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Abstract

Background: Recently, numerous laboratory studies have indicated that many microRNAs (miRNAs) are involved in
and associated with human diseases and can serve as potential biomarkers and drug targets. Therefore, developing
effective computational models for the prediction of novel associations between diseases and miRNAs could be
beneficial for achieving an understanding of disease mechanisms at the miRNA level and the interactions between
diseases and miRNAs at the disease level. Thus far, only a few miRNA-disease association pairs are known, and models
analyzing miRNA-disease associations based on lncRNA are limited.

Results: In this study, a new computational method based on a distance correlation set is developed to predict
miRNA-disease associations (DCSMDA) by integrating known lncRNA-disease associations, known miRNA-lncRNA
associations, disease semantic similarity, and various lncRNA and disease similarity measures. The novelty of DCSMDA is
due to the construction of a miRNA-lncRNA-disease network, which reveals that DCSMDA can be applied to predict
potential lncRNA-disease associations without requiring any known miRNA-disease associations. Although the
implementation of DCSMDA does not require known disease-miRNA associations, the area under curve is 0.8155
in the leave-one-out cross validation. Furthermore, DCSMDA was implemented in case studies of prostatic neoplasms,
lung neoplasms and leukaemia, and of the top 10 predicted associations, 10, 9 and 9 associations, respectively, were
separately verified in other independent studies and biological experimental studies. In addition, 10 of the 10 (100%)
associations predicted by DCSMDA were supported by recent bioinformatical studies.

Conclusions: According to the simulation results, DCSMDA can be a great addition to the biomedical research field.

Keywords: MiRNA-disease association predictions, Distance correlation set, Disease-lncRNA-miRNA network, Similarity
measure

Background
For a long time, RNA was considered a DNA-to-protein
gene sequence transporter [1]. The sequencing of the
human genome indicates that only approximately 2% of
the sequences in human RNA are used to encode pro-
teins [2]. Furthermore, numerous studies performing
biological experiments have indicated that noncoding
RNA (ncRNA) plays an important role in numerous

critical biological processes, such as chromosome dosage
compensation, epigenetic regulation and cell growth [3–
5]. MicroRNAs (miRNAs) are endogenous single-stranded
ncRNA molecules approximately 22 nt in length that
regulate the expression of target genes by base pairing
with the 3′-untranslated regions (UTRs) of the target
genes [6, 7]. Recently, several studies have reported that
more than one-third of genes are regulated by miRNAs
[8], and more than 1000 miRNAs have been identified
using various experimental methods and computational
models [9, 10]. In addition, accumulating evidence indi-
cates that many microRNAs (miRNAs) are involved in
and associated with human diseases, such as myocardial
disease, Alzheimer’s disease, cardiovascular disease and
heart disease [11–14]. Therefore, identifying disease-
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miRNA associations could not only improve our know-
ledge of the underlying disease mechanism at the miRNA
level but also facilitate disease biomarker detection and
drug discovery for disease diagnosis, treatment, prognosis
and prevention. However, compared with the rapidly in-
creasing number of newly discovered miRNAs, only a few
miRNA-disease associations are known [15, 16]. Develop-
ing efficient, successful computational approaches that
predict potential miRNA-disease associations is challen-
ging and urgently needed.
Recently, several heterogeneous biological datasets,

such as HMDD and miR2Disease, have been constructed
[17–19], and several computational methods are used to
predict potential miRNA-disease associations based
these datasets [20–22]. For example, Jiang et al. devel-
oped a scoring system to assess the likelihood that a
microRNA is involved in a specific disease phenotype
based on the assumption that functionally related micro-
RNAs tend to be associated with phenotypically similar
diseases [23]. K. Han et al. developed a prediction
method called DismiPred that combines functional simi-
larity and common association information to predict
potential miRNA-disease associations based on the cen-
tral hypothesis offered in several previous studies that
miRNAs with similar functions are often involved in
similar diseases [24]. Furthermore, Xuan et al. proposed
a method called HDMP to predict potential disease-
miRNA associations based on weighted k most similar
neighbours [25] and developed a method for predicting
potential disease-associated microRNAs based on ran-
dom walk (MIDP) [26]. Chen et al. proposed a predic-
tion method called RWRMDA by implementing random
walk on the miRNA functional similarity network and
further proposed a model called RLSMDA based on
semi-supervised learning by integrating a disease-disease
semantic similarity network, miRNA-miRNA functional
similarity network, and known human miRNA-disease
associations for the prediction of potential disease-
miRNA associations [27]. In 2016, based on the assump-
tion that functionally similar miRNAs tend to be in-
volved in similar diseases, Chen et al. developed a
prediction model called WBSMDA by integrating known
miRNA-disease associations, miRNA functional similar-
ity networks, disease semantic similarity networks, and
Gaussian interaction profile kernel similarity networks
to uncover potential disease-miRNA associations [28].
In the abovementioned computational models, known

miRNA-disease associations are required. However, few
lncRNA-disease associations have been recorded in several
biological datasets, such as MNDR and LncRNADisease
[29, 30], and several studies have shown that lncRNA-
miRNA associations are involved in and associated with
human diseases [31–33]. Thus, in this article, a new model
based on the Distance Correlation Set for MiRNA-Disease

Association inference (DCSMDA) was developed to pre-
dict potential miRNA-disease associations by integrating
known lncRNA-disease and lncRNA-miRNA associations,
the semantic similarity and functional similarity of the dis-
ease pairs, the functional similarity of the miRNA pairs,
and the Gaussian interaction profile kernel similarity for
the lncRNA, miRNA and disease. Compared with existing
state-of-the-art models, the advantage of DCSMDA is its
integration of the similarity of the disease pairs, lncRNA
pairs, miRNA pairs, and introduction of the distance cor-
relation set; thus, DCSMDA does not require known
miRNA-disease associations. Moreover, leave-one-out
cross-validation (LOOCV) was implemented to evaluate
the performance of DCSMDA based on known miRNA-
disease associations downloaded from the HMDD data-
base, and DCSMDA achieved a reliable area under the
ROC curve (AUC) of 0.8155. Moreover, case studies of
lung neoplasms, prostatic neoplasms and leukaemia were
implemented to further evaluate the prediction perform-
ance of DCSMDA, and 9, 10 and 9 of the top 10 predicted
associations in these three important human complex dis-
eases have been confirmed by recent biological experi-
ments. In addition, a case study identifying the top 10
lncRNA-disease associations showed that 10 of the 10
(100%) associations predicted by DCSMDA were sup-
ported by recent bioinformatical studies and the latest
HMDD dataset, effectively demonstrating that DCSMDA
had a good prediction performance in inferring potential
disease-miRNA associations.

Results
To evaluate the prediction performance of DCSMDA,
first, our method was compared with other state-of-the-
art methods in the framework of the LOOCV, and then,
we analyzed the stability of DCSMDA using three
lncRNA-disease datasets. Second, we analyzed the effect
of the pre-determined threshold parameter b. Finally,
several additional experiments were performed to valid-
ate the feasibility of our method.

Performance comparison with other methods
Since our method is unsupervised (i.e., known miRNA-
disease associations are not used in the training) and the
few proposed prediction models for the large-scale forecast-
ing of the associations between miRNAs and diseases are
simultaneously based on known miRNA-lncRNA associa-
tions and known lncRNA-disease associations, to validate
the prediction performance of our novel model, we com-
pared the prediction performance of DCSMDA with that of
three state-of-the-art computational prediction models, in-
cluding WBSMDA [28], RLSMDA [27] and HGLDA [31];
WBSMDA and RLSMDA are semi-supervised methods
that do not require any negative samples, and HGLDA is
an unsupervised method developed to predict potential

Zhao et al. BMC Bioinformatics  (2018) 19:141 Page 2 of 14



lncRNA-disease associations by integrating known miRNA-
disease associations and lncRNA-miRNA interactions.
To compare the performance of DCSMDA with that of

WBSMDA and RLSMDA, we adopted the DS5 dataset
and the framework of the LOOCV. While the LOOCV
was implemented for these three methods, each known
miRNA-disease association was left out in turn as the test
sample, and we further evaluated how well this test associ-
ation ranked relative to the candidate sample. Here, the
candidate samples comprised all potential miRNA-disease
associations without any known association evidence.
Then, the testing samples with a prediction rank higher
than the given threshold were considered successfully pre-
dicted. If the testing samples with a prediction rank higher
than the given threshold were considered successfully pre-
dicted, then DCSMDA, RLSMDA and WBSMDA were
checked in the LOOCV.
To compare the performance of DCSMDA with that of

HGLDA, we adopted the DS3 dataset and the framework
of the LOOCV. While the LOOCV was implemented for
HGLDA, each known lncRNA-disease association was re-
moved individually as a testing sample, and we further
evaluated how well this test lncRNA-disease association
ranked relative to the candidate sample. Here, the candi-
date samples comprised all potential lncRNA-disease as-
sociations without any known association evidence.
Thus, we could further obtain the corresponding true

positive rates (TPR, sensitivity) and false positive rates
(FPR, 1-specificity) by setting different thresholds. Here,
sensitivity refers to the percentage of test samples that
were predicted with ranks higher than the given thresh-
old, and the specificity was computed as the percentage
of negative samples with ranks lower than the threshold.

The receiver-operating characteristic (ROC) curves were
generated by plotting the TPR versus the FPR at differ-
ent thresholds. Then, the AUCs were further calculated
to evaluate the prediction performance of DCSMDA.
An AUC value of 1 represented a perfect prediction,

while an AUC value of 0.5 indicated a purely random per-
formance. The performance comparison in terms of the
LOOCV results is shown in Fig. 1. In the LOOCV, the
DCSMDA (when b was set to 6), RLSMDA, WBSMDA
and HGLDA achieved AUCs of 0.8155, 0.7826, 0.7582 and
0.7621, respectively. DCSMDA predicted potential miRNA-
disease associations without requiring known miRNA-
disease associations. To the best of our knowledge, no
methods that rely on known miRNA-disease associations
exist. More importantly, considering that known disease-
lncRNA associations remain very limited, the performance
of DCSMDA can be further improved as additional known
miRNA-disease associations are obtained in the future.

The stability analysis of DCSMDA
Because the current lncRNA-disease databases remain in
their infancy and most existing methods are always eval-
uated using a specific dataset, the stability of the differ-
ent datasets is ignored. To enhance the credibility of the
prediction results, DCSMDA was further implemented
using three different known lncRNA-disease association
datasets, including DS1, DS2, and DS3, and the known
lncRNA-miRNA association dataset DS4.
The comparison results of the ROC are shown in Fig. 2,

and the corresponding AUCs are 0.8155, 0.8089 and 0.
7642 when DCSMDA (b was set to 6) was evaluated in
the framework of the LOOCV using the three different
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Fig. 1 Performance comparisons between DCSMDA, RLSMDA and HGLDA in terms of ROC curve and AUC based on LOOCV
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lncRNA-disease association datasets. DCSMDA achieved
a reliable and effective prediction performance.

Effects of the pre-given threshold parameter b
In DCSMDA, the pre-determined threshold b plays a crit-
ical role, and the value of b influences the performance of
predicting potential miRNA-disease associations. In this
section, we implemented a series of comparison experi-
ments to evaluate the effects of b on the prediction per-
formance of DCSMDA. The LOOCV was implemented,
experiments were performed, and b was assigned different
values. Considering the time complexity, and that the

value of SPM(i, j) always equals 6, when b ≥6, we set b to
a value no greater than 6 in our experiments.
As shown in Fig. 3, DCSMDA showed an increasing

trend in its prediction performance as the value of the
pre-determined threshold parameter b increased and
achieved the best prediction performance when b was set
to 6. When b was set to 6, DCSMDA achieved an AUC of
0.8089 using DS3 and DS4. In the analysis, we found that
the main reason was that the number of known miRNA-
lncRNA associations and lncRNA-disease associations
was small; thus, when b is set to a larger value, more
nodes could be linked to each other in the miRNA-
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Fig. 2 Comparison of different lncRNA-disease datasets to the prediction performance of DCSMDA
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lncRNA-disease interactive network, improving the pre-
diction performance of DCSMDA. Therefore, we finally
set b = 6 in our experiments.

Case study
Currently, cancer is the leading cause of death in
humans worldwide [34–36], and the incidence of cancer
is high in both developed and developing countries.
Therefore, to estimate the effective predictive perform-
ance of DCSMDA, case studies of two important cancers
and leukaemia were implemented. The prediction results
were verified using recently published experimental
studies (see Table 1).

Prostate cancer (prostatic neoplasms), which is the sec-
ond leading cause of cancer-related death in males, is
among the most common malignant cancers and the most
commonly diagnosed cancer in men worldwide. In 2012,
prostate cancer occurred in 1.1 million men and caused
307,000 deaths. Accumulating evidence shows that micro-
RNAs are strongly associated with prostate cancer. There-
fore, DCSMDA was implemented to predict potential
prostate cancer-related miRNAs. Consequently, ten of the
top ten predicted prostate cancer-related miRNAs were
validated by recent biological experimental studies (see
Table 1). For example, Junfeng Jiang et al. reconstructed
five prostate cancer co-expressed modules using func-
tional gene sets defined by Gene Ontology (GO) annota-
tion (biological process, GO_BP) and found that hsa-
mir15a (ranked 1st) regulated these five candidate
modules [37]. Medina-Villaamil V et al. analyzed circulat-
ing miRNAs in whole blood as non-invasive markers in
patients with localized prostate cancer and healthy indi-
viduals and found that hsa-mir-15b (ranked 2nd) showed
a statistically significant differential expression between
the different risk groups and healthy controls [38]. Fur-
thermore, Chao Cai et al. confirmed the tumour suppres-
sive role of hsa-mir-195 (ranked 4th) using prostate
cancer cell invasion, migration and apoptosis assays in
vitro and tumour xenograft growth, angiogenesis and in-
vasion in vivo by performing both gain-of-function and
loss-of-function experiments [39].
Lung cancer (lung neoplasms) has the poorest progno-

sis among cancers and is the largest threat to people’s
health and life. The incidence and mortality of lung can-
cer are rapidly increasing in China, and approximately 1.
4 million deaths are due to lung cancer annually. Recent
studies show that miRNAs play critical roles in the pro-
gression of lung cancer. Therefore, we used lung cancer
as a case study and implemented DCSMDA; nine pre-
dicted lung cancer-associated miRNAs of the top ten
prediction list were verified based on experimental re-
ports. For example, Bozok Çetintaş V et al. analyzed the
effects of selected miRNAs on the development of cis-
platin resistance and found that hsa-mir-15a (ranked
1st) was among the most significantly downregulated
miRNAs conferring resistance to cisplatin in Calu1 epi-
dermoid lung carcinoma cells [40]. Hsa-mir-195, which
ranked 2nd, was further confirmed to suppress tumour
growth and was associated with better survival outcomes
in several malignancies, including lung cancer [41]. Add-
itionally, according to the biological experiments re-
ported in several studies, hsa-mir-424 (ranked 3rd) plays
an important role in lung cancer [42].
Leukaemia refers to a group of diseases that usually

begin in the bone marrow and result in high numbers of
abnormal white blood cells. The exact cause of leukae-
mia is unknown, and a combination of genetic factors

Table 1 DCSMDA was applied to case studies of three important
cancers. In total, 10, 9 and 8 of the top 10 predicted pairs for
these diseases were confirmed based on recent experimental
studies

Disease miRNA Evidence (PMID and PMCID)

Prostatic Neoplasms hsa-mir-15a PMID: 25418933

Prostatic Neoplasms hsa-mir-15b PMID: 24661838

Prostatic Neoplasms hsa-mir-16 PMID: 21880514

Prostatic Neoplasms hsa-mir-195 PMID: 26080838

Prostatic Neoplasms hsa-mir-424 PMID: 27820701

Prostatic Neoplasms hsa-mir-497 PMID: 23886135

Prostatic Neoplasms hsa-mir-125a PMCID: PMC3979818

Prostatic Neoplasms hsa-mir-106b PMID: 26124181

Prostatic Neoplasms hsa-mir-17 PMCID: PMC3008681

Prostatic Neoplasms hsa-mir-93 PMID: 26124181

Lung Neoplasms hsa-mir-15a PMID: 26314859

Lung Neoplasms hsa-mir-195 PMID: 25840419

Lung Neoplasms hsa-mir-424 PMID: 27666545

Lung Neoplasms hsa-mir-497 PMCID: PMC4537005

Lung Neoplasms hsa-mir-16 PMID: 21192009

Lung Neoplasms hsa-mir-15b Unconfirmed

Lung Neoplasms hsa-mir-125a PMID: 24044511

Lung Neoplasms hsa-mir-106a PMID: 18328430

Lung Neoplasms hsa-mir-106b PMID: 18328430

Lung Neoplasms hsa-mir-93 PMID: 24037530

Leukaemia hsa-mir-424 PMID: 27013583

Leukaemia hsa-mir-195 PMCID: PMC4713510

Leukaemia hsa-mir-16 PMID:22912766

Leukaemia hsa-mir-15a PMID: 24392455

Leukaemia hsa-mir-15b PMCID: PMC4577143

Leukaemia hsa-mir-497 Unconfirmed

Leukaemia hsa-mir-125a PMID: 22456625

Leukaemia hsa-mir-19b PMID: 28765931

Leukaemia hsa-mir-19a PMID: 28765931

Leukaemia hsa-mir-17 PMID: 20439436
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and environmental factors is believed to play a role. In
2015, leukaemia presented in 2.3 million people and
caused 353,500 deaths. Several studies suggest that miR-
NAs are effective prognostic biomarkers in leukaemia.
For example, independent experimental observations
showed relatively lower expression levels of mir-424
(ranked 1st) in TRAIL-resistant and semi-resistant acute
myeloid leukaemia (AML) cell lines and newly diagnosed
patient samples. The overexpression of mir-424 by tar-
geting the 3′ UTR of PLAG1 enhanced TRAIL sensitiv-
ity in AML cells [43]. Hsa-mir-16 ranked 3rd, its
expression was inversely correlated with Bcl2 expression
in leukaemia, and both microRNAs negatively regulate B
cell lymphoma 2 (Bcl2) at a posttranscriptional level.
Bcl2 repression by these microRNAs induces apoptosis
in a leukaemic cell line model [44]. The lncRNA H19 is
considered an independent prognostic marker in pa-
tients with tumours. The expression of lncRNA H19 is
significantly upregulated in bone marrow samples from
patients with AML-M2. The results of the current study
suggest that lncRNA H19 regulates the expression of in-
hibitor of DNA binding 2 (ID2) by competitively binding
to hsa-mir-19b (ranked 8) and hsa-mir-19a (ranked 9),
which may play a role in AML cell proliferation [45].
In addition, DCSMDA predicted all potential associ-

ations between the diseases and miRNAs in G3 simul-
taneously. In addition, notably, potential associations
with a high predicted value can be publicly released
and benefit from biological experimental validation.
To further illustrate the effective performance of
DCSMDA, the predicted results were sorted from best
to worse, and the top 10 results were selected for ana-
lysis (see Table 2). Consequently, 100% of the results
were confirmed by recent biological experiments and
the HMDD dataset, and thus, DCSMDA can be used
as an efficient computational tool in biomedical re-
search studies.

Discussion
Accumulating evidence shows that miRNAs play a very
important role in several key biological functions and sig-
nalling pathways. A large-scale systematic analysis of
miRNA-disease data performed by combining relevant
biological data is highly important for humans and attract-
ive topics in the field of computational biology. However,
only a few prediction models have been proposed for the
large-scale forecasting of associations between miRNAs
and diseases based on lncRNA information. To utilize the
wealth of disease-lncRNA, miRNA-lncRNA and disease-
lncRNA association data recorded in four datasets and re-
cently published experimental studies, in this article, we
proposed a novel prediction model called DCSMDA to
infer the potential associations between diseases and miR-
NAs. We first constructed a miRNA-lncRNA-disease
interactive network and further integrated a distance cor-
relation set, disease semantic similarity, functional similar-
ity and Gaussian interaction profile kernel similarity for
DCSMDA. The important difference between DCSMDA
and previous computational models is that DCSMDA
does not rely on any known miRNA-disease associations
and predicts disease-miRNA associations based only on
known disease-lncRNA associations and known lncRNA-
miRNA associations. To evaluate the prediction perform-
ance of DCSMDA, the validation frameworks of the
LOOCV were implemented using the HMDD database.
Furthermore, case studies were further implemented using
three important diseases and the top 10 predicted
miRNA-disease associations based on recently published
experimental studies and databases. The simulation re-
sults showed that DCSMDA achieved a reliable and effect-
ive prediction performance. Hence, DCSMDA could be
used as an effective and important biological tool that
benefits the early diagnosis and treatment of diseases and
improves human health in the future.
However, although DCSMDA is a powerful method

for predicting novel relationships between diseases and
miRNAs, there are several limitations in our method.
First, the value of the threshold parameter b plays an im-
portant role in DCSMDA, and the selection of a suitable
value for b is a critical problem that should be addressed
in future studies. Second, although DCSMDA does not
rely on any known experimentally verified miRNA-
disease relationships, the performance of DCSMDA was
not very satisfactory compared with that of several existing
methods, such as LRSMDA and WBSMDA [27, 28]. Intro-
ducing more reliable measures for the calculations of the
disease similarity, miRNA similarity, and lncRNA similarity
and developing a more reliable similarity integration
method could improve the performance of DCSMDA.
Finally, DCSMDA cannot be applied to unknown dis-
eases or miRNAs that are not present in the disease-
miRNA or lncRNA-miRNA databases; such genes are

Table 2 The top 10 predicted miRNA-disease associations by
DCSMDA

Disease MiRNA Evidence

Carcinoma, Hepatocellular hsa-mir-15a HMDD

Carcinoma, Hepatocellular hsa-mir-15b HMDD

Carcinoma, Hepatocellular hsa-mir-16 HMDD

Carcinoma, Hepatocellular hsa-mir-195 HMDD

Carcinoma, Hepatocellular hsa-mir-424 PMID: 26823812

Carcinoma, Hepatocellular hsa-mir-497 HMDD

Colorectal Neoplasms hsa-mir-497 HMDD

Colorectal Neoplasms hsa-mir-15b PMID: 23267864

Colorectal Neoplasms hsa-mir-16 HMDD

Colorectal Neoplasms hsa-mir-195 HMDD
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poorly investigated and have no known disease-lncRNA
and lncRNA-miRNA associations. The performance of
DCSMDA will be further improved once more known as-
sociations are obtained.

Conclusion
In this article, we mainly achieved the following contri-
butions: (1) we constructed a miRNA-lncRNA-disease
interactive network based on common assumptions
that similar diseases tend to show similar interaction
and non-interaction patterns with lncRNAs, and similar
miRNAs tend to show similar interaction and non-
interaction patterns with lncRNAs; (2) the concept of a
distance correlation set was introduced; (3) the sematic
disease similarity, functionally similarity (including dis-
ease functionally similarity and miRNA functionally
similarity) and Gaussian interaction profile kernel simi-
larity (including disease Gaussian interaction profile
kernel similarity, miRNA Gaussian interaction profile
kernel similarity and lncRNA Gaussian interaction pro-
file kernel similarity) were integrated; (4) the concept of
an optimized matrix was introduced by integrating the
Gaussian interaction profile kernel similarity of the
miRNA pairs and disease pairs; (5) negative samples are
not required in DCSMDA; and (6) DCSMDA can be
applied to human diseases without relying on any
known miRNA-disease associations.

Methods
Known disease-lncRNA associations
Because the number of lncRNA-disease associations is
limited and many heterogeneous biological datasets have
been constructed, we collected 8842 known disease-
lncRNA associations from the MNDR dataset (http://www.
bioinformatics.ac.cn/mndr/index.html) and 2934 known
disease-lncRNA associations from the LncRNADisease
dataset (http://www.cuilab.cn/lncrnadisease). Since the
disease names in the LncRNADisease database differ from
those in the MNDR dataset, we mapped the diseases in
these two disease-lncRNA association datasets to their
MeSH descriptors. After eliminating diseases without any
MeSH descriptors, merging the diseases with the same
MeSH descriptors and removing the lncRNAs that were
not present in the lncRNA-miRNA dataset (DS4) used in
this paper, 583 known lncRNA-disease associations (DS1)
were obtained from the LncRNADisease dataset (see
Additional file 1), and 702 known lncRNA-disease associa-
tions (DS2) were obtained from the MNDR dataset (see
Additional file 2). Furthermore, after integrating the DS1
and DS2 datasets and removing the duplicate associations,
we obtained the DS3 dataset, which included 1073 disease-
lncRNA associations (see Additional file 3).

Known lncRNA-miRNA associations
To construct the lncRNA-miRNA network, the lncRNA-
miRNA association dataset DS4 was obtained from the
starBasev2.0 database (http://starbase.sysu.edu.cn/) in
February 2, 2017 and provided the most comprehensive
experimentally confirmed lncRNA-miRNA interactions
based on large-scale CLIP-Seq data. After the data pre-
processing (including the elimination of duplicate values,
erroneous data, and disorganized data), removing the
lncRNAs that did not exist in the DS3 dataset and mer-
ging the miRNA copies that produced the same mature
miRNA, we finally obtained 1883 lncRNA-miRNA asso-
ciations (DS4) (see Additional file 4).

Known disease-miRNA associations
To validate the performance of DCSMDA, the known
human miRNA-disease associations were downloaded
from the latest version of the HMDD database, which is
considered the golden-standard dataset. In this dataset,
after eliminating the duplicate associations and miRNA-
disease associations involved with other diseases or
lncRNAs not contained in the DS3 or DS4, we finally ob-
tained 3252 high-quality lncRNA-disease associations
(DS5) (see Additional file 5).

Construction of the disease-lncRNA-miRNA interaction
network
To clearly demonstrate the process of constructing the
disease-lncRNA-miRNA interaction network, we use the
disease-lncRNA dataset DS3 and the lncRNA-miRNA
dataset DS4 as examples. We defined L to represent all
the different lncRNA terms in DS3 and DS4 and then
constructed the disease-lncRNA-miRNA interactive net-
work based on DS3 and DS4 according to the following 3
steps:
Step 1 (Construction of the disease-lncRNA network):

Let D and L be the number of different diseases and
lncRNAs obtained from DS3, respectively. SD = {d1, d2,...,
dD} represents the set of all D different diseases in DS3.
SL = {l1, l2,..., lL} represents the set of all L different
lncRNAs in DS3, and for any given di ∈ SD and lj∈SL, we
can construct the D*L dimensional matrix KAM1 as
follows:

KAM1ði; jÞ ¼
(

1 i f di is related to l j in DS3

0 otherwise
ð1Þ

Step 2 (Construction of the lncRNA-miRNA network):
Let M be the number of different miRNAs obtained
from DS4. SM = {m1, m2,..., mM} represents the set of all
M different miRNAs in DS4, and for any given mi∈SM
and lj∈SL, we can construct the M*L dimensional matrix
KAM2 as follows:
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KAM2 i; jð Þ ¼ 1 if mi is related to l j in DS4
0 otherwise

�
ð2Þ

Step 3 (Constriction of the disease-lncRNA-miRNA inter-
active network): Based on the disease-lncRNA network and
lncRNA-miRNA network, we can obtain the undirected
graph G3 = (V3, E3), where V3= S D ∪S L ∪S M = {d1, d2,...,
dD, lD+ 1, lD+ 2..., lD + L, mD+L+1, mD+L+2..., mD+L+M} is
the set of vertices, E3 is the edge set of G3, and di∈SD, lj∈SL,
mk∈SM. Here, an edge exists between di and lj in
E3KAM1(di , lj) = 1, an edge exists between lj and mk in E3 if
KAM2(mk, lj) = 1. Then, for any given a, b∈V3, we can de-
fine the Strong Correlation (SC) between a and b as follows:

SCða; bÞ ¼ 1 i f there is an edge between a and b

0 otherwise

(
ð3Þ

Notably, although we did not use any known disease-
miRNA associations, the diseases and miRNAs can still
be indirectly linked by integrating the edges between the
disease nodes, the lncRNA nodes and edges between the
miRNA nodes and lncRNA nodes in G3.

Disease semantic similarity
We downloaded the MeSH descriptors of the diseases
from the National Library of Medicine (http://www.nlm.
nih.gov/), which introduced the concept of Categories and
Subcategories and provided a strict system for disease
classification. The topology of each disease was visualized
as a Directed Acyclic Graph (DAG) in which the nodes
represented the disease MeSH descriptors, and all MeSH
descriptors in the DAG were linked from more general
terms (parent nodes) to more specific terms (child nodes)
by a direct edge (see Fig. 4). Let DAG(A) = (A, T(A), E(A)),

Fig. 4 The disease DAGs of Prostatic Neoplasms and Gastrointestinal Neoplasms
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where A represents disease A, T(A) represents the node
set, including node A and its ancestor nodes, and E(A)
represents the corresponding edge set. Then, we defined
the contribution of disease term d in DAG(A) to the se-
mantic value of disease A as follows:

DAðdÞ ¼ 1 i f d ¼ A

DAðdÞ ¼ maxf0:5 � DAðd�Þjd�∈ children of dg i f d≠A

(

ð4Þ

For example, the semantic value of the disease ‘Gastrointes-
tinal Neoplasms’ shown in Fig. 4 is calculated by summing
the weighted contribution of ‘Neoplasms’ (0.125), ‘Neoplasms
by Site’ (0.25), ‘Digestive System Diseases’ (0.25), ‘Digestive
System Neoplasms’ (0.5), ‘Digestive System Neoplasms’ (0.5)
and ‘Gastrointestinal Diseases’ (0.5) to ‘Gastrointestinal Neo-
plasms’ and the contribution to ‘Gastrointestinal Neoplasms’
(1) by ‘Gastrointestinal Neoplasms’.
Then, the sematic value of disease A can be obtained

by summing the contribution from all disease terms in
=DAG(A), and the semantic similarity between the two
diseases di and dj can be calculated as follows:

SSDðdi; d jÞ ¼
X

d∈ðTðdiÞ∩Tðd jÞÞ ðDdiðdÞ þ Dd jðdÞÞX
d∈TðdiÞDdiðdÞ þ

X
d∈Tðd jÞDd jðdÞ

ð5Þ
where SSD is the disease semantic similarity matrix.

MiRNA Gaussian interaction profile kernel similarity
Based on the assumption that similar miRNAs tend to
show similar interaction and non-interaction patterns
with lncRNAs, in this section, we introduce the Gauss-
ian interaction profile kernel used to calculate the net-
work topologic similarity between miRNAs and used the
vector MLP(mi) to denote the ith row of the adjacency
matrix KAM2. Then, the Gaussian interaction profile
kernel similarity for all investigated miRNAs can be cal-
culated as follows:

MGS mi;mj
� � ¼ exp −

M � MLP mið Þ−MLP mj
� ��� ��2XM

i¼1
MLP mið Þk k2

0
@

1
A
ð6Þ

where parameter M is the number of miRNAs in DS4.

Disease Gaussian interaction profile kernel similarity
Based on the assumption that similar diseases tend to
show similar interaction and non-interaction patterns
with lncRNAs, the Gaussian interaction profile kernel
similarity for all investigated diseases can be calculated
as follows:

DGS di; d j
� � ¼ exp −

D � DLP dið Þ−DLP d j
� ��� ��2X D

i¼1
DLP dið Þk k2

0
@

1
A
ð7Þ

where parameter D is the number of diseases in DS3,
and DLP(di) represent the ith row of the matrix KAM1.
Then, based on previous work [46], we can improve the
predictive accuracy problems by logistic function trans-
formation as follows:

FDGSðdi; d jÞ ¼ 1

1þ e−15�DGSðdi;d jÞþlogð9999Þ ð8Þ

lncRNA Gaussian interaction profile kernel similarity
Based on the assumption that similar lncRNAs tend to
show similar interaction and non-interaction patterns
with miRNAs and similar lncRNAs tend to show similar
interaction and non-interaction patterns with diseases,
the Gaussian interaction profile kernel similarity matrix
for all investigated lncRNAs in DS3 can be computed in
a similar way as that for disease, as follows:

LGS1 li; l j
� � ¼ exp −

L � LDP lið Þ−LDP l j
� ��� ��2X L

i¼1
LDP lið Þk k2

0
@

1
A

ð9Þ
where parameter L is the number of lncRNAs in DS3, and
LDP(li) represents the ith column of the matrix KAM1.
Obviously, the Gaussian interaction profile kernel

similarity for all investigated lncRNAs in DS4 can be
computed as follows:

LGS2ðdi; d jÞ ¼ exp

 
−
L � ∥LMPðliÞ−LMPðl jÞ∥2

XL
i¼1

∥LMPðliÞ∥2

!

ð10Þ
where LMP(li) represents the ith column of the matrix
KAM2.

Disease functional similarity based on the lncRNAs
To calculate the functional similarity of the diseases, we
first constructed the undirected graph G1 = (V1, E1)
based on KAM1, where V1 = SD∪SM = {d1, d2, …, dD, lD +

1, lD + 2,…, lD +M} is the set of vertices, E1 is the set of
edges, and for any two nodes a, b∈V1, an edge exists be-
tween a and b in E1 if KAM1(a, b) = 1. Therefore, we
can calculate the similarities between two disease nodes
by comparing and integrating the similarities of the
lncRNA nodes associated with these two disease nodes
based on the assumption that similar diseases tend to
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show similar interaction and non-interaction patterns
with lncRNAs. The procedure used to calculate the dis-
ease functional similarity is shown in Fig. 5.
Because different lncRNA terms in DS3 may relate to

several diseases, assigning the same contribution value to
all miRNAs is not suitable, and therefore, we defined the
contribution value of each lncRNA as follows:

CðliÞ ¼ The number of li-related edges in E1

The number of all edges in E1
ð11Þ

Based on the definition of C(li), we can define the con-
tribution value of each lncRNA to the functional similar-
ity of each disease pair as follows:

CDi jðlkÞ ¼
(
1 i f lncRNA lk related to di and d j simultaneously

CðlkÞ i f lncRNA lk only related to di or d j

ð12Þ

Finally, we can define the functional similarity between
diseases di and dj by integrating lncRNAs related to di,
dj or both as follows:

FSDðdi; d jÞ ¼
X

lk∈ðDðdiÞ∪Dðd jÞÞCDi jðlkÞ
j DðdiÞ j þ j Dðd jÞ j − j DðdiÞ∩Dðd jÞ j

ð13Þ
where D(di) and D(dj) represent all lncRNAs related to
di and dj in E1, respectively.

MiRNA functional similarity based on lncRNAs
Based on the assumption that similar miRNAs tend to
show similar interaction and non-interaction patterns
with lncRNAs, we can also calculate the miRNA func-
tional similarity in the lncRNA-miRNA interactive net-
work. Similar to the procedure used to calculate the
disease functional similarity, first, we constructed the
undirected graph G2 = (V2, E2), where V2 = SM ∪ SL
= {m1, m2,…, lM + 1, lM + 2 ,…, lM + L} is the set of vertices,
E2 is the set of edges, and for any two nodes a, b ∈ V2,
an edge exists between a and b in E2 if KAM2(a, b) = 1.
Then, we defined the contribution of each lncRNA to
the functional similarity of each miRNA pair as follows:

CMijðlkÞ ¼
(

1 i f lncRNA lk related mi and mj simultaneously

CðlkÞ i f lncRNA lk only related mi or mj

ð14Þ
Additionally, we can define the functional similarity

between mi and mj as follows:

FSMðmi;mjÞ ¼
X

lk∈ðDðmiÞ∪Dðm jÞÞCMijðmkÞ
j DðmiÞ j þ j DðmjÞ j − j DðmiÞ∩DðmjÞ j

ð15Þ
where D(mi) represents all lncRNAs related to mi, and
D(mj) represents lncRNAs relate to mj in E2.

Integrated similarity
The processes used to calculate the integrated similar-
ities of the diseases, lncRNAs and miRNAs are illus-
trated in Fig. 6. Combining the disease semantic
similarity, the disease Gaussian interaction profile kernel
similarity and the disease functional similarity men-
tioned above, we can construct the disease integrated
similarity matrix FDD as follows:

FDD ¼ SSDþ FDGS þ FSD
3

ð16Þ

Additionally, based on the miRNA Gaussian inter-
action profile kernel similarity and the miRNA func-
tional similarity, we can construct the miRNA integrated
similarity matrix FMM as follows:

Fig. 5 The Flow chart of the disease functional similarity calculation
model
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FMM ¼ MGS þ FSM
2

ð17Þ

Furthermore, based on the Gaussian interaction profile
kernel similarity matrices LGS1 and LGS2, we can construct
the lncRNA integrated similarity matrix FLL as follows:

FLL ¼ LGS1þ LGS2
2

ð18Þ

Prediction of disease-miRNA associations based on a
distance correlation set
In this section, we developed a novel computational
method, i.e., DCSMDA, to predict potential disease-
miRNA associations by introducing a distance correlation
set based on the following assumptions: similar diseases
tend to show similar interaction and non-interaction pat-
terns with lncRNAs, and similar lncRNAs tend to show
similar interaction and non-interaction patterns with miR-
NAs. As illustrated in Fig. 7, the DCSMDA procedure
consists of the following 5 major steps:
Step 1 (Construction of the adjacency matrix based on

G3): First, we construct a (D + L +M) * (D + L +M) Ad-
jacency Matrix (AM) based on the undirected graph G3

and SC, and then for any two nodes vi, vj∈V3, we can de-
fine the AM(i, j) as follows:

AM i; jð Þ ¼

SC di; d j
� �

; if i ∈ 1;D½ � and j ∈ 1;D½ �:
SC di; l j
� �

; if i ∈ 1;D½ � and j ∈ D;Dþ L½ �:
SC di;mj
� �

; if i ∈ 1;D½ � and j ∈ Dþ L;Dþ LþM½ �:
SC mi; d j
� �

; if i ∈ D;Dþ L½ � and j ∈ 1;D½ �:
SC mi;mj
� �

; if i ∈ D;Dþ L½ � and j ∈ D;Dþ L½ �:
SC mi; l j
� �

; if i ∈ D;Dþ L½ � and j ∈ Dþ L;Dþ LþM½ �:
SC li; d j
� �

; if i ∈ Dþ L;Dþ LþM½ � and j ∈ 1;D½ �:
SC li;mj
� �

; if i ∈ Dþ L;Dþ LþM½ � and j ∈ D;Dþ L½ �:
SC li;mj
� �

; if i ∈ Dþ L;Dþ LþM½ � and j ∈ ½Dþ L;D
þLþM�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð19Þ
where i ∈ [1, D + L +M] and j ∈ [1, D + L +M], and to
calculate the shortest distance matrix in step 2, we de-
fine AM (i, j) = 1 if i = j.
Step 2 (Construction of the shortest distance matrix

based on adjacency matrix AM): First, we set parameter
b to control the bandwidth of the distance correlation
set and let b be a pre-determined positive integer, and
then, we can obtain b matrices, such as AM1, AM2,...,
AMb, based on the above formula (19), and the Shortest
Path Matrix is calculated as follows:

SPM i; jð Þ ¼ 1; if AM i; jð Þ ¼ 1
k; otherwise

�
ð20Þ

where i ∈ [1, D +M+ L], j ∈ [1, D +M+ L], k ∈ [2, b], and
k satisfies the following: AM k(i, j)≠0, while AM 1(i, j) =
AM 2(i, j) =… =AM k-1(i, j) = 0.

Fig. 6 Flow chart of calculation of diseases integrated similarity, lncRNA integrated similarity and miRNA integrated similarity
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Step 3 (Calculation of distance correlation sets and
distance coefficient of each node pair in G3):
For each node vi ∈ V3, we can obtain distance correl-

ation set DCS(i) according to the shortest distance
matrix as follows:

DCSðiÞ ¼ fv jjr≥SPMði; jÞ > 0g ð21Þ

where DCS(i) of each node contains itself and all nodes
with the shortest distance less than b.
For instance, in the disease-miRNA-lncRNA inter-

action network illustrated in Fig. 7, DCS (seed node) is
all candidate nodes when b is set to 2.

Then, we can calculate the distance coefficient (DC) of
the node pair (vi, vj) as follows:

P i; jð Þ ¼ SPM i; jð Þbþ1; if i ∈DCS jð Þ or j ∈DCS ið Þ
0; otherwise

�
ð22Þ

Furthermore, we can construct a Distance Correlation
Matrix (DCM) based on the disease integrated similarity,
the lncRNA integrated similarity, and the miRNA inte-
grated similarity as follows:

Fig. 7 The procedures of DCSMDA
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where i ∈ [1, D + L +M] and j ∈ [1, D + L +M].
Step 4 (Estimation of the association degree between a

pair of nodes): Based on formula (23), we can estimate
the association degree between vi and vj as follows:

PMði; jÞ ¼
X

DþLþM
k¼1 DCMði; kÞ þ

XDþLþM

k¼1
DCMðk; jÞ

Dþ LþM
ð24Þ

Thus, we can obtain prediction matrix PM, where the
entity PM (i, j) in row i column j represents the pre-
dicted association between node vi and vj.
Step 5 (Calculation of the final prediction result

matrix between the miRNAs and diseases): Let

PM ¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

2
4

3
5, where C11 is a D×D matrix,

C12 is a D×L matrix, C13 is a D×M matrix, C21 is an
L×D matrix, C22 is an L ×L matrix, C23 is an L×M
matrix, C31 is an M×D matrix, C32 is an M×L matrix
and C33 is an M ×M matrix. Obviously, C13 is our
predicted result, which provides the association prob-
ability between each disease and miRNA. A previous
study [27] demonstrated that the Gaussian interaction
profile kernel similarity is a high-efficiency tool for
optimizing the result of prediction, and therefore, we
used the miRNA Gaussian interaction profile kernel
similarity and the disease Gaussian interaction profile ker-
nel similarity to optimize the result of the DCSMDA as
follows:

FAD ¼ FDD � C13 � FMM ð25Þ

where the matrix FAD denotes the relationship between
the miRNA-disease pairs.
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