Buetti-Dinh and Friedman BMC Bioinformatics (2018) 19:155
https://doi.org/10.1186/512859-018-2145-y

BMC Bioinformatics

RESEARCH ARTICLE Open Access

Computer simulations of the signalling

@ CrossMark

network in FLT3"-acute myeloid leukaemia -
indications for an optimal dosage of inhibitors

against FLT3 and CDK6

Antoine Buetti-Dinh'234> ® and Ran Friedman'2"

Abstract

resistance to targeted therapies.

sufficient benefits alone.

toxicity.

Background: Mutations in the FMS-like tyrosine kinase 3 (FLT3) are associated with uncontrolled cellular functions
that contribute to the development of acute myeloid leukaemia (AML). We performed computer simulations of the
FLT3-dependent signalling network in order to study the pathways that are involved in AML development and

Results: Analysis of the simulations revealed the presence of alternative pathways through phosphoinositide 3
kinase (PI3K) and SH2-containing sequence proteins (SHC), that could overcome inhibition of FLT3. Inhibition of cyclin
dependent kinase 6 (CDK®), a related molecular target, was also tested in the simulation but was not found to yield

Conclusions: The PI3K pathway provided a basis for resistance to treatments. Alternative signalling pathways could
not, however, restore cancer growth signals (proliferation and loss of apoptosis) to the same levels as prior to
treatment, which may explain why FLT3 resistance mutations are the most common resistance mechanism. Finally,
sensitivity analysis suggested the existence of optimal doses of FLT3 and CDK6 inhibitors in terms of efficacy and

Keywords: Acute myeloid leukaemia, Drug resistance, Knowledge-based analysis, Combination therapy

Background

Predictive modelling approaches are used frequently
during modern drug development. These include
molecular modelling and screening [1], QSAR [2, 3],
chemoinformatics-based ligand identification [4, 5], pre-
diction of ADMET [6] and other aspects such as crystal
structures of drugs [7]. Another important aspect is
that of drug resistance, which is common in infectious
diseases [8, 9] and cancer [10]. Unfortunately, our under-
standing of drug resistance and the causes for it is limited,
and predictive approaches are hard to come by.
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Many membrane-bound receptor tyrosine kinases
(RTKs) are important for regulation of cellular growth
[11, 12]. Mutations that alter their activity thus lead to
abnormal proliferation that is associated with the develop-
ment of cancers [13]. FLT3 is an RTK, whose physiological
role is to regulate haematopoiesis. Mutations in FLT3 are
involved in AML (FLT37-AML) and, to a minor extent,
in acute lymphoblastic leukaemia (ALL) as well [11]. This
makes FLT3 a potential molecule drug target. Internal
tandem duplications (ITD) in the juxtamembrane domain
of FLT3 are common in FLT3-derived AML patients [14].
In addition, several mutations in the kinase activation
domain cause sustained FLT3 activity that leads to uncon-
trolled proliferation and abates apoptosis. These include
mutations in residues R834 [15], D835 [16], 1836 [17],
N841 [18] and Y842 [19] of the activation loop and rare
mutations in the extracellular juxtamembrane domain
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[15]. Small molecules such as lestaurtinib, midostaurin,
ponatinib, quizartinib, sorafenib, sunitinib and tandutinib
can inhibit FLT3. Midostaurin has been recently approved
by the US Food and Drug Administration (FDA) for the
treatment of adult patients with newly diagnosed AML
who are FLT3 mutation-positive. Ponatinib, sorafenib and
sunitinib are approved for clinical use (for other condi-
tions). Unfortunately, RTK inhibitors are often subject
to drug resistance [20]. Known resistance mechanisms
against midostaurin include FLT3-ITD overexpression,
genetic (13q) alterations, upregulation of antiapoptotic
genes, downregulation of proapoptotic genes, and FLT3
resistance mutations [21] including F621L, A627P,
N676K, F691L, and Y842C [22, 23]. Alternative signalling
can also provide cancers with treatment escape routes
that bypass the signalling pathways blocked by therapeu-
tic inhibitors. This resistance mechanisms is based on
the fact that biological signalling is typically distributed
over multiple components. It rarely relies on a single path
that connects a receptor to its target, but rather involves
multiple, converging, diverging and recursive branches of
the signalling network. This provides means to cancers
for boosting alternative signalling in order to compensate
for pathways blocked by inhibitors, thereby promoting
cancer-driving processes such as cellular proliferation or
reduced apoptosis despite therapy [24, 25].

Experimental evidence indicates that FLT3 signalling
induces a cascade of events that involves an intricate
network of signalling components comprising CDKS6,
PI3K, STAT (signal transducer and activators of tran-
scription), AKT (protein kinase B), BCL2-BAD (BCL2-
family protein — BCL2 antagonist of cell death), RAS,
MEK/ERK (mitogen-activated ERK kinase / extracellular
signal-regulated kinase) and other cellular components
known to play a role in the development of diverse cancers
[11, 12, 14, 26—-37]. Following how individual components
of the signalling networks interact in a cancer cell is a
challenge. We have developed a computational framework
to study signal transduction networks based on chemi-
cal principles [38]. Through interfering with some of the
network components, we identified conditions in which
interventions to prevent metastasis in a model breast can-
cer could work (or not) [39], and suggested combination
therapy for nucleophosmin anaplastic lymphoma kinase
(NPM-ALK) derived anaplastic large cell lymphomas [40].
Other approaches exist to analyse signal transduction net-
works with different degrees of details necessary to set
up a model [41, 42] from highly detailed (e.g., based
on mass-action kinetics) [43—48] to qualitative Boolean
models [49, 50]. In between these two extremes, semi-
quantitative models make simplifying assumptions that
allow to provide quantitative insights on the studied sys-
tem, while requiring fewer experimental details to set
them up [38-40, 51, 52]. The epidermal growth factor
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receptor ErbB signalling network was analysed by inte-
grating high-level details into a mass-action-based mod-
elling framework and therapeutic antibodies to target the
cancer-related ErbB3 RTK were developed [45, 46, 48].
New combination therapies were also suggested by semi-
quantitative models of AML signalling [51]. An advantage
of semi-quantitative models is that their flexibility allows
to take into account aspects of cellular communication
networks that are increasingly recognised to play a role in
cancer development and emergence of resistance to ther-
apies. This allows to perform simulations of cell signalling
that include the evolution of cancer cell populations
[20, 53-55], cellular heterogeneity [56—60], and the selec-
tive pressure in the cancer microenvironment [61].

Since midostaurin has only been approved for clini-
cal use this year and given that FLT3T-AML is a fairly
rare cancer, little is known on alternative signalling path-
ways or the potential for combination therapy. We applied
a knowledge-based numerical simulation and sensitivity
analysis to different FLT3 network models. Our aim was
to assess the effect of single or dual therapeutic inhibition.
This allowed us to make predictions on signalling path-
ways that are liable to confer resistance to therapy aimed
at FLT3T-AML. The networks were analysed with respect
to apoptosis and cell proliferation, where loss of apopto-
sis (LOA) and gain of proliferation were viewed as cancer
promoting end-states. Interestingly, it has been suggested
before that apoptosis can be important for cancer pro-
gression if cell division is slow [62]. In the case of AML,
however, this does not appear to be the case, i.e., inhibition
of apoptosis promotes survival of the cancer cells [63].

Results and discussion

The network of interactions in FLT3T-AML is presented
in Fig. 1. The signals are transmitted between the dif-
ferent components of the network through activation
or inhibition, which results in two cancer-promoting
end-states: increased cell proliferation and LOA. The
simulations were first performed by applying a coarse-
grained approach [40] whereby each node assumed one
of two possible states (“low activity” or “high activ-
ity”), and exhaustive simulations were performed (see the
“Methods” section).

The approach was applied to four FLT3 network vari-
ants: an intact (complete) network (“FLT3, FLT3-ligand,
CDK6 and HCK contribute the most to cell proliferation
and loss of apoptosis” section), a network with constitutive
low activity of FLT3 (simulating FLT3 targeted inhibition,
“Inhibition of FLT3 intensifies signal flow through SHC,
PI3K, RAS, AKT and PDK1” section), network with con-
stitutive low activity of CDK®6 (simulating CDK6 targeted
inhibition, “FLT3, SHC and PI3K are important for the
control of end-points when CDKG6 is inhibited” section),
and constitutive low activity of FLT3 and CDK6 (dual
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Fig. 1 The interaction network of FLT3. FLT3 is represented in yellow and through different nodes it transduces the signal to proliferation and
apoptosis, the network’s end-points that contribute to the development of AML (red nodes). Blue nodes represent potential candidates for
combined inhibition therapy. Note that the two end-points yield different consequences: proliferation leads to tumour growth, whereas apoptosis

inhibition, “Combined inhibition of FLT3 and CDK6 may
be overcome through SHC and PI3K signalling” section).
Sensitivity profiles of each network (central plots in
Additional file 1: Figures S1-S4) were obtained by sim-
ulating all combinations of network states where each
node’s activity could be either high or low. These sensitiv-
ity plots represent how sensitive the end-points (prolifer-
ation or apoptosis) are to modification of the activity of
each of the other nodes, which suggests potential modes
of intervention. A subset of network states, correspond-
ing to the upper and lower extremes of sensitivity profiles,
represents network components that strongly contribute
to change the cancer-promoting end-states (increased cel-
lular proliferation and LOA, represented by the red and
blue datapoints in the central plots of Additional file 1:
Figures S1-54, respectively). Bar plots flanking the cen-
tral sensitivity plot represent the relative percentage of
cases where a node was responsible for a high or low sen-
sitivity value among all network states constituting the
top/bottom-2%. In addition, the most probable signalling
path from the most influential nodes to the end-points
was also inferred (signal flow graphs on the top and
bottom of Additional file 1: Figures S1-S4). The coarse-
grained analysis was later complemented by detailed (fine-
grained) simulations where few nodes assumed multiple
intermediate activity values while the others assumed low
(resting) activities.

FLT3, FLT3-ligand, CDK6 and HCK contribute the most to
cell proliferation and loss of apoptosis

A first set of simulations was performed with the intact
network in order to identify the components that con-
tribute the most to increased cell proliferation and LOA.
This analysis (Additional file 1: Figure S1) revealed that
FLT3, FLT3-ligand (FLT3L), HCK (hematopoietic cell
kinase) and CDK6 were those nodes that were most
commonly associated with both end-points. FLT3L is
a hematopoietic growth factor that activates wild-type
(wt)-FLT3 [64]. Constitutively active FLT3 (due to driver
mutations or ITD) does not depend on FLT3L. This is
clearly shown in the simulations when examining signal
transduction under the conditions during which FLT3 was
the cause of an increased cell proliferation or LOA (sig-
nal flow graphs on the top- and bottom left-hand sides
of Additional file 1: Figure S1). In these graphs, the sta-
tistical association of other nodes involved in the end
process simultaneously with FLT3 is indicated by the
graph’s node sizes (the larger the stronger the associ-
ation). The colour of the nodes indicates their activity
contribution (the darker is the node, the stronger is its
ability to deliver a signal downstream to it). As shown in
these graphs, when FLT3 is highly active, HCK, CDK6
and RUNX1 (runt-related transcription factor 1) are also
highly active, but FLT3L is not. The nodes that play a
major role in developing a proliferative phenotype when
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FLT3 is turned on include HCK, CDK6, SHC, RUNX1
(top graphs in Additional file 1: Figure S1). A similar sit-
uation was observed for the graphs associated to LOA.
However, as indicated by the bottom-2% bar plot, with the
difference that PI3K together with its downstream nodes
(AKT, PDK1, RSK (90-kDa ribosomal protein S6 kinase),
CREB (cyclic adenosine monophosphate-response ele-
ment binding protein), and mTOR (mammalian target of
rapamycin)) can become an alternative pathway to LOA
(bottom right graphs in Additional file 1: Figure S1).

Our simulations agree with experimental data obtained
using AML cell lines carrying FLT3-ITD mutations which
were subject to small interfering RNA (siRNA) inhibiting
FLT3 or HCK. This caused a reduction in proliferation of
~ 3-10-fold [14]. Similarly, in our coarse-grained simula-
tions, when inhibiting in silico FLT3 we could observe a
decrease in frequency of CDK6 and HCK of ~ 10-fold in
the top-2% regions of the proliferation sensitivity profile
(Additional file 1: Figures S1-S2).

HCK is a non-RTK which is highly expressed and
activated in some leukaemias but whose expression is
reduced in others [65]. HCK can be inhibited by small
molecules such as RK-20449 [66], which may have ben-
eficial effects against several cancers [66, 67]. CDK6 is
a serine/threonine protein kinase that contributes to the
entry of the cell to the DNA synthesis phase (G1—S)
of the cell cycle. The CDK6 inhibitors palbociclib and
ribociclib are used in the treatment of advanced-stage
oestrogen receptor (ER)-positive breast cancer [68] and
may be used in other cancers as well (including AML
[69]). Resistance mutations to palbociclib have hitherto
not been detected, perhaps due to its binding mode [70].
Thus, both CDK6 and HCK may be relevant drug tar-
gets in FLT3T-AML in addition to FLT3. CDK6 inhibitors
have the advantage that they are already approved and
considered safe to use.

Inhibition of FLT3 intensifies signal flow through SHC,
PI3K, RAS, AKT and PDK1
Following the simulation of the intact signalling network,
a second set of coarse-grained simulations was performed,
this time by inhibiting FLT3. The results of these simu-
lations are presented in Additional file 1: Figure S2. The
bar plots in the figure indicate that, upon inhibition of
FLT3, the most important signal transduction compo-
nents become the adapter protein Shc (SHC), the cell
surface RTK AXL, and PI3K. AXL was found to be more
relevant to proliferation in this case, and PI3K to LOA.
Interestingly, inhibition of FLT3 removes the influence of
HCK and CDK6 on the end-points. This is likely due to
the feedback loop involving CDK6, FLT3 and HCK.
Simulations of the network were also used to follow
on the signal flow. This analysis revealed that inhibi-
tion of FLT3 resulted in an intensification of the flow
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through SHC, PI3K, RAS, AKT and PDK1. Apparently,
PDK1 and AKT could activate an alternative signalling
pathway to stimulate proliferation (top 4™ and 5™ graphs
in Additional file 1: Figure S2). This corroboration from
the simulations is supported by qualitative experimental
data within the development of BAG956 inhibitor [71, 72]
However, the influence of these nodes was rather lim-
ited, as indicated by the corresponding bar plot (frequency
< 10%). This could explain why the most common resis-
tance mechanism to FLT3 inhibitors is resistance muta-
tions. Apparently, alternative networks only partially
restore the signal to proliferation and LOA.

FLT3, SHC and PI3K are important for the control of
end-points when CDKG6 is inhibited

Since CDKG®6 inhibitors are available, tolerated and hitherto
not subject to resistance mutations, inhibition of CDK6
was also simulated as an alternative to inhibition of FLT3
(Additional file 1: Figure S3). Whereas inhibition of FLT3
reduced the significance of CDK6, CDK6 inhibition did
not have the same influence on FLT3, which remained a
key component of the network in promoting proliferation,
together with its ligand, SHC, AXL and PI3K. FLT3 is
represented in 22% of the simulations where prolifera-
tion was highest, and only in those cases HCK was also
important (signal flow graphs, top left). Otherwise, the
feedback loop involving CDK6, FLT3 and HCK, is inac-
tive and signalling is compensated by the nodes in the
lower part of the graphs (FLT3, AXL, SHC, RAS and
PI3K). The involvement of these nodes compensates for
the inhibition of CDK6 and suggests that proliferation can
be stimulated through PI3K, SHC and AXL in alternative
to the intact network signalling. Experimental data sup-
port our simulations except for the role of the SRC kinase
(included in the SHC_assembly node of our model) shown
to also influence CDK®6, not acting only downstream of
it [14]. This is possibly due to the promiscuous nature by
which SH domains bind their partners to assemble diverse
molecular complexes [73].

With respect to LOA, when CDK6 was inhibited,
the role of FLT3 became much less important. Instead,
PI3K took over. Taken together, the simulations with
inhibited CDK®6 indicated that PI3K, SHC and AXL
became signalling alternatives for both proliferation
and apoptosis. Interestingly, PI3K was suggested to be
an escape mechanism for ER positive breast cancer
tumours that became resistant to CDK6 inhibitors [14,
74]. This may be a common escape mechanism for
CDK4/6 inhibitors.

Combined inhibition of FLT3 and CDK6 may be overcome
through SHC and PI3K signalling

The simulations of FLT3 inhibited and CDK6 inhibited
networks indicated that FLT3 inhibition had a larger effect
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than CDK6 inhibition, and that FLT3 was important for  i.e., normal, low (1/100 of the normal level), and high (100 x
proliferation even if CDK6 was inhibited. In a final set of = normal). The results of this analysis are shown in Fig. 2).

coarse-grained simulations, both FLT3 and CDK6 were Analysis of the fine-grained simulations revealed that
inhibited (Additional file 1: Figure S4). By and large, the  under the right conditions, the system could remain under
results of the simulations with dual inhibition of FLT3  control with respect to apoptosis and proliferation. A con-
and CDK6 resembled the case of FLT3 inhibition, where  trollable region (sensitivity higher or lower than zero) was
stimulation of proliferation and apoptosis were dependent  observed in the low to medium range of FLT3 and CDK6
almost exclusively on SHC and PI3K signalling. A notable  activities (as shown by the sensitivity surfaces in Fig. 2,
difference, however, was the emergence of MEK/ERK in  and Additional file 1: Figures S5—S6). Beyond that thresh-
the proliferation bar plot (albeit at a low influence level  old (i.e., where sensitivity is close to zero), the system lost

(< 5%), see Additional file 1: Figure S4). controllability to external stimuli, and a high prolifera-

tion regime became dominant (as presented by the upper
Sensitivity analysis suggests that the system can be x-y-plane projections in plots of Fig. 2). Loss of control-
controlled even if PI3K expression is increased lability of LOA was observed at the same time, but to

Fine-grained simulations are computationally demanding, a smaller extent (as shown by the lower x-y-plane pro-
but enable the calculation of sensitivity of the system with  jections in Fig. 2 and more clearly in Additional file 1:
respect to small variations of the variables and identify = Figure S6). Increasing the activity of PI3K decreased the
regions that can be controlled through intervention (here, end-points’ sensitivity to changes in the activities of FLT3
inhibition of FLT3, CDK6, or both) or where inhibition = and CDK6. This made the system less controllable by
is not beneficial in terms of achieving the desired results.  external stimuli (Fig. 2). Moreover, once high prolifer-
To this end, following earlier studies [38, 39], simulations ation and LOA are reached, the simulations predicted
of the networks were carried out where the activities of  that reverting back to a physiological, healthy regime will
FLT3 and CDK6 were modified in small steps (see the be difficult if at all possible through inhibition of FLT3
“Methods” section) subject to three levels of PI3K activity = and CDK6.

B(PI3K) = 0.001 B(PI3K) = 0.001
B(PI3K) = 0.1 ——— B(PI3K) = 0.1 ———
B(PI3K) = 10 B(PI3K) = 10

Sensitivity to Sensitivity to
FLT3 variations CDKG® variations,
a 0.2 / e 0.2
25 ag /
2R = /
24 0.1 & 8. 0.1
578 g5
S 0 “€ 0
ag l/ O 2% \L 0
£7 10 29
& -3 8
32 ] 2
=~ p CDK6 Activity = h 0.1 CDKG6 Activity
0.01 0.1 7 (Steady-State(CDK6)) 0.01 0.1 : o (Steady-State(CDK6))
FLT3 Activity FLT3 Activity
(Steady-State(FLT3)) (Steady-State(FLT3))
0 0.5 1 15 2 25 3 0 05 1 15 2 25 3
Steady-State Activity Steady-State Activity

Fig. 2 Fine-grained simulations. Steady-state and sensitivity of proliferation and apoptosis to variations of the activities of FLT3 and CDK6. Convex
(concave) surfaces represent the sensitivity of the proliferation (apoptosis) end-point with respect to variation in FLT3 (left) or CDK6 (right) activities.
The bottom projections in the lower planes (within the gray box) are set to arbitrary z-axis values and represent steady-state activities of the
end-points as a function of FLT3 and CDK6 activities at low PI3K activity. These projections correspond to the sensitivity surfaces in the upper part
and allow to visualise how the variables FLT3 and CDK6é depend on each other, and their influence on the network end-points (further details of
such projections at different levels of PI3K activity are available in Additional file 1: Figure S5-56). The red star symbols indicate the point where
sufficient inhibition of FLT3 (10-fold inhibition from the maximum) and CDK6 (15-fold inhibition from the maximum) drive the system to a
controllable region of intermediate steady-state levels of both proliferation and apoptosis. A cyan segment connects this point through the
different complementary quantities represented, i.e., the sensitivities at different PI3K activities in the upper surfaces, and the corresponding
end-points’ steady-state activities in the lower projections. This multidimensional representation allows to appreciate both the steady-state activity
of the variables (which would correspond to experimentally measurable quantities such as tumour markers, RNA or proteins), as well as their
sensitivity to changes in the other variables’ activities. The left and right plots can be compared to top-view heat maps for proliferation (Additional
file 1: Figure S5) and apoptosis (Additional file 1: Figure S6) which represent steady-state and sensitivity. PCA of the network variables under different
PI3K independent activities is shown as a function of PI3K activities in Additional file 1: Figures S7-S9
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Unexpected connections between the nodes revealed by
principal component analysis

Principal component analysis (PCA) was used to detect
co-activity (when it was applied to steady-state values) and
co-regulation (when it was applied to sensitivities) pat-
terns between the signalling components in fine-grained
simulations under different PI3K activities as above. The
results of this analysis are presented in Additional file 1:
Figures S7—S9 which correspond to the red, green, and
blue curves, respectively, in Fig. 2.

In the steady-state PCA, FLT3 and CDK6 were clus-
tered together because of the external B tuning (see
Additional file 1: Table S1). RAF, SHC and HCK were
clustered with the proliferation end-point at low and
intermediate PI3K activity, while at high PI3K activity
proliferation merged with a neighbouring cluster com-
posed of STAT, PI3K and RAS. This suggests that pro-
liferation becomes driven by STAT and RAS upon an
increase in PI3K activity. The apoptosis end-point clus-
tered with AXL, FLT3L, 4E-BP1 (eukaryotic initiation
factor 4E-binding protein) and BCL2-BAD at low PI3K
activity. It merged with other network components into
larger clusters as the activity of PI3K was increased. This
suggests that control of apoptosis with increased PI3K
activity becomes distributed over multiple nodes besides
the ones strictly belonging to the apoptosis signalling path
(S6K and BCL2-BAD).

The sensitivity PCA indicated that FLT3 clustered with
RUNX1 at all levels of PI3K, while CDK6 clustered with
AXL at intermediate and high PI3K activity. Together, they
were associated with apoptosis among other components
(BCL2-BAD, 4E-BP1 and FLT3L at low PI3K). Interest-
ingly, a cluster composed of RAS, SHC and HCK became
isolated from the other variables at intermediate and high
PI3K activity (increasing hierarchical clustering height)
whereas the same components clustered with PDK1, PI3K
and AKT at low activity of PI3K. This suggests that with
increasing activity of PI3K, co-regulatory patterns become
more defined in grouping FLT3 with RUNX1, CDK6 with
AXL, PI3K with PDK1, and AKT, RAS with SHC and
HCK. In contrast, the end-points proliferation and apop-
tosis clustered in small groups under low PI3K but merged
into larger ones under higher activity levels of PI3K. This
suggests that regulation of the end nodes at high activ-
ity of PI3K became distributed over a larger number of
signalling components, which explains the loss of sensi-
tivity observed in the sensitivity profiles as a function of
increasing PI3K (Fig. 2).

Combined inhibition of FLT3 and CDK6 can be beneficial

The feedback between FLT3 and CDK6 (Fig. 1) implies
an interdependent regulation between FLT3 and CDK6,
which has the effect of restricting the activity of these two
components of the network to a similar range (as indicated
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by the diagonal narrow steady-state activity projections
in the x-y-plane of Fig. 2 that expand in correspondence
to high activity levels of FLT3 and CDK®6). This pattern
suggests that a combined, partial inhibition of FLT3 and
CDK6 would be sufficient to restrict the system to a sen-
sitive area of the regulation space represented in Fig. 2.
More precisely, a 10-fold inhibition of FLT3 from its max-
imum activity level, combined with a 15-fold CDK®6 inhi-
bition from maximal CDK6 activity, would suffice to drive
the system to a sensitive region of intermediate steady-
state levels of both proliferation and apoptosis. This point
(indicated by a red star symbol in Fig. 2, and Additional
file 1: Figures S5-S6) corresponds to the transition zone
between the region where sensitivity surfaces are close
to zero, and therefore the system is poorly controllable,
and the region of higher controllability where sensitivity
surfaces have positive or negative values. Stronger inhibi-
tion of either or both components, is predicted to further
decrease the activities of the cancer-driving end-points
(in a synergistic way, due to the feedback loop involving
FLT3, CDK6 and HCK). Combination of FLT3 and CDK6
inhibitors in smaller doses than required for individual
therapy may thus be sufficient or even superior solu-
tion in terms of efficacy and minimisation of secondary
effects.

Conclusions

Simulations of the network of interactions based on the
current knowledge of FLT3"-AML were carried out in
order to identify potential routes of resistance besides
FLT3 mutations and examine the potential for com-
bined inhibition of FLT3 and CDK6. Although both
FLT3 and CDKG6 inhibitors are available, resistance
and intolerance limit their benefits. Particularly, CDK6
inhibitors may not be tolerated due to toxicities [75].
FLT3 inhibitors have limited use due to the emergence of
mutations that make the drugs less efficient in controlling
the activity of FLT3.

The simulations suggested that upon FLT3 inhibition,
signal flow through SHC, PI3K, RAS, AKT and PDK1
becomes more intense and may provide alternative paths
to maintain sustained cellular proliferation and reduced
apoptosis. Inhibition of CDK6 was of little use in itself
since FLT3 could still drive cell proliferation. Combined
inhibition of FLT3 and CDK6 reduced the severeness of
cancer-promoting processes, but could still be bypassed
by PI3K-mediated signalling involving the nodes PI3K,
SHC and AXL resulting in potential treatment escape
routes. The simulations indicated that FLT3, SHC and
PI3K are important for the end-points’ control when
CDKG6 is inhibited. The analysis further suggests the exis-
tence of an optimal combination of FLT3 and CDK6
inhibitors that would be efficient even if FLT3 is some-
what more active due to resistance mutations and may



Buetti-Dinh and Friedman BMC Bioinformatics (2018) 19:155

require lower doses of CDK6 than necessary for inhibition
of CDKG6 alone.

Methods

FLT3 signalling network

A knowledge-based network model of FLT3 and its prin-
cipal interaction partners was assembled by combining
the experimental information summarised in references
[11, 12, 14, 26-37]. FLT3 was shown to associate in
vitro with the SHC complex (composed of SHC, CBL
(a proto-oncogene), SHIP (SH2-domain-containing inos-
itol phosphatase), SHP2 (SH2-domain-containing protein
tyrosine phosphatase 2), GAB2 (GRB2-binding protein)
and GRB2-SOS (son of sevenless) and lumped together
in a single network node denoted as “SHC_assembly”
in the network scheme (see Fig. 1), or as “SHC” (in
Additional file 1: Figures S7-S9) [26-30]. Downstream
of the SHC complex, the RAS — RAF — MEK/ERK
pathway influences the activity of genes involved in stim-
ulating cellular proliferation and repressing apoptosis.
These cancer-driving processes are lumped together in
two separate network end-points and are denoted in the
network scheme as “proliferation” and “apoptosis” ETS
domain-containing protein (ELK), p38 and STAT medi-
ate signalling from RAF/MEK/ERK to the transcription
of genes involved in proliferation [11, 31] together with
the PI3K — AKT pathway which regulates apoptosis as
well through mTOR, S6K and BCL2-BAD [12, 32, 33]. The
same pathway also bridges proliferation with apoptosis
via PDK1, RSK and CREB [11, 12, 34]. Finally, interac-
tions were included to take into account the regulation
between FLT3, HCK and CDKG®6 [14, 35], as well as the role
of RUNX1 and AXL kinases [36, 37].

Network simulation and sensitivity analysis

Signalling in the FLT3 networks (intact network, inhib-
ited FLT3, inhibited CDKS®6, inhibited FLT3 and CDK®6)
was simulated with the computational method developed
by us previously [38, 39]. Signalling networks were con-
structed as interaction diagrams composed of nodes and
edges. The nodes represented signalling components as a
set of ordinary differential equations (ODEs). Edges rep-
resented the interaction links between the components
(modelled as empirical Hill-type transfer functions). The
system is described as a network of interacting compo-
nents that evolve in time according to the ODEs. Every
node in the model is parametrised by the parameters j
and § and every link by «, ¥ and 7 (see Table 1), resulting
in a set of ODEs for the nodes {X, Y, ...}:

axX/dt = —5xX + (Bx + Zl’ACti) . Hj[ﬂhj
dy/dt = -5yY + (By + Zl‘ACti) . Hjlnhj (1)
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Table 1 Model parameters
Parameter Name Description
B Basal level of a node’s activity
8 Decay constant of a node
y Interaction strength between two nodes
(affinity)
n Nonlinearity in signalling interaction
(Hill coefficient)
a Multiplicative scaling factor applied to the

regulatory function

Parameters used to define model’s nodes and links

The parameter 8 accounts for the basal activity as a
zero-order term added to each ODE, and § for the decay
of the biological species as a first-order decay term sub-
tracted from the ODEs. We refer to the activity of a pro-
tein in analogy to the activity of a chemical solute, i.e., it
corresponds to the effective concentration of a protein in
its biologically active conformation. The biological activ-
ity cannot be compared directly with experiments and is
given in arbitrary units that can be roughly translated to
a signalling protein that is abundant in the cell (i.e., in the
order of 1uM) [76]. Values for end-points (proliferation
and apopotosis) can only be appreciated by comparison,
and we assume that any treatment would aspire to keep
proliferation as low as possible and apopotosis as high as
in healthy physiological conditions.

The Hill-type regulatory functions used to link the
nodes to each other are defined according to Egs. 2 and 3
for activation and inhibition, respectively. Arrows repre-
senting activation (—) and inhibition (--+) correspond to
the network scheme in Fig. 1.

X"

ACt X N Y;O!, N =o——— Z

h > o n —(17)/"
Inh(X --» Y;a,y, 3
( 4 ) XN ‘)/’7 ( )

The Hill-exponent 7 is an empirical parameter widely
used to quantify nonlinear signalling interaction (e.g., pos-
itive/negative binding cooperativity) [77] and was kept
equal to one in the present work. The parameter y estab-
lishes a threshold of activation along the abscissa and
o is a multiplicative scaling factor and have been set to
one throughout the current work. When multiple links
point to a single node, activation functions are added to
each other while inhibition functions are multiplied by the
current level of activity (see references [78, 79]).

This modelling framework enabled the integration
of experimental information in a straightforward way
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using a well-established formalism derived from clas-
sical enzyme kinetics and test different model varia-
tions, such as the (combined) inhibition of FLT3/CDK6
in the model. This approach requires only the knowl-
edge necessary to set up Boolean models (where inter-
action is assumed to be binary, ie. activation or
inhibition). Yet it provides quantitative insights on the
studied signalling networks, taking into account non-
linear signalling effects such as feedbacks, pleiotropy
and redundancy.

The simulation procedure yielded steady-state activity
levels of the different network components according to a
given set of parameters. The steady-state of the ODEs sys-
tem was calculated numerically using the GSL library [80]
(by use of gsl_odeiv2_step_rk4, which employs the explicit
4" order Runge-Kutta algorithm). With this procedure
the steady-state values of each node is obtained for a given
parameter set. The range of independent activities of the
different network components (8) used, is summarised in
Additional file 1: Table S1. Sensitivity analysis was applied
to the resulting steady-state activities by calculating the
sensitivity corresponding to each parameter change in the
combinatorial parameter space according to

y _ ] ¢ 8Y _ All()] _ In(Yi/Y)

T )] Y ¢ Alln@)] In(pi/dy)
4)

where the sensitivity sg is represented as a function of
the input parameter set ¢ and of the output variable Y.
Equation 4 expresses the relative change of activity in
the nodes as a function of varying parameter sets. Two
conditions (i and j) are evaluated at each step of the com-
putational procedure according to the right-hand approx-
imation. Here, the conditions are represented by vectors
of steady-state values (¥; and Y}) that correspond to the
nodes’ activities and are determined by the parameter sets
(¢ and ¢y).

In order to reveal co-activity and co-regulatory patterns
between the nodes in the multi-dimensional simulation
data, the resulting steady-state activity and sensitivity
values were further explored through multivariate anal-
ysis (see “Principal component analysis and hierarchical
clustering” section).

Steady-state simulations and sensitivity analysis were
carried out using parallel computational architectures in
order to screen a large number of conditions and identify
key control points of the different networks. This enabled
us to methodically characterise the effect of inhibition of
FLT3 and/or CDKG6 in the different network models.

Sensitivity analysis in coarse-grained simulations
Coarse-grained simulations consisted of enumerating all
combinations of network states with high (8 = 0.1) or
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low (B = 0.001) initial activity state (see Additional file 1:
Table S1). Each pair of combinations that differed by a sin-
gle parameter (i.e., where the network state differed by the
activity of a single node), was used to compute the sen-
sitivity (Eq. 4) of the given modification according to the
method used in reference [40], i.e.,

{ SS(Ni) g(Nj)=high }
SS(Ni)ﬂ(Nj)=low — SS(Ni)ﬁ(N/)=high _ SS(Ni)ﬂ(N/)zluw

EB(Nj)=low — B(Nj)=high = l B(N)) = high
{;%Afj)zlow}

(5)

where SS(N) denotes the steady-state activity of a node N
and B(N) its independent activity state. The arrow (—)
indicates a change in condition.

Without considering the combined activity change
of multiple control nodes simultaneously, but only the
changes occurring subsequently one after another (as it
would be expected by point mutations affecting the activ-
ity of a protein), Eq. 5 allows to calculate the s” conditions
that represent all possible states of the network (s is the
number of states a node can assume, # is the number of
nodes in the network).

Sensitivity is subsequently computed for each pair of
simulated conditions that differ by a single parameter (i.e.,
pair of simulations where the network states are identical
except for a single node that is low in the first simulation
and high in the second, or vice versa). This resulted in a set
of calculated sensitivities derived from the coarse-grained
simulations that comprises s” - % - (s — 1) sensitivity values
from which sensitivity profiles and signal flow graphs are
computed (see “Sensitivity profiles and signal flow graphs”
section).

Each sensitivity value expressed the strength of a link
between two components of the network, regardless of the
degree of connection (directly or through intermediates).
A positive value for the sensitivity between two nodes
(A — B) indicated that upon the increase of the activity
of A, B’s activity would also increase. Similarly, a negative
sensitivity indicates that upon an increase of A’s activity,
B’s activity would decrease. Sensitivity values close to 0
indicates independence between nodes.

Sensitivity profiles and signal flow graphs

We tested each possible combination of the network
nodes (high or low initial activity), for each network sim-
ulated (intact, inhibited FLT3, inhibited CDK®6, inhibited
FLT3 and CDKS®). The results are presented by “sensitivity
profile plots” and “signal flow graphs’, as described below.

Sensitivity profile. The central sensitivity profile plots in
Additional file 1: Figures S1-S4 represent the sensitivity
calculated for each network simulated by coarse-grained
simulations, ranked in ascending order. The majority of
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the combinations had no effect on the network end-
points. These are represented by the flat part of the plots
(black for the end-point proliferation, grey for the end-
point apoptosis). A minority of the sensitivity values were
far from zero: the red dots represented positive values
for proliferation, whereas the blue dots represented neg-
ative values for apoptosis (in this case, we consider that
the cancer-driving process is LOA, therefore we observe
a negative sensitivity). These values far from zero repre-
sent a subset of nodes which, upon their increased activity,
significantly contribute to activate proliferation or inhibit
apoptosis.

This subset of nodes responsible for high and low
sensitivities (top-2% (red) and bottom-2% (blue) por-
tion for proliferation and apoptosis, respectively) were
further analysed to identify how strongly certain nodes
were associated to proliferation and apoptosis. The
bar plots connected to top-/bottom-2% regions of the
sensitivity profile show the frequency of the nodes,
that upon switching from low to high activity, con-
tribute to increase proliferation (red) or decrease
apoptosis (blue).

Signal flow. Signal flow graphs connected to the bars
of the bar plots represent how the signal travels from
the control node (node indicated on the bar) to the
end-points (top and bottom graphs in Additional file 1:
Figures S1-54) according to the method described in ref-
erence [40]. Briefly, we define “control nodes” as the nodes
that, upon a change in their activity (owing to external or
internal perturbations), would cause changes in the activ-
ity of the other nodes in the network. While end-point
nodes contribute to the development of AML (red nodes
in Fig. 1 proliferation and apoptosis).

In order to examine pathways that a signal is more
prone to follow, due to the network topology, from a con-
trol node to the network end-points, the proportions of
the occurrence of high and low activity for each node in
coarse-grained simulations were calculated when the end-
points were highly active. If a node has no correlation with
an endpoint, the corresponding proportion is expected to
be ~50%. The larger the deviation from this proportion,
the larger the involvement of the node within the network.

Any individual node’s activity change (from low to high)
influences not only the activity of the endpoints but also
that of all other nodes. The average activity of any node
i as a consequence of an activity change of the control
node, j, is:

Y, 8()=high = SSi,p()=0.1,] 7 i (6)

where the bar denotes an average and SS; g the steady-
state of node i when the control node j is set to an
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independent activity of B(j). Similarly, Ti,/?(/;ow is cal
culated as:

Yig()=low = SSi,B(j)=0.001,] 7 i (7)

The ratio Ti,ﬁ/(j)=\high / T,'_ﬁ/(/):low represents the effect of
the control node’s independent activity change (8(j)) =
low — high) on the steady-state activity of any other node
(8S)).

Upon activation of the control node, the statistical asso-
ciation of other nodes that are influenced is represented
by the graph’s node area (the larger the area the stronger
the association). The colour of the nodes indicates their
activity contribution (the darker is a node, the higher is
its Ti,}?(,;:high / Tl«;(,;,,w ratio, and thus the stronger is the
signal it can deliver downstream to it).

Sensitivity analysis in fine-grained simulations

Based on the same mathematical principles as for in the
coarse-grained simulations, in fine-grained simulations
the majority of the network components were assumed
to have a low (resting) activity, while few nodes, iden-
tified by coarse-grained simulations as relevant for con-
trolling the network behaviour, were varied over a range
of activities (B) in small steps (as explained in refer-
ence [40] and expanded in Additional file 1: Table S1).
This way, a more in-depth, quantitative understanding of
the control nodes to the network endpoints is achieved
(see Fig. 2). This yielded a more detailed characteri-
sation of those nodes that were critical for controlling
the network end-points and consequently relevant for
cancer development.

Principal component analysis and hierarchical clustering
PCA was used as a multivariate analysis to reduce dimen-
sionality of the fine-grained simulations (the prcomp func-
tion of R was used as a part of the computational method
developed by us previously [38, 39]). It was applied to
visualise PCA loadings (corresponding to the network
components) of steady-state and sensitivity data on a
two-component space (as presented in the top panels
in Additional file 1: Figures S7-S9). PCA loadings were
further classified using hierarchical clustering (the hclust
function of R was used) and represented in a tree-like
structure (dendrogram) whose branches grouped network
components according to their similarity over the differ-
ent simulations (displayed in the bottom dendrograms of
Additional file 1: Figures S7-S9).

Model potential and limitations

A limitation of our approach consists of the fact that
quantitative information cannot be obtained for all pro-
teins or complexes of a living model. This prevents
precise predictions of the model kinetics and does
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not allow to take into account time-related proper-
ties of the dynamical system such as oscillations [81].
To estimate such quantities is challenging since it can only
be determined if a large number of microscopic param-
eters are available experimentally, while the remaining,
unknown parameters are extrapolated by computational
methods. This enables to set up mass-action-based mod-
els of remarkable predictive power for model systems that
were specifically tailored. Examples of this approach could
reveal crucial insights for the development of targeted
inhibitors [43—48]. Unfortunately, the technical challenges
to obtain such high-quality information restrict its appli-
cability to few cellular signalling systems. On the other
extreme there are modelling techniques that require only
limited, approximate information to make useful predic-
tions based only on node connectivities (e.g., Boolean net-
works, Petri nets) [49, 50]. In between, our model uses the
assumption of steady-state between network components.
It only requires minimal information to set up Boolean
models, but has the advantage of assuming continuous
regulation between nodes, although implemented in a
more approximate way compared to detailed mass-action-
based models. The advantage of our proposed model is
that it enables to study signal transduction pathways for
which only sparse information is available, consequently
making poorly described diseases networks tractable by
simulation. This opens the way for computer-assisted
analysis to a majority of complex diseases for which only
limited molecular details are available.

Parametric and structural uncertainty were studied in
our previous work. The first denotes the changes in the
network nodes’ activity as parameters are varied, while
the second considers the network qualitative behaviour
as a function of the number of nodes considered (e.g., by
approximating multiple signalling component as a merged
entity). We showed that consistent results were obtained
comparing simulations in which parameters were single-
valued, to simulations where a numerical ranges was used
for each parameter screened. The method demonstrated
to be robust against a wide range of parameter varia-
tion and therefore proving reliable towards parametric
uncertainty [38]. We also showed that we could obtain
equivalent results by adding ~ 50% of nodes and links to a
network (note that robustness tests consider highly robust
a network able to tolerate variation of 5-20% in the num-
ber of the nodes [82, 83]). This proves the method robust
with respect to structural uncertainty [39].

Of note, our model can be refined once additional
experimental evidence will be made available. Both the
elucidation of new signalling pathways interacting with
components of our network model (e.g., from omics
experiments), as well as the effect of therapeutic inhibitors
(and combinations thereof), is information that can be
easily integrated to our current model.
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Additional file

Additional file 1: Supplementary Material. Sensitivity profiles and signal
flow graphs (Supplementary Figures 1-4). Fine-grained simulations heat
maps (Supplementary Figures 5-6). PCA and hierarchical clustering at
different levels of PI3K (Supplementary Figures 7-9). Model parameters
(Supplementary Table 1). (PDF 3213 kb)
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