees to detect overlapping significant segments and update them simultaneously
during searching and refinement stages. Refinement and merging of significant segments are performed at the end to
generate the final set of segments. By using an objective function based on the p-values of the segments, the algorithm
can serve as a general computational framework to be combined with different assumptions on the distributions of the
data. As a general segmentation method, it can segment different types of genomic and epigenomic data, such as DNA
copy number variation, nucleosome occupancy, nuclease sensitivity, and differential nuclease sensitivity data. Using simple
t-tests to compute p-values across multiple datasets of different types, we evaluate iSeg using both simulated and
experimental datasets and show that it performs satisfactorily when compared with some other popular methods, which
often employ more sophisticated statistical models. Implemented in C++, iSeg is also very computationally efficient, well
suited for large numbers of input profiles and data with very long sequences.

Conclusions: We have developed an efficient general-purpose segmentation tool and showed that it had comparable or
more accurate results than many of the most popular segment-calling algorithms used in contemporary genomic data
analysis. iSeg is capable of analyzing datasets that have both positive and negative values. Tunable parameters allow users
to readily adjust the statistical stringency to best match the biological nature of individual datasets, including widely or
sparsely mapped genomic datasets or those with non-normal distributions.

Background

High throughput genomic assays, such as microarrays and
next-generation sequencing, are powerful tools for studying
genetic and epigenetic functional elements at a genome scale
[1]. A large number of approaches have been developed to
exploit these technologies to identify and characterize the
distribution of genomic and epigenomic features, such as
nucleosome occupancy, chromatin accessibility, histone
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modifications, transcription-factor binding, replication tim-
ing, and DNA copy-number variations (CNVs). These ap-
proaches are often applied to multiple samples to identify
differences in such features among different biological con-
texts. When detecting changes for such features, one needs
to consider a very large number of segments that may
undergo changes, and robustly calculating statistics for all
possible segments is usually not feasible. As a result, heuristic
algorithms are often needed to find the optimal solution for
the objective function adopted by an approach. This problem
is often called segmentation problem in the field of genom-
ics, and change-point problem in other scientific disciplines.
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Solving the segmentation problem typically involves div-
iding a sequence of measurements along the genome such
that adjacent segments are different for a predefined criter-
ion. For example, if segments without changes have a mean
value of zero, then the goal could be to identify those seg-
ments of the genome whose means are significantly above
or below zero. A large number of such methods have been
developed for different types of genomic and epigenomic
data [2-17]. Many methods are designed for specific data
types or structures, but it is challenging to find versatile
programs for data with different properties and different
underlying statistical assumptions. The previous methods
fall into several categories including change-point detection
[2, 3,9, 10, 12, 14, 18-25], Hidden Markov models [5, 15,
26-28], Dynamic Bayesian Network (DBN) models [29, 30],
signal smoothing [31-34], and variational models [35, 36].
For review and comprehensive comparison, please refer to
[16, 37-40].

Many currently available segmentation tools have poor
performance, run slowly on large datasets, or are not
straightforward to use. To address these challenges, we de-
veloped a general method for segmentation of sequence-
indexed genome-wide data. Our method, called iSeg, is
based on a simple formulation of the optimization problem
[7]. Assuming the significance (i.e. p-value) of segments can
be computed based on certain parametric or non-
parametric models, iSeg identifies the most significant seg-
ments, those with smallest p-values. Once the segment with
the smallest p-value is found, it will be removed from the
dataset and segment with the second smallest p-value will
be searched in the remaining of the data. The procedure re-
peats until no segments whose significance levels pass a pre-
defined threshold. This simple objective function is intuitive
from a biological perspective since the most statistically sig-
nificant segments often biologically significant.

iSeg has several noteworthy features. First, the simple for-
mulation allows it to serve as a general framework to be
combined with different assumptions of underlying prob-
ability distributions of the data, such as Gaussian, Poisson,
negative Binomial, or non-parametric models. As long as p-
values can be calculated for the segments, the correspond-
ing statistical model can be incorporated into the frame-
work. Second, iSeg is a general segmentation method, able
to deal with both positive and negative signals. Many of the
existing methods, cannot deal with negative values in the
data, because they are designed specifically for certain data
types, such as genome-wide read densities, assuming data
values with only zero or non-negative values. Negative
values in genomic datasets can occur when analyzing data
pair relationships, such as difference values or log2 ratios
commonly used with fold-change analysis. Currently, most
methods segment profiles separately and compare the
resulting segmentations. The drawback of such treatment is
that peaks with different starting and ending positions from
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different segmentations cannot be conveniently compared,
and peaks with different magnitudes may not always be dis-
tinguished. Taking differences from two profiles to generate
a single profile overcomes these drawbacks. Third, to deal
with cases where segments are statistically significant, but
the biological significance may be weak, we apply biological
significance threshold to allow practitioners the flexibility
to incorporate their domain knowledge when calling “sig-
nificant” segments. Fourth, iSeg is implemented in C++
with careful design of data structures to minimize compu-
tational time to accommodate, for example, multiple or
very long whole genome profiles. Fifth, iSeg is relatively
easy to use with few parameters to be tuned by the users.
Here we describe the method in detail, followed by per-
formance analysis using multiple data types including sim-
ulated, benchmark, and our own. The data types include
DNA copy number variations (CNVs) for microarray-
based comparative genomic hybridization (aCGH) data,
copy number variations from next generation sequencing
(NGS) data, and nucleosome occupancy data from NGS.
From these tests, we found that iSeg performs at least
comparably with popular, contemporary methods.

Methods
Problem formulation
We adopted a formulation of the segmentation problem
from previous methods [7]. The goal was to find segments
with statistical significance higher than a predefined level
measured by p-values under a certain probability distribu-
tion assumption. The priority was given to segments with
higher significance, meaning that the segment with highest
significance was identified first, followed by the one with
the second highest significance, and so on. We imple-
mented the method using Gaussian-based tests (i.e. t-test
and z-test), as used it in other existing methods [3, 7, 9].
Our method achieved satisfactory performance for both
microarray and next generation sequencing data without
modifying the hypothesis test. A more common formula-
tion of the change-point problems is given in [41].
Consider a sample consisting of N measurements along
the genome in a sequential order, X1, X2, ..., XN, and

Xk ~ N (py,0%), VkeL
Xk ~ N (p;,0%),VkeL

for some set of locations L (i.e. background, regions with
no changes, etc.). The common assumption is that there
are M non-overlapping segments with mean p, ty, ..., #;,
..o Har Where p; # o, and the union of these segments will
form the complement of the set L. If the background level,
Uo, is non-zero, the null hypothesis can be the correspond-
ing non-zero means. According to this model, it is possible
for multiple segments with means different from 4, to be
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adjacent to each other. In addition, all the measurements
are assumed to be independent. This assumption has been
employed in many existing methods [9, 23]. A summary of
existing methods that use such an iid. assumption and its
properties are discussed in [42]. The goal of a segmentation
method is to detect all the M segments with means differ-
ent from .

To illustrate, Figure 2a shows segments generated from
Normal distributions with non-zero means where the rest
of the data is generated from a standard Normal distribu-
tion. There are two computational challenges associated
with the approach we are taking that also manifest in many
previous methods. First, the number of segments that are
examined is very large. Second, the overlaps among signifi-
cant segments need to be detected so that the significance
of the overlapping segments can be adjusted accordingly.
To deal with the first challenge, we applied dynamic pro-
gramming combined with exponentially increased segment
scales to speed up the scanning of a large sequence of data
points. To deal with the second challenge, we designed an
algorithm coupling two balanced binary trees to quickly de-
tect overlaps and update the list of the most significant seg-
ments. Segment refinement and merging allow iSeg to
detect segments of arbitrary length.

Computing p-values using dynamic programming

iSeg scans a large number of segments starting with a
minimum window length, W,,;,, and up to a max-
imum window length, W,,,,,. The minimum and max-
imum window lengths have default values of 1 and
300, respectively. This window length increases by a
fixed multiplicative factor, called power factor (p),
with every iteration. For example, the shortest win-
dow length is W,,;,, and the next shortest window
length would be pW,,;,. The default value for p is 1.
1. When scanning with a particular window length,
W, we use overlapping windows with a space of W/5.
When ‘W is not a multiple of 5, numerical rounding
(ceiling) is applied. The aforementioned parameters
can be changed by a user. We found the default pa-
rameters work robustly for all the datasets we have
worked with. The algorithm computes p-values for
candidate segments and detects a set of non-
overlapping segments most significant among all pos-
sible segments.

Given the normality assumption, a standard test for
mean is the one-sample student’s t-test, which is com-
monly found among many existing methods. The test
statistic for this test is,

t=

X/n
S

where % is the sample mean, s is the sample standard
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deviation, and # is the sample size. A drawback of this
statistic is that it cannot evaluate segments of length 1.
This may be the reason that some of the previous
methods are not good at detecting segments of length 1.
Although we can derive a test statistic separately for seg-
ments of length 1, the two statistics may not be consist-
ent. To solve this issue, we first estimate the sample
standard deviation using median absolute deviation
(MAD), assuming that the standard deviation is known.
Specifically, for a series of data points x3, xy, ..., %, the
MAD is defined as the median of the absolute deviations
from the data’s median:

MAD = median(| x; — median(x)| ).

This is a robust summary statistic of the variability of
the data. This allows us to use z-statistic instead of ¢-
statistic and the significance of single points can be eval-
uated based on the same model assumption as longer
segments. To calculate sample means for all segments to
be considered for significance, the number of operations
required by a brute force approach is ‘Cj.

Wmin

k
Z —P Wmm

i=0

where, pkWmin < Wmax and pk + 1Wmin > Wmax.

Computation of these parameters (means and standard
deviations) for larger segments can be made more effi-
ciently by using the means computed for shorter seg-
ments. For example, the running sum of a shorter
segment of length ‘m’ is given by,

o

i=l

If this sum is retained, the running sum of a longer
segment of length r (r > m) in the next iteration can be
obtained as,

Sr:5m+ i Xia

i=m+1

and the means for all the segments can be computed
using these running sums. Now, the total number of op-
erations (Cj,) is

k
CZ =N+ Z(N_Piwmin)y

i=0

which is much smaller in practice than the number of
operations (C,) without using dynamic programming.
Computation of standard deviations is sped up using a
similar process.
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Detecting overlapping segments and updating significant
segments using coupled balanced binary trees

When the p-values of all the segments are computed, we
rank the segments by their p-values from the smallest to
the largest. All the segments with p-values smaller than a
threshold value, p,, are kept in a balanced binary tree
(BBT1). The default value of p; is set as 0.001. Assuming a
significance level (&) of 0.1, 100 simultaneous tests will
maintain a family-wise error rate (FWER) bounded by 0.001
with Bonferroni and Sidak corrections. Thus, the cut-off is
an acceptable upper bound for multiple testing. It can be
changed by a user if necessary. The procedure for overlap-
ping segment detection is described below as a pseudo-
code. The set BBT1 stores all significant segments passing
the initial significance level cutoff (default value 0.001). The
second balanced binary tree (BBT2) stores the boundaries
for significant segments. After the procedure, SS contains
all the detected significant segments. The selection of seg-
ments using balanced binary tree makes sure that segments
with small p-values will be kept, while those overlapping
ones with bigger p-values will be removed.
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Refinement of significant segments

The significant segments are refined further by expan-
sion and shrinkage. Without loss of generality, in the
procedure (see SegmentExpansion text box) we describe
expansion on left side of a segment only. Expansion on
the right side and shrinkage are done similarly. When
performing said expansion and shrinkage, a condition to
check for overlapping segments is applied so the algo-
rithm results in only disjoint segments.

Merging adjacent significant segments

When all the significant non-overlapping segments are de-
tected and refined in the previous steps, iSeg performs a
final merging step to merge adjacent segments (no other
significant segments in between). The procedure is
straightforward. We check each pair of adjacent segments.
If the merged segment, whose range is defined by the left
boundary of the first segment and the right boundary of
the second segments, has a p-value smaller than those of
individual segments, then we merge the two segments.
The new segment will then be tested for merging with its

procedure SelectSignificantSegments
while(BBT1 not empty)

delete S from BBT1

[ = left boundary of S

7= right boundary of §

insert pair(/, r) into BBT2
insert S to set SS

initialize BBT2 // BBT2 is empty at the beginning

S = top ranked segment in BBT1 (smallest p-value among all segments in BBT1)

if(checkoverlap (BBT2, /, ) == FALSE) // no overlapping

procedure SegmentExpansion (S,)

S§=8r
while()
p =p-value of §
L = length of §
lo = left boundary of S

for K is 10. */
I'=1ly — ceiling(L/K)
p' = p-value of segment ;.
ifp'<p
S = Sl r
Else

left boundary
ifpm<p
S = Slm,r
Break
Update S;,- with boundaries of S.

/* Si,: the segment to be expanded. Its left boundary is /, and right boundary is r. */

/* expand the segment by 1/K of its current length, and compute its p-value. The default value

compute p-values for all segments with left boundary in (/, /o) and right boundary
7. let pn be the minimum p-value of these segments, and /, be the corresponding
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adjacent segments iteratively. The procedure continues
until no segments can be merged. With refinement and
merging, iSeg can detect segments of arbitrary length—
long and short. We added an option to merge only seg-
ments whose distances are no more than certain thresh-
old, where distances are measured by the difference of the
ending position of the first segment and the starting pos-
ition of the second segment.

Multiple comparisons

In iSeg, p-values for potentially significant segments are
calculated. Using a common p-value cutoff, for example 0.
05, to determine significant segments can suffer from a
large number of false positives due to multiple compari-
sons. To cope with the multiple comparisons issue, which
can be very serious when the sequence of measurements
is long, we use a false discovery rate (FDR) control. Specif-
ically, we employ the Benjamini-Hochberg (B-H) proced-
ure [43] to obtain a cutoff value for a predefined false
discovery rate (a), which has a default value of 0.01, and
can also be set by a user. Other types of cutoff values can
be used to select significant segments, such as a fixed
number of most significant segments.

Biological cutoff

Often in practice, biologists prefer to call signals above a
certain threshold. For example, in gene expression ana-
lysis, a minimum of two-fold change may be applied to
call differentially expressed genes. Here we add a param-
eter, bc, which can be tuned by a user to allow more flex-
ible and accurate calling of significant segments. The
default output gives four bc cutoffs: 1.0, 1.5, 2.0 and 3.0.
Biological cutoff value 1.0 means that the height of a seg-
ment has to be greater than 1.0*standard deviation of the
data for it to be called as significant, regardless of the
length of the segment. The biological cutoff parameter
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allows users to select significant segments, whichever are
more likely to be biological significant based on their
knowledge of the problem they are studying.

In Fig. 1, we provide a schematic illustration of the
iSeg workflow.

Processing of the raw NGS data from maize

Raw fastq files were clipped of 3" illumina adapters with
cutadapt 1.9.1. Reads were, aligned to B73 AGPv3 [44] with
bowtie2 v2.2.8 [45], alignments with a quality < 20 were re-
moved, and fragment intervals were generated with bed-
tools (v2.25) bamtobed [46]. Fragments were optionally
subset based on their size. Read counts in 20-bp nonover-
lapping windows across the entire genome were calculated
with bedtools genomecov and normalized for sequencing
depth (to fragments-per-million, FPM). Difference profiles
were calculated by subtracting heavy FPM from light FPM.
Quantile normalization was performed using the average
score distributions within a given combination of digestion
level (or difference) and fragment size class.

Results

We compared our method with several previous methods
for which we were able to obtain executable programs:
HMMSeg [5], CGHSeg [10], DNAcopy [9, 24], fastseg [3],
cghFLasso [34], BioHMM-snapCGH [27], mBPCR [12],
SICER [47], PePr [48] and MACS [49]. Among them,
CGHSeg, DNAcopy, BioHMM-snapCGH, mBPCR and
cghFLasso are specifically designed for DNA copy number
variation data; MACS, SICER and PePr are designed for
ChIP-seq data; and HMMSeg is a general method for seg-
mentation of genomic data. Each method has some pa-
rameters that can be tuned by a user to achieve better
performance. In our comparative study, we carefully se-
lected parameters on the basis of the recommendations
provided by the authors of the methods. For each method

-

Compute p-value of
each segment with
dynamic
programming

Scan segments (default
Winax = 300, Wipin =
1,p=11,
overlapping W /5)

B-H multiple
adjustment (default
FDR=0.05)

Output final
significant segments

Fig. 1 A schematic illustration of the workflow of iSeg

Select non-overlapping
segments with p-value
cutoff (default 0.001)

Segment
Expansion/Refinement
(default K=0.1*Length

of segment)

Merging adjacent
significant segments
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including iSeg, a single set of parameters is used for all
data sets except where specified. Post-processing is re-
quired by some of the methods to identify significant
segments.

In our analysis, performance is measured using F;-
scores®® for all methods. F;-scores are considered as a
robust measure for classifiers because they account for
both precision and recall in their measurement. The F;-
score is defined as,

Fy = (pr)/(p +7),

where p is precision and r is recall for a classifier. In
terms of the true (TP) and false (FP) positives,

p = TP/(TP + EP),
r = TP/(TP + EN).

The methods CGHSeg, DNAcopy, and fastseg depend
on random seeds given by a user (or at run-time auto-
matically), and the Fj-score at different runs are very
similar but not the same. These methods were run using
three different random seeds. The averages of the F;-
score were used to measure their performance.
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Performance on simulated data

The simulated profiles were generated under varying
noise conditions, with signal to noise ratios (SNR) of 0.5,
1.0 and 2.0, which correspond to poor, realistic and best
case scenarios, respectively. Ten different profiles of
length 5000 were simulated.

For each profile, five different segments of varying lengths
were predefined at different locations. Data points outside
of these segments were generated from normal distribution
with mean zero. The five segments were simulated with
non-zero means and varying amplitudes, or ease of detec-
tion, in order to assess the robustness of the methods. Be-
cause this set of simulated data resembles more of the
DNA copy-number variation data, we used it to compare
iSeg to methods designed for DNA copy number data.
Figure 2 shows an example of the simulated data and the
segments identified by iSeg and other existing methods.
Figure 3a shows the performance of iSeg and other
methods on simulated data with SNR=1.0. We can see
that iSeg, DNACopy and CGHSeg perform similarly well,
with HMMseg and CGHFLasso performing a little worse
while fastseg did not perform as well as the other methods.
iSeg is also tested using a set of 10 longer simulated

N
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profiles, each with length 100,000. Seven segments are in-
troduced at varying locations along the profiles. iSeg still
performs quite well in these very long profiles. The per-
formance of these methods on long sequences is shown in
Fig. 3b. In Fig. 4, we plotted Venn Diagrams of the overlap-
ping called locations for several methods with better per-
formance in terms of F;-scores, for both the simulated
short profiles (Fig. 4a) and long profiles (Fig. 4b). We can
see that in the simulated profiles, there is a substantial over-
lap among most methods, while iSeg can detect more seg-
ments for relatively short profiles. In simulated long
profiles, all methods, except HMMSeg, have similar seg-
mentation results.

Performance on experimental data

DNA copy-number variation (CNV) data

To assess the performance of iSeg on experimental
data, we use three different datasets. They were the

Coriell dataset [50] with 11 profiles, the BACarray
dataset [51] with three profiles, and the dataset from
The Cancer Genome Atlas (TCGA) with two profiles.
The 11 profiles in Coriell datasets correspond to 11
cell lines: GM03563, GM05296, GM01750, GM03134,
GM13330, GMO01535, GMO07081, GM13031,
GMO01524, S0034 and S1514. We constructed “gold
standard” annotations using a consensus approach.
We first ran all the methods using several different
parameter settings for each method. The resulting
segments from all the different parameter settings of
all the methods were combined to give an initial set
of potential segments. The test statistics and p-values
are then calculated for all the segments using the
same probability distribution assumption described in
Method. Benjamini-Hochberg procedure was then
used to correct for multiple comparison. The 0.05 ad-
justed p-value cutoff was then used to select the set

a CGHSeg ,HMAA,S,,,GQ
DNAcopy 0 iSeg
/// 0

4261

Fig. 4 Venn Diagram of overlapping regions (in number of biological coordinates) called by well-performed methods (in terms of F;-scores) in
different profiles. a Simulated Profiles; b Simulated Long Profiles (n =100 K)
J

b

CGHSeg
0

HMMSeg

DNAcﬁopy a

87210




Girimurugan et al. BMC Bioinformatics (2018) 19:131

of segments as the gold standard. The annotations
derived using the consensus approach are provided as
Additional file 1.

The 11 profiles from the Coriell dataset were seg-
mented using iSeg and the other methods. Segmentation
result for one of the profiles is shown in Fig. 5, and the
F,-scores are shown in Fig. 6a. The performance of iSeg
is robust with accuracy above 0.75 for all the profiles
from this dataset and it was found to be comparable to
or better than other methods. For HMMSeg, both no-
smoothing and smoothing were used. The best smooth-
ing scale for HMMSeg was found to be 2 for the Coriell
dataset. In Fig. 5, we found that iSeg identified most of
the segments. DNAcopy, fastseg, HMMSeg and cghseg
missed single-point peaks, whereas cghFLasso, mBPCR
and snapCGH missed some of the longer segments. The
segmentation results for other profiles in Coriell dataset
can also be found in the Additional file 1. We generated
annotations using the consensus method for BACarray
dataset similar to the Coriell dataset. The comparison of
segmentation results for one profile of the BACarray
dataset is shown in Fig. 7, and the comparison of F;-
scores is shown in Fig. 6b. iSeg returned better F1-scores
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than the other methods, consistent with the conclusions
based on visual inspection.

For the TCGA datasets, since the profiles are rather
long, we did not generate annotations using the consensus
approach. Instead, we applied some of the methods to this
dataset and compared their segmentation results visually
(Fig. 8). Again, we found that iSeg identified most of the
significant peaks. In this test, DNACopy performed well
overall, but tended to miss some of the single-point peaks,
whereas other methods performed even less well.

We compared the computational time of iSeg, shown
in Table 1, with those of the other methods, and found
that iSeg is the fastest for the three test datasets. Not-
ably, iSeg took much less time than the other methods
for very long profiles (length 100,000). This speed is
achieved in part through dynamic programming and a
power factor that provides rapid initial scanning of the
profiles. The long profiles contain similar amount of
data points that are signals (as opposed to background
or noise) as the shorter profiles. The time spent on deal-
ing with potentially significant segments is roughly the
same between the two types of profiles. As a result, the
overall running time of iSeg for the long profiles did not
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Fig. 5 Comparison of segmentation results for one of the Coriell datasets. a The gold standard segmentation obtained using a consensus
approach. Segmentation results of iSeg (b) and other existing methods: snapCGH (c), mBPCR (d), cghseg (e), cghFLasso (f), HMMSeg (g),
DNAcopy (h) and fastseg (i)
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increase as much as that for the other methods. In sum-
mary, we observed that iSeg ran faster than the other
methods, especially for profiles with sparse signals.

Differential nuclease sensitivity profiling (DNS-seq) data
We then tested our method on next generation sequencing
data, for which discrete probability distribution models
have been used in most of the previous methods. The data-
set profiles were genome-wide reads from light or heavy di-
gests (with zero or positive values) or difference profiles
(light minus heavy, with positive or negative values) [51].
The difference plots are also referred to as sensitivity or dif-
ferential nuclease sensitivity (DNS) profiles [51].

Segmentation of single nuclease sensitivity profiles

Figure 9 shows the significant segments (peaks) called
by iSeg together with those of two other methods,
MACS and SICER. Visual inspection revealed that iSeg

successfully segmented clear peaks and their boundaries.
The performance of iSeg was at least comparable to
MACS and SICER. Follow-up analyses on the segmenta-
tion results also demonstrated its capability in identify-
ing biological interesting functional regions [51, 52]. iSeg
results with different biological significance cutoffs (BC)
are displayed as genome browser tracks beside the input
profile data to guide inspection of the segmentation re-
sults. The default is to output three BCs: 1.0, 2.0, and 3.
0, which are sufficient for most applications.

Segmentation of difference profiles with both positive and
negative values

Difference profiles between two conditions can be gener-
ated by subtracting one profile from the other at each
genomic location. Pairwise comparisons are of great
interest in genomics, as they allow for tests of differ-
ences within replicates, or across treatments, tissues, or

a HMMSeg iSeg

CGHFLA§/ 03
/1

837

different profiles. a Coriell (Snijders et al.) profiles; b BACarray profiles

Fig. 7 Venn Diagram of overlapping regions (in number of biological coordinates) called by well-performed methods (in terms of F;-scores) in
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Table 1 Comparison of computational times (in seconds) on
simulated data and Coriell data. These are total times required
to process 10 simulated and 11 Coriell profiles

Method Simulation Simulation Coriell
(SNR= 1., (SNR= 1.,
n=5000) n=100 K)
iSeg (C++) 0.164 1.223 0.294
DNAcopy (R) 2.267 60.343 3.098
Fastseg (R) 0.647 48.139 0.630
CGHSeg (R) 54.480 157.626 2436
HMMSeg (Java) 0.543 160.790 0.552

genotypes. Analyzing such profiles can preserve the
range or magnitude of differences, adding power to de-
tect subtle differences between two profiles, compared
to approaches that rely on calling peaks in the two files
separately. Figure 10 shows the segmentation of iSeg on
a typical DNS-seq profile. When analyzing these sets of
DNS data, we merge segments only when they are con-
secutive, meaning the gap between the two segments is
zero. The length of gaps between adjacent segments that
can be merged is a parameter tunable by users. iSeg suc-
cessfully identified both positive (peak, positive peak)
and negative (valley, negative peak) segments, as shown
in Fig. 11. Most existing ChIP-seq data analysis methods
do not accommodate this type of data as input. To run
MACS, SICER, and PePr, we assigned the light and
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heavy digestion read profiles as the treatment and con-
trol files respectively, as a fair way of comparison. Since
the true biological significant segments are unknown, we
compared the methods through careful visual inspec-
tions by domain experts. We found that iSeg performed
satisfactorily and select it as the method of choice for
analyzing the data from our own labs. The choice of pa-
rameters of competing methods is somehow subjective.
We always start from the default values, and then do
some tuning of each parameter while making the others
fixed. Each time we will do a careful visualization until
the final set of calls look reasonably satisfactory.

Discussion

In this study, we designed an efficient method, iSeg, for
the segmentation of large-scale genomic and epigenomic
profiles. When compared with existing methods using
both simulated and experimental data, iSeg showed com-
parable or improved accuracy and speed. iSeg performed
equally well when tested on very long profiles, making it
suitable for deployment in real-time, including online
webservers able to handle large-scale genomic datasets.

In this study, we have assumed that the data follow a
Gaussian (normal) distribution. The algorithm is not
limited, however, to this distribution assumption. Other hy-
pothesis tests, such as Poisson, negative binomial, and non-
parametric tests, can be used to compute p-values for the
segments. Data generated by next-generation sequencing
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(NGS) are often assumed to follow either a Poisson or a
negative binomial distribution [53, 54]. However, a recent
study by us (to be published) showed that normality-based
tests such as t-tests or Welch’s t-test can perform equally
well for NGS data after certain normalization, indicating
Normal approximation of NGS data is likely adequate when
analyzing NGS data, at least for some applications. For seg-
mentation problems, when the segments tend to have rela-
tively large sizes, the averages of signals within segments
can be well approximated by normal distributions. This
likely explains why iSeg performed well on NGS data. How-
ever, p-values of the segments can be computed based on
either Poisson or negative binomial distributions, which
can be directly used in the rest of the segmentation proce-
dures. Such flexibility and general applicability make iSeg

especially useful for segmenting a variety of genomic and
epigenomic data.

The use of dynamic programming and a power factor
makes iSeg computationally more efficient when analyzing
very large data sets, especially with sparse signals as is typ-
ical for many types of NGS data sets. The refinement step
identifies the exact boundaries of segments found by the
scanning step. Merging allows iSeg to detect segments of
any length. Together, these steps make iSeg an accurate
and efficient method for segmentation of sequential data.

The statistic used in our method is very similar to that
described for optimal sparse segment identification [7].
However in that study, the segments are identified using an
exhaustive approach, which will not be efficient for seg-
menting very large profiles. To speed up computation, the
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optimal sparse segment method [7] employs the assump-
tion that the segments have relatively short length, which is
not true for some datasets. In contrast, the algorithm de-
signed in this study allowed us to detect segments of any
length with demonstrably greater efficiency.

The gold standard approach is desirable but the deriv-
ation of a true gold standard is complex and possibly sub-
jective. A gold standard generated using a consensus
approach does not guarantee that the true optimal segments
will be identified. In addition, the F;-scores may favor iSeg
more as the test statistic used to generate the gold standard
is not employed by the other methods. However, the statis-
tic we used is based on model assumptions used by many
existing methods. Visual inspection of segmentation results
clearly shows how iSeg performs well in direct comparisons
with other popular, contemporary methods. We expect that
future research will benefit from the application of iSeg to
compare multiple profiles simultaneously.

We have designed the method to make it flexible and
versatile. This resulted in a number of parameters that
users can tune. However, the default values work well for
all the simulated and experimental datasets. In practice, to

obtain satisfactory results, users are not expected to mo-
dify any parameters. The speed of iSeg would allow us and
fellow researchers to implement it as an online tool to
deliver segmentation results in real-time.

Conclusion

In this work, we developed a new method, iSeg, for the seg-
mentation of large-scale genomic and epigenomic profiles.
The performance of iSeg was demonstrated by comparing
with existing segmentation methods using both simulated
and real datasets. The computation framework utilized in
iSeg can readily accommodate different assumptions on the
underlying probability distribution of the data. The compu-
tational algorithms designed in iSeg make it able to search
for, grow, and refine segments comprehensively for very
long profiles without compromising too much of the com-
putational speed. iSeg also provides a biological cutoff par-
ameter, allowing researchers to select segments which are
more likely to be biological significant by setting a proper
biological cutoff value based on the problems at hand and/
or their prior knowledge. We believe that iSeg will be a very
useful tool for segmentation problems in biology.
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