
de Molina et al. BMC Bioinformatics (2018) 19:171
https://doi.org/10.1186/s12859-018-2169-3

SOFTWARE Open Access

GPU-accelerated iterative reconstruction
for limited-data tomography in CBCT systems
Claudia de Molina1,2†, Estefania Serrano3†, Javier Garcia-Blas3, Jesus Carretero3, Manuel Desco1,2,4,5*

and Monica Abella1,2,5

Abstract

Background: Standard cone-beam computed tomography (CBCT) involves the acquisition of at least 360 projections
rotating through 360 degrees. Nevertheless, there are cases in which only a few projections can be taken in a limited
angular span, such as during surgery, where rotation of the source-detector pair is limited to less than 180 degrees.
Reconstruction of limited data with the conventional method proposed by Feldkamp, Davis and Kress (FDK) results in
severe artifacts. Iterative methods may compensate for the lack of data by including additional prior information,
although they imply a high computational burden and memory consumption.

Results: We present an accelerated implementation of an iterative method for CBCT following the Split Bregman
formulation, which reduces computational time through GPU-accelerated kernels. The implementation enables the
reconstruction of large volumes (> 10243 pixels) using partitioning strategies in forward- and back-projection
operations. We evaluated the algorithm on small-animal data for different scenarios with different numbers of
projections, angular span, and projection size. Reconstruction time varied linearly with the number of projections and
quadratically with projection size but remained almost unchanged with angular span. Forward- and back-projection
operations represent 60% of the total computational burden.

Conclusion: Efficient implementation using parallel processing and large-memory management strategies together
with GPU kernels enables the use of advanced reconstruction approaches which are needed in limited-data scenarios.
Our GPU implementation showed a significant time reduction (up to 48×) compared to a CPU-only implementation,
resulting in a total reconstruction time from several hours to few minutes.

Keywords: GPU, Memory management, Parallel processing, Iterative reconstruction, Split Bregman, Limited-data
tomography, CBCT

Background
The source-detector pair in conventional cone beam com-
puted tomography (CBCT) systems rotates around the
patient through 360 degrees (full angular span) to acquire
at least 360 projections. However, there are cases in which
the number of projections acquired is smaller and/or cov-
ers a smaller angular span (down to 150 degrees) owing
to movement limitations, as occurs during surgery, or
in respiratory-gated CT, where only a few projections
correspond to each gate. The reconstruction of these

*Correspondence: desco@hggm.es
†Equal contributors
1Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos
III de Madrid, Madrid, Spain
2Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
Full list of author information is available at the end of the article

limited data with the conventional method proposed by
Feldkamp, Davis and Kress (FDK) results in severe arti-
facts in the image (streaks and/or edge distortion),
making it advisable to use advanced reconstruction meth-
ods that compensate for the lack of data by including
prior information about the sample. The most common
option for prior information is the assumption of local
smoothness, which can be imposed by adding the min-
imization of the L1 norm of the total variation (TV)
term. Since the TV term is not differentiable, the use
of traditional reconstruction methods may be subject
to instability problems [1]. In [2], the authors showed
that reconstructing limited data in CT can be effi-

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2169-3&domain=pdf
mailto: desco@hggm.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

de Molina et al. BMC Bioinformatics (2018) 19:171 Page 2 of 7

ciently solved by means of the Split Bregman formulation,
which reduces the optimization problem to a sequence
of unconstrained and simpler problems that are updated
iteratively.
In a previous work [3], we presented a new reconstruc-

tion method based on the Split Bregman formulation. We
reported significant image improvement in terms of arti-
fact reduction using this approach for limited-data CBCT,
as compared with FDK. We have presented two imple-
mentations of this algorithm, one combining MATLAB
and CUDA [3] and another one based on a CPU dis-
tributed version [4]. The main limitation of both solutions
is that only 2D images can be reconstructed owing to com-
putational and memory requirements. Reconstruction of
3D images with these methods was not possible for two
main reasons: (1) memory requirements of the algorithm,
and (2) long execution times which hinder the reconstruc-
tion of standard size volumes in a reasonable amount of
time.
Another example of using MATLAB and CUDA is

the work by Smith et al. [5], an iterative reconstruc-
tion method based on Split Bregman for MRI. The
main limitation of this work is that the communi-
cation between MATLAB and GPUs is done through
an intermediate library, which increases the overhead
with respect to programming in native languages. Fur-
thermore, MRI reconstruction uses FFT (Fast Fourier
Transform), which is computationally less expensive than
the projection and backprojection kernels needed in CT
reconstruction.
Other works presented CPU-GPU implementations

using native languages for FDK [6–8], a reconstruc-
tion method less challenging than iterative reconstruc-
tion. Regarding iterative reconstruction algorithms, which
include several projection and backprojection operations,
techniques employed for parallelization highly affect the
reconstruction execution time as shown in [9], obtain-
ing a speedup factor between 50× and 200× using two
GPUs with respect to the execution of the same algo-
rithm in a single-thread CPU. Hu et al. [10] proposed an
advanced multi-resolution approach to reduce the total
execution time. Nevertheless, this work was applied to full
span data with a high number of projections. Focusing
on the problem of limited data, Jia et al. [11] proposed a
new iterative method but they did not address the prob-
lem of handling large volumes. A more recent work by
Matenine et al. [12] presented a solution for reduced
number of projections, but the authors commented the
limitation by thememory capacity of the GPUs. Neverthe-
less, none of these works addressed the problem of limited
angular span.
In this work, we present an accelerated implementation

for limited data both in angular span and number of pro-
jections, that uses the GPU for the most time-consuming

operations. Our solution includes a partitioning strategy
to be able to handle large volumes with a total footprint of
several GB.

Implementation
Algorithm
The reconstruction problem follows the TV minimiza-
tion [13]:

min ‖∇(u)‖1 s.t.
∥
∥Au − f

∥
∥2
2 ≤ σ 2, u ≥ 0, u ∈ � (1)

where ‖∇(u)‖1 corresponds to the L1 norm of the gra-
dient of the reconstructed image u, A is the system
matrix, f is the acquisition data, σ 2 is the image noise,
and � is the subspace corresponding to the field of view
(FOV).
Using the Split Bregman formulation [1], the L1-

constrained optimization problem shown in Eq. (1) can
be converted into the following unconstrained problems,
which are solved at each iteration k:
(

uk+1, dk+1
x , dk+1

y

)

= min
∥
∥(dx, dy)

∥
∥
1 + μ

2

∥
∥
∥Au − f k

∥
∥
∥

2

2
+

+λ

2

∥
∥
∥dx − ∇xu − bkx

∥
∥
∥

2

2
+ λ

2

∥
∥
∥dy − ∇yu − bky

∥
∥
∥

2

2

(2)

f k+1 = f k + f − Auk+1 (3)

bk+1
x = bkx + ∇xuk+1 − dk+1

x (4)

bk+1
y = bky + ∇yuk+1 − dk+1

y (5)

whereμ and λ are regularization parameters. Equation (2)
can be split into two sub-problems. The first sub-problem
contains only differentiable L2-norm terms. By differen-
tiating with respect to u and setting the result to 0, we
obtain the following problem:
(

μATA − λ∇T∇
)

uk+1 = μATf k + λ∇T
(

dk − bk
)

(6)

which can be summarized in the following problem:

Kuk+1 = rhsk (7)

which is solved iteratively using a Krylov space solver,
namely, the biconjugate gradient stabilized method. In
this step, an input parameter β controls the stabil-
ity of the problem. The second sub-problem contains
L1 terms that are not differentiable. Therefore, it is
tackled using analytical formulas (shrinkage operation),
which need two additional input parameters α and λ.
Finally, Eqs. (3, 4, 5) are the Bregman iterations that

de Molina et al. BMC Bioinformatics (2018) 19:171 Page 3 of 7

Fig. 1 TV3D iterative reconstruction workflow

impose constraints for acquired data and total variation,
respectively.

Parallel implementation
The accelerated implementation proposed (written in C
and CUDA) is described in Algorithms 1 and 2 and its
workflow representation shown in Figs. 1 and 2, respec-
tively. These algorithms are executed iteratively in two
nested loops.
The systemmatrixA and its transpose are substituted by

a ray-driven projector and a voxel-driven backprojector,

which are applied at each iteration a variable number of
times, depending on the convergence of the Krylov space
solver. Given that those algorithms represent the main
computational burden of the method, we implemented
them as accelerated kernels that run on GPUs. Other
operations that run on GPU are the gradients (gradientx,
gradienty), the shrinkage operation (shrinkage), and
the L2-norm calculation (using CUBLAS library). The
remaining element-wise operations are vectorized by the
compiler [14] and multi-thread CPU parallelized with
OpenMP 4.0.

Fig. 2Workflow of the callback function for Krylov solver

de Molina et al. BMC Bioinformatics (2018) 19:171 Page 4 of 7

Algorithm 1 TV3D iterative reconstruction
1: procedure RECOTV3D(f _ini, FOV , alpha,mu, beta,

lambda, iterations)
2: f _back ← backprojection(f _ini)
3: murf ← mu ∗ f _back ∗ backNormFactor
4: for k ← iterations do
5: rhs ← murf +lambda∗gradient_transpx(dx−

bx)++lambda∗ gradient_transpy(dy−by)+beta∗u
6: u ← bicgstab(@jtjx, rhs, tolKrylov,MaxIter)
7: gradx ← gradientx(u)

8: grady ← gradienty(u)

9: [dx, dy]← shrinkage(gradx + bx, grady +
by, alpha/lambda)

10: bx ← bx + gradx − dx
11: by ← by + grady − dy
12: u ← u ∗ FOV > 0
13: u_proj ← projection(u)

14: f ← f + f _ini − u_proj
15: f _back ← backprojection(f)
16: murf ← mu ∗ f _back ∗ backNormFactor
17: u ← uBest/(normFactor)
18: return u

Algorithm 2 Callback function for Krylov space solver
(bicgstab)
1: procedure JTJX(sol)
2: gradsolx ← gradientx(sol)
3: gradsoly ← gradienty(sol)
4: bTV ← lambda ∗ (gradient_transpx(gradsolx) +

gradient_transpy(gradsoly))
5: sol_proj ← projection(sol)
6: bFback ← backprojection(solMat_proj)
7: bF ← mu ∗ bFback ∗ backNormFactor
8: bG ← beta ∗ solMat
9: Ksol ← bTV + bF + bG

10: return Ksol

The division of the main problem into simpler sub-
problems from the Split Bregman formulation results in
the need for allocating up to eight times the memory cor-
responding to the desired output volume, resulting in a
total memory footprint of several GB. Given GPU mem-
ory restrictions, we implemented a partitioning strategy
in both backprojection and projection operations, which
are the ones that require the highest amount of memory.
With this strategy, input and output data are divided into
chunks, and the memory is allocated dynamically.
The Krylov space solver is implemented with the bicon-

jugate gradient stabilized method, BiCGStab [15], where
the input matrix in Eqs. (6, 7) is substituted by the
Algorithm 2.

Fig. 3 From left to right: reference image and reconstructed image
with the FDK-method and the proposed iterative method. Top panel
corresponds to the case of 60 projections covering an angular span of
360 degrees and bottom panel to the case of 45 projections covering
an angular span of 150 degrees. Yellow circle in the bottom left panel
shows the ROI for the SNR measurement

Results
The method was evaluated in a computer with two
Intel(R) Xeon(R) E5-2630 v3 processors at 2.40 GHz and
one NVidia Tesla K40c GPU. Limited-data acquisitions
(DimProj × DimProj × NumProjs pixels) were simulated
from a previously acquired small-animal scan (512×512×
512 pixels; 0.125 mm pixel size), as shown in Fig. 3, left.
We studied the following parameters: dependency on the
number of projections withNumProj = 45, 60, 90, and 120
covering an angular span of 360 degrees and DimProj =
512; dependency on angular span for NumProj = 45 uni-
formly distributed in an angular span of 45, 60, 90, 135,
150, 180, and 270 degrees (DimProj = 512); and the
effects of the projection size, by considering DimProj =
256, 512, and 1024 when 90 projections are obtained uni-
formly distributed in an angular span of 360 degrees.
All simulations were generated using FUX-SIM [16], a
simulation/reconstruction framework for X-ray systems.
These data were reconstructed with an FDK-based

method [17] and the proposed iterative method result-
ing in a volume of DimProj × DimProj × DimProj pixels.
For the latter, we used α = 0.003, μ = 20, β = 3, and
λ = 2 as reconstruction parameters (see [2] for details on
how to select these parameters). The number of iterations
(iterations in Algorithm 1, line 4) was 35, selected high
enough to ensure an error variation smaller than 1%.
Figure 3 shows the reference image (FDK reconstruc-

tion of the complete dataset) and the results of FDK and
the proposed iterative method for two limited-data con-
figurations. Image quality was assessed with two metrics.
To evaluate the global image quality, we calculated the
root mean square error (RMSE) between the reference
image and the intermediate solution uk from the limited
dataset. To evaluate the influence of streaks and noise in

de Molina et al. BMC Bioinformatics (2018) 19:171 Page 5 of 7

the reconstructed image, we measured the improvement
of signal to noise ratio (SNR) obtained with the iterative
method with respect to the FDK-based method in the
homogeneous area indicated in Fig. 3. Table 1 shows both
metrics for different number of projections and angu-
lar span, with a noticeable improvement when increasing
the angular span despite the low number of projections.
Figure 4 plots the dependence of the RMSE with the num-
ber of iterations, k, for six different limited-data cases
varying the angular span and the number of projections.
We can see that the proposed iterative method shows a
similar behaviour for all limited-data configurations.
Figures 5, 6, and 7 show the breakdown of the recon-

struction time of each configuration, obtained as the aver-
age of three consecutive executions in order to avoid time
variability due to operating system operations. Recon-
struction time is divided into backprojection, forward
projection, and time spent in other operations including
I/O operations and CPU computation.
Finally, we compared our implementation in GPU of

the iterative method with a CPU-only implementation
of the same iterative method parallelized using OpenMP
to fully exploit multi-core architectures. Figures 8 and 9
plot the time spent in the first iteration (average of three
different executions) reaching a speedup factor of 48×
with the GPU implementation with respect with the
CPU-only one.

Discussion and conclusions
We present an accelerated implementation of a method
for 3D limited-data tomography solved in an efficient way
by using a GPU for the most time-consuming operations.
Our evaluation of the method showed a high reduction

of the severe artifacts present when using the conventional
FDK-based method for cases with low number of projec-
tions, with an SNR improvement better than 20 dB for
all cases. The image distortion due to the limited angular
span was also reduced with the proposed method.
To evaluate the performance of the implementation

according to data size, we fixed a high number of iter-
ations (iterations = 35) for all experiments in order to
ensure optimum image quality for the worst conditions.

Table 1 SNR difference in dB between the FDK and the iterative r
econstruction; RMSE between the iterative reconstruction and the
reference image for different limited-data configurations

Angular span Projections SNR Difference (dB) RMSE

135 45 20.79 0.268

150 45 23.20 0.220

360 45 28.27 0.154

360 90 26.17 0.153

360 120 25.98 0.151

Fig. 4 RMSE vs. iterations for 60, 90 and 120 projections (full span)
angular span of 135, 150 and 180 degrees (45 projections)

Nevertheless, in some cases, the number of iterations
could be lowered, resulting in shorter reconstruction
times: for example, with 60 projections and an angular
span of 360 degrees, 20 iterations were enough for a high
quality image. In all experiments, backprojection and for-
ward projection operations represented at least 50% of
total execution time, reaching a maximum of 80% of the
time when the acquired data set is large. Neither the
iterative Krylov space solver nor reading and writing oper-
ations significantly increase total time. The execution time
of the proposed implementation varies linearly with the
number of projections and does not depend significantly
on the angular span. The size of the input projections
results in a quadratic increase in total computing time.
Reconstructions of large studies (volume of 1024 ×

1024 × 1024 pixels) are feasible with this accelerated
implementation of the iterative method thanks to the par-
titioning strategy followed for both backprojection and
forward projection operations.

Fig. 5 Execution time (in seconds) for different number of projections
(NumProj)

de Molina et al. BMC Bioinformatics (2018) 19:171 Page 6 of 7

Fig. 6 Execution time (in seconds) for different angular span (degrees)

Our GPU implementation showed significant time
reduction (up to 48×) compared with a CPU-only imple-
mentation, resulting in a decrease of the total recon-
struction time from several hours to few minutes. A fair
comparison with other iterative reconstruction imple-
mentations proposed in the literature is not feasible owing
to differences in the specific algorithms and the hardware
used. Nevertheless, we note that the work by Matenine
et al. [12], which is the most similar to our solution, was
limited by the memory capacity of the GPUs and did not
address the problem of limited angular span. In contrast,
our GPU accelerated algorithm obtains similar results in
terms of execution time despite the fact that it works with
large detector and reconstructed volume sizes with a low
number of projections in a limited angular span, which
increase significantly the number of iterations needed for
convergence.

Fig. 7 Execution time (in seconds) for different projection size
(DimProj)

Fig. 8 Execution time (in seconds) of the first iteration for both CPU
and GPU implementations for different number of projections
(NumProj)

Regarding our previous implementations of the same
algorithm, the implementation we propose substantially
reduces reconstruction time and hardware resources. As
previously reported [3], a solution combining MATLAB
and CUDA kernels required a large amount of mem-
ory transfers between the CPU and the GPU, resulting
in increased execution times, which is unfeasible for the
large 3D volumes in real scenarios. This problem is par-
tially solved here due to the use of native code and explicit
memory transfers. On the other hand, the complete
CPU-based implementation presented in [4] required a
high volume of distributed resources to obtain acceptable
execution times. For example, using 12 compute nodes
resulted in more than 1,000 seconds for a volume of 512×
512 × 512 pixels for only 2 iterations of the algorithm,
which is insufficient to obtain a high-quality image.
Efficient implementation using parallel processing and

large-memory management strategies together with GPU

Fig. 9 Execution time (in seconds) of the first iteration for both CPU
and GPU implementations for different angular span (degrees)

de Molina et al. BMC Bioinformatics (2018) 19:171 Page 7 of 7

kernels enables the use of advanced reconstruction
approaches which are needed in limited-data scenarios.

Availability and requirements
Project name: RecoItTV
Project home page: https://github.com/arcosuc3m/
recoittv
Operating Systems(s):Windows, Linux, MacOS
Programming language: C
Other requirements: NVidia CUDA must be installed.
License: Creative commons Non Commercial

Funding
This work has been supported by TEC2013-47270-R, RTC-2014-3028-1,
TIN2016-79637-P (Spanish Ministerio de Economia y Competitividad),
DPI2016-79075-R (Spanish Ministerio de Economia, Industria y Competitividad),
CIBER CB07/09/0031 (Spanish Ministerio de Sanidad y Consumo), RePhrase
644235 (European Commission) and grant FPU14/03875 (Spanish Ministerio
de Educacion, Cultura y Deporte).

Authors’ contributions
CM and ES were the principal developers and worked on the formal analysis,
investigation, and validation. JG contributed with methodology, resources,
software, validation, and writing. JC collaborated in the funding acquisition
and writing. MD contributed with conceptualization, funding acquisition and
writing. MA conceived the general project and supervised it, contributing with
formal analysis, investigation, validation, writing and funding acquisition. All
authors read and approved the final manuscript.

Competing interests
The NVIDIA K40 graphic card is part of a non-commercial donation from
NVIDIA Corporation. This hardware device was donated by NVIDIA freely as an
unrestricted gift to support the research of Javier Garcia-Blas, one of the
authors of this work. In this hardware, we have carried out the experimental
evaluation of our prototype. We mention the hardware employed for
reproducibility reasons, so there are no commercial intentions from our side.
There are not comparisons with any other hardware providers. There are no
patents, products in development, or marketed products to declare.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos
III de Madrid, Madrid, Spain. 2Instituto de Investigación Sanitaria Gregorio
Marañón (IiSGM), Madrid, Spain. 3Computer Architecture and Technology
Area, Universidad Carlos III de Madrid, Madrid, Spain. 4Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. 5Centro
Nacional Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain .

Received: 9 August 2017 Accepted: 26 April 2018

References
1. Goldstein T, Osher S. The split bregman method for L1-regularized

problems. SIAM J Img Sci. 2009;2(2):323–43. https://doi.org/10.1137/
080725891.

2. Abascal JFPJ, Abella M, Sisniega A, Vaquero JJ, Desco M. Investigation of
different sparsity transforms for the PICCS algorithm in small-animal
respiratory gated CT. PLOS ONE. 2015;10(4):1–18. https://doi.org/10.1371/
journal.pone.0120140.

3. de Molina C, Abascal JFPJ, Pascau J, Desco M, Abella M. Evaluation of
the possibilities of limited angle reconstruction for the use of digital
Radiography system as a tomograph. In: IEEE Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC). US: IEEE; 2014. p. 1–4.
https://doi.org/10.1109/NSSMIC.2014.7430937.

4. Serrano E, Aa TV, Wuyts R, Garcia-Blas J, Carretero J, Abella M. Exploring
a distributed iterative reconstructor based on split Bregman using PETSc.
In: 16th International Conference on Algorithms and Architectures for
Parallel Processing. Switzerland: Springer International Publishing; 2016.
p. 191–200.

5. Smith DS, Gore JC, Yankeelov TE, Welch EB. Real-time compressive
sensing mri reconstruction using gpu computing and split bregman
methods. Int J Biomed Imaging. 2012;2012:.

6. Zhao X, Hu J-J, Zhang P. GPU-based 3D cone-beam CT image
reconstruction for large data volume. J Biomed Imaging. 2009;2009:8.

7. Leeser M, Mukherjee S, Brock J. Fast reconstruction of 3D volumes from
2D CT projection data with GPUs. BMC Res Notes. 2014;7(1):582.

8. Blas JG, Abella M, Isaila F, Carretero J, Desco M. Surfing the optimization
space of a multiple-GPU parallel implementation of a X-ray tomography
reconstruction algorithm. J Syst Softw. 2014;95:166–75.

9. Wan X, Zhang F, Chu Q, Liu Z. High-performance blob-based iterative
three-dimensional reconstruction in electron tomography using
multi-GPUs. BMC Bioinformatics. 2012;13(10):4.

10. Hu J, Zhao X, Zhang H. A GPU-based multi-resolution approach to
iterative reconstruction algorithms in x-ray 3D dual spectral computed
tomography. Neurocomputing. 2016;215:71–81. https://doi.org/10.1016/
j.neucom.2016.01.115. SI: Stereo Data.

11. Jia X, Dong B, Lou Y, Jiang SB. GPU-based iterative cone-beam CT
reconstruction using tight frame regularization. Phys Med Biol.
2011;56(13):3787.

12. Matenine D, Goussard Y, Després P. GPU-accelerated regularized
iterative reconstruction for few-view cone beam CT. Med Phys.
2015;42(4):1505–17. https://doi.org/10.1118/1.4914143.

13. Rudin LI, Osher S, Fatemi E. Nonlinear Total Variation Based Noise
Removal Algorithms. Phys. D. 1992;60(1-4):259–68. https://doi.org/10.
1016/0167-2789(92)90242-F.

14. Agulleiro JI, Fernandez JJ. Fast tomographic reconstruction on multicore
computers. Bioinformatics. 2011;27(4):582–3. https://doi.org/10.1093/
bioinformatics/btq692.

15. van der Vorst HA. BI-CGSTAB: a fast and smoothly converging variant of
BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat
Comput. 1992;13(2):631–44. https://doi.org/10.1137/0913035.

16. Abella M, Serrano E, Garcia- Blas J, García I, de Molina C, Carretero J,
Desco M. FUX-Sim: Implementation of a fast universal
simulation/reconstruction framework for X-ray systems. PLOS ONE.
2017;12(7):1–22. https://doi.org/10.1371/journal.pone.0180363.

17. Abella M, Vaquero JJ, Sisniega A, Pascau J, Udías A, García V, Vidal I,
Desco M. Software architecture for multi-bed FDK-based reconstruction
in X-ray CT scanners. Comput Methods Prog Biomed. 2012;107(2):218–32.
https://doi.org/10.1016/j.cmpb.2011.06.008.

https://github.com/arcosuc3m/recoittv
https://github.com/arcosuc3m/recoittv
https://doi.org/10.1137/080725891
https://doi.org/10.1137/080725891
https://doi.org/10.1371/journal.pone.0120140
https://doi.org/10.1371/journal.pone.0120140
https://doi.org/10.1109/NSSMIC.2014.7430937
https://doi.org/10.1016/j.neucom.2016.01.115
https://doi.org/10.1016/j.neucom.2016.01.115
https://doi.org/10.1118/1.4914143
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1093/bioinformatics/btq692
https://doi.org/10.1093/bioinformatics/btq692
https://doi.org/10.1137/0913035
https://doi.org/10.1371/journal.pone.0180363
https://doi.org/10.1016/j.cmpb.2011.06.008

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Algorithm
	Parallel implementation

	Results
	Discussion and conclusions
	Availability and requirements
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

