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Abstract

Background: A huge and continuous increase in the number of completely sequenced chloroplast genomes,
available for evolutionary and functional studies in plants, has been observed during the past years. Consequently, it
appears possible to build large-scale phylogenetic trees of plant species. However, building such a tree that is
well-supported can be a difficult task, even when a subset of close plant species is considered. Usually, the difficulty
raises from a few core genes disturbing the phylogenetic information, due for example from problems of homoplasy.
Fortunately, a reliable phylogenetic tree can be obtained once these problematic genes are identified and removed
from the analysis.Therefore, in this paper we address the problem of finding the largest subset of core genomes which
allows to build the best supported tree.

Results: As an exhaustive study of all core genes combination is untractable in practice, since the combinatorics of
the situation made it computationally infeasible, we investigate three well-known metaheuristics to solve this
optimization problem. More precisely, we design and compare distributed approaches using genetic algorithm,
particle swarm optimization, and simulated annealing. The latter approach is a new contribution and therefore is
described in details, whereas the two former ones have been already studied in previous works. They have been
designed de novo in a new platform, and new experiments have been achieved on a larger set of chloroplasts, to
compare together these three metaheuristics.

Conclusions: The ways genes affect both tree topology and supports are assessed using statistical tools like Lasso or
dummy logistic regression, in an hybrid approach of the genetic algorithm. By doing so, we are able to provide the
most supported trees based on the largest subsets of core genes.

Keywords: Chloroplasts, Phylogeny, Metaheuristics, Genetic algorithms, Lasso test, Binary particle swarm
optimization, Simulated annealing

Background
These last years the investigation of the evolutionary
relationship between different plants has benefited from
the multiplication of the available chloroplast sequences.
Indeed, thanks to various tools it is possible to process

*Correspondence: christophe.guyeux@univ-fcomte.fr
1FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department,
Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000 Besançon,
France
Full list of author information is available at the end of the article

these sequences in order to build a phylogenetic tree that
accurately characterizes the evolutionary lineages among
the chloroplasts. Efficient coding sequence prediction and
annotation tools have been developed to deal specifically
with chloroplasts, for example DOGMA [1], and there is
also a great choice for the alignment of sequences. More-
over, given a set of sequences or characters, many well-
established bioinformatics programs based on Bayesian
inference or maximum likelihood, like BEAST or RAxML
[2], can be used to reconstruct a phylogenetic tree. The
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objective is usually to obtain a reliable phylogeny on which
biological investigations can be applied. For instance, in,
a comparative analysis of expressed rice gene homologues
in 48 other diverse eukaryotic species has been per-
formed, and a phylogenetic tree of life based on 98 of
these genes conserved across the species has been com-
puted using such software. It has been used to estimate
more accurately the divergence time among a large num-
ber of species pairs. However, the genome of rice plant
has approximately 40,000 genes, and their tree has been
computed using less than 1% of such genes.
Several methods can be used to estimate the robustness

of the produced tree, the most widely used are the boot-
strap and the decay (or Bremer) analyses [3, 4]. Obviously,
a first condition to be able to build a phylogenetic tree for
a given set of close plant species is to identify as precisely
as possible the corresponding core genome [5] (the set of
genes in common). However, even if the core genome is
large and accurate, the resulting phylogeny is not neces-
sarily well-supported [6]. In fact, the core genome genes
are not constrained through evolution in a similar way. On
the one hand some evolve under strong evolutionary con-
straints and thus reflect the story of the species while, on
the other hand, other genes evolve more freely due to a
lower role in the survival and adaptability of a species. The
latter tell their own history and thus disturb the phylo-
genetic information. Furthermore, the way the robustness
and accuracy of the obtained phylogenetic tree are altered
by the amount of used data for the reconstruction process
is not completed understood. Nevertheless, if we con-
sider a set of species reduced to lists of gene sequences,
an obvious dependence between the chosen subset of
sequences and the obtained tree (topology, branch length,
and/or robustness) can be observed. This dependence is
usually regarded by the mean of gene trees merged in a
phylogenetic network. In fact, phylogenetic networks are
necessary to represent events like horizontal gene trans-
fers, but statistical methods to infer such networks are still
limited and under development.
In this article, we consider the situation from a dual

point of view, that consists in starting with the complete
core genome and then to remove the genes responsible
for inconsistent phylogenetic signal. In other words, the
objective is to find the largest part of the core genome
that produces a phylogenetic tree as supported as possible,
and which therefore gives the fairest view of the relation-
ships betweenmost of the sequences under consideration.
Searching the problematic genes by exhaustively testing
the combinations of core genome genes is nonsense due
their huge number. Therefore, to speed up the finding of a
satisfactory combination we rather consider metaheuris-
tics. The first one, introduced in a previous work [7], is
an ad hoc Genetic Algorithm (GA) which in some cases
is not able to converge towards a suitable solution. Next,

a Binary Particle Swarm Optimization (PSO) approach
has been published in the the CIBB proceedings book
[8]. Finally, in this article, which extends and improves
the two former ones, we study the relevance of the Simu-
lated Annealing (SA) algorithm to fulfill the optimization
task. Also notice that the different metaheuristics have
been executed in a distributed manner using supercom-
puting facilities. To sum up, the contribution of this article
is threefold: first, it proposes a new simulated annealing
approach, second a new version of the PSO, and third a
comparison of the three metaheuristics on a large num-
ber of new groups of species. Compared to usual articles
studying the tree of life like, our approach is diametrically
opposed: instead of using existing phylogenetic software
on a small collection of core genes, in order to pro-
vide new discoveries on some aspects of the Evolution,
we propose a pipeline of 3 metaheuristics, to find the
largest subset of core genes leading to the most supported
tree.

Methods
Problem description
Let us introduce the problem of determining a phylogeny
(evolution tree) for a given set of species by considering
a set of chloroplast genomes that have been annotated
using DOGMA [1] (the approach we applied is detailed in
“Results” section). To start we need to pick one or several
genes on which the phylogeny will be based. Therefore
we use the restricted core genome [9, 10], which con-
sists of conserved genes present everywhere, whose size
is larger than one hundred genes when the species are
close enough. Thenmultiple sequence alignments are per-
formed using muscle [11] and finally a phylogenetic tree
is inferred thanks to the maximum-likelihood tree builder
RAxML [2].
The relevance of the obtained tree is then assessed by

its bootstrap values: if these ones are all above 95 the
tree is well-supported, in which case we can reasonably
estimate that the phylogeny of these species is solved.
Bootstrapping is a random sampling technique commonly
used to estimate the significance of branches of a phy-
logenetic tree. It consists to randomly select columns in
the aligned DNA core sequences to be neglected during
the tree building process and to check whether the same
nodes are recovered. A large number of bootstrap repeti-
tions, usually between 50 and 1000, are used to assess the
tree reliability. As an illustration, a node which appears
95 times out of 100 by dropping a column means that
the node is well-supported. Conversely, a low support
value claims that a reduced part of the alignment sup-
ports the node, since by removing columns the node is
reconstructed in different ways.
When such a well-supported tree is not built, but rather

a tree having some branches exhibiting low supports,
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some genes of the core genome can be responsible of this
lack of support. The objective is then to identify the most
supported tree using the largest subset of core genes, a
typical optimization problem. Obviously, the optimiza-
tion problem we face cannot be solved by a brute force
approach checking all possible combination of genes, due
to the resulting combinatorial explosion. Indeed, for a
core genome of n genes there would be 2n trees to infer
and that is clearly intractable in practice. To overcome
such a combinatorial situation, a typical choice is to use a
metaheuristic method.
In [7], we have first investigated the mixing of a genetic

algorithm with Lasso tests to find problematic genes.
Unfortunately, thorough and careful experimental inves-
tigations have led to results, recalled in Table 1, showing
that this proposal is not able to predict the phylogeny
of some particular plant orders. As can be seen, the
lowest bootstrap value (or bootstrap score) obtained for
15 group of species is below 95 (column b in the table).
The relevance of binary particle swarm optimization to
find the largest subset of core genes has been studied in
[8], producing slightly better bootstrap scores than GA
with Lasso. In this paper we introduce a third well-known
metaheuristic method, namely simulated annealing, and
we compare the three approaches considering new sets of
species. Like the two former ones, the computations with
SA algorithm will be done in a distributed manner. Mul-
tiple algorithm instances will be launched using a same
cooling schedule and at the end of each Markov chain, for
a same temperature, a centralized communication scheme
will take place.
To sum up, Fig. 1 gives an overview of the proposed

pipeline to obtain the ancestral history of a set of species.

Phylogenetic predictions using metaheuristics
Genetic algorithm approach
To make this article self-contained, we summarize here-
after the main steps of the genetic algorithm combined
with Lasso test proposed in [7] aiming at finding problem-
atic genes in core genome.
The n core genes are sorted alphabetically, and at each

subset we associate a binary word of length n: its i-
th character is 1 if and only if the i-th core gene is
in the considered subset. In the proposed GA, a first
stage to initialize the GA population (1) computes the
set of n-length binary words containing the word hav-
ing only 1’s (the whole core genome which is composed
of n genes), (2) all words having exactly one 0 (all but
1 gene) further denoted as systematic mode, and (3)
200 words having between 2 and 10 0’s randomly located.
Each of these words is associated with the score b+p

2
where b is the lowest bootstrap of the reconstructed
phylogenetic tree and p is the percentage of considered
core genes.

More precisely, the population is initialized with the 50
best words. Then, the GA iterates until discovering a word
whose score is larger than 95, or at most for 200 iterations.
Each iteration, which produces a new population, consists
of the following steps:

1. Repeat 5 times a random pickup of a pair (w1,w2) of
words and mix them using a crossover approach. In
this step, indexes {1, . . . , n} are partitioned into k,
k ≤ n

2 , subsets I1, . . . Ik . A new word w is then
defined by wi = w1

i if i belongs to some Ij where j is
odd; otherwise wi = w2

i . The obtained words are
added to the population P, resulting in population Pc.

2. Mutate 5 words of the population Pc. More precisely,
for each of these words, k randomly selected binary
values of w are switched leading to a new word. The
mutated words are added to Pc leading to population
Pm.

3. Produce population Pr by adding 5 new random
binary words having less than 10% of 0’s to Pm.

4. Select the 50 best words in population Pr to form the
new population P.

The aforementioned GA may not produce well-
supported trees. Nevertheless, the whole set of produced
words with their associated scores contains valuable infor-
mation about which gene breaks supports. The idea is to
focus on each topology having a frequency of occurrence
larger than 10%. Then for each best word of these best
topologies, and for each problematic bootstrap in its asso-
ciated tree, we apply a Lasso test [12], which is recalled
hereafter.
Let W be a m × n matrix where each line Wi =

(Xi1, . . . ,Xij, . . . ,Xin), 1 ≤ i ≤ m, is a word. For each Wi,
let Yi be the real positive support value for each problem-
atic bootstrap b per topology and per gene. The Lasso test
β = (β1, . . . ,βi, . . . ,βn) is thus defined by:

β = argmin

⎧
⎪⎨

⎪⎩

m∑

i=1

⎛

⎝Yi −
n∑

j=1
βjXij

⎞

⎠

2

+ λ

n∑

j=1
|βj|

⎫
⎪⎬

⎪⎭
. (1)

It is not hard to see that the sign of βj is positive
(resp. negative) if the bootstrap support increases (resp.
decreases) with respect to j.
This test allows thus to remove problematic genes, i.e.,

genes j, 1 ≤ j ≤ n, such that βj is negative. Finally, a
last genetic algorithm phase is launched on the updated
population, in order to mix these promising words.

Binary particle swarm optimization approach
Particle Swarm Optimization [13] is a stochastic meta-
heuristic which has been successfully applied on artificial
neural network training, fuzzy system control. . . In this
scheme, an emergent behavior enables individual swarm
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Table 1 Results of genetic algorithm approach on various families

Group occ c # taxa b Terminus Likelihood Outgroup

Gossypium_group_0 85 84 12 26 1 -84187.03 Theo_cacao

Ericales 674 84 9 67 3 -86819.86 Dauc_carota

Eucalyptus_group_1 83 82 12 48 1 -62898.18 Cory_gummifera

Caryophyllales 75 74 10 52 1 -145296.95 Goss_capitis-viridis

Brassicaceae_group_0 78 77 13 64 1 -101056.76 Cari_papaya

Orobanchaceae 26 25 7 69 1 -19365.69 Olea_maroccana

Eucalyptus_group_2 87 86 11 71 1 -72840.23 Stoc_quadrifida

Malpighiales 422 78 10 96 3 -91014.86 Mill_pinnata

Pinaceae_group_0 76 75 6 80 1 -76813.22 Juni_virginiana

Pinus 80 79 11 80 1 -69688.94 Pice_sitchensis

Bambusoideae 83 81 11 80 3 -60431.89 Oryz_nivara

Chlorophyta_group_0 231 24 8 81 3 -22983.83 Olea_europaea

Marchantiophyta 65 64 5 82 1 -117881.12 Pice_abies

Lamiales_group_0 78 77 8 83 1 -109528.47 Caps_annuum

Rosales 81 80 10 88 1 -108449.4 Glyc_soja

Eucalyptus_group_0 2254 85 11 90 3 -57607.06 Allo_ternata

Prasinophyceae 39 43 4 97 1 -66458.26 Oltm_viridis

Asparagales 32 73 11 98 1 -88067.37 Acor_americanus

Magnoliidae_group_0 326 79 4 98 3 -85319.31 Sacc_SP80-3280

Gossypium_group_1 66 83 11 98 1 -81027.85 Theo_cacao

Triticeae 40 80 10 98 1 -72822.71 Loli_perenne

Corymbia 90 85 5 98 2 -65712.51 Euca_salmonophloia

Moniliformopses 60 59 13 100 1 -187044.23 Prax_clematidea

Magnoliophyta_group_0 31 81 7 100 1 -136306.99 Taxu_mairei

Liliopsida_group_0 31 73 7 100 1 -119953.04 Drim_granadensis

basal_Magnoliophyta 31 83 5 100 1 -117094.87 Ascl_nivea

Araucariales 31 89 5 100 1 -112285.58 Taxu_mairei

Araceae 31 75 6 100 1 -110245.74 Arun_gigantea

Embryophyta_group_0 31 77 4 100 1 -106803.89 Stau_punctulatum

Cupressales 87 78 11 100 2 -101871.03 Podo_totara

Ranunculales 31 71 5 100 1 -100882.34 Cruc_wallichii

Saxifragales 31 84 4 100 1 -100376.12 Aral_undulata

Spermatophyta_group_0 31 79 4 100 1 -94718.95 Mars_crenata

Proteales 31 85 4 100 1 -92357.77 Trig_doichangensis

Poaceae_group_0 31 74 5 100 1 -89665.65 Typh_latifolia

Oleaceae 36 82 6 100 1 -84357.82 Boea_hygrometrica

Arecaceae 31 79 4 100 1 -81649.52 Aegi_geniculata

PACMAD_clade 31 79 9 100 1 -80549.79 Bamb_emeiensis

eudicotyledons_group_0 31 73 4 100 1 -80237.7 Eryc_pusilla

Poeae 31 80 4 100 1 -78164.34 Trit_aestivum

Trebouxiophyceae 31 41 7 100 1 -77826.4 Ostr_tauri

Myrtaceae_group_0 31 80 5 100 1 -76080.59 Oeno_glazioviana

Onagraceae 31 81 5 100 1 -75131.08 Euca_cloeziana

Geraniales 31 33 6 100 1 -73472.77 Ango_floribunda

Ehrhartoideae 31 81 5 100 1 -72192.88 Phyl_henonis

Picea 31 85 4 100 1 -68947.4 Pinu_massoniana

Streptophyta_group_0 31 35 7 100 1 -68373.57 Oedo_cardiacum

Gnetidae 31 53 5 100 1 -61403.83 Cusc_exaltata

Euglenozoa 29 26 4 100 3 -8889.56 Lath_sativus

Occ provides the number of genomes within the group while taxa is for the number of species. c and b respectively correspond to the percentage of core genes and the
lowest bootstrap of the solution produced by the GA, while Likelihood is the likelihood of the best tree. Finally, Terminus specifies at which stage the GA stopped, while
Outgroup is the considered outgroup
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Fig. 1 Overview of the proposed pipeline

members, particles, to take advantage from neighboring
particles, which are closer numerically to the optimal solu-
tion. In the case of the standard Binary PSO (BPSO)model
[14], each particle position is a n-length vector of binary
values. A score function associates a real number to such
kind of vector w.r.t. the optimization problem. BPSO aims
at moving the particles in the n dimensions in order to
obtain the optimal position with respect to this function.
More precisely, each particle i is represented by a n-

length vector Xi of binary values, which has the same
meaning than binary words in GA, indicating the gene
contents of the associated core subset. Again, the j-th
coordinate of Xi is 1 if and only if the associated j-th
parameter is selected. A swarm of L particles is a list
of position vectors (X1,X2, . . . ,XL) together with their
associated velocities (V1,V2, ...,VL). Each Vi is a n-length
vector of real numbers between 0 and 1. Each velocity
vector Vi is updated as follows:

Vi(t+1) = wVi(t)+φ1
(
Pbesti − Xi

)
+φ2

(
Pbestg − Xi

)
, (2)

where w, φ1, and φ2 are weighted parameters setting
the level of each three trends for the particle, which are
respectively to continue with the same inertia, to follow
the direction of its own best neighbouring position Pbesti ,
or to follow the one of the global best known solution
Pbestg .
Each position Xij of the particle i is updated as follows:

Xij(t + 1) =
{
1 if rij ≤ 1

1+e−Vij(t+1) ,
0 otherwise,

(3)

where the scalar rij depends on both the particle i and the
parameter j. It is not hard to recognize a choice guided
by a threshold rij and a sigmoid [14] function. Let us
now recall how this BPSO optimization scheme has been
parameterized to solve our phylogeny problem [8].
Each vector xi ∈ {0, 1}n corresponds to a subset of core

genes. It is associated with the deduced following data: the
percentage p of considered core genes, the lowest boot-
strap b of its induced phylogenetic tree, and, finally, the

score b+p
2 . The approach was to construct phylogenies

based on neighbouring core genes: this leads to trees with
similar topologies and with close bootstrap values with a
high probability. During BPSO initialization, the L parti-
cles are randomly distributed among subsets of core genes
(binary words) with a high percentage of 1’s. Further iter-
ations move these particles in such a way that they will
converge to an optimal node.
As in [15], at each iteration, the particle velocity is

updated as in Eq. (2) where φ1 and φ2 are randomnumbers
belonging to [0.1,0.5], and w linearly decreases between
the first iteration and the last one from wmax = 0.9 to
wmin = 0.4, as suggested in [16]. A large inertia weight
indeed facilitates a global search, while a small inertia
weight tends more to a local investigation.
A distributed version of BPSO algorithm has been pro-

posed to minimize the execution time: each particle is
executed in a worker core in order to compute its fitness
value and obtained results are centralized by a supervisor
master core. More precisely, the master initializes the par-
ticles of the swarm, distributes them to the workers, and
waits until all of them have finished their task. It deter-
mines then the position of the particle that has the best
fitness value as the global best position, and sends this
information to the workers that update their respective
particle velocity and position. This mechanism is repeated
until a particle achieves a fitness value larger than or equal
to 95 with a large set of included genes. In the following,
two distributed versions of the BPSO are considered.
The former, further denoted as PSO version I, updates

the velocity as follows:

Vi(t+ 1) = x·[Vi(t)+C1(Pbesti −Xi)+C2(Pbestg −Xi)] (4)

where x, C1, and C2 are weighted parameters setting the
level of each three trends for the particle. The default val-
ues of these parameters are C1 = C2 = 2.05, while x,
which represents the constriction coefficient, is computed
according to formula [17, 18]:
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x = 2 × k
|2 − C − (

√
C × (C − 4))| , (5)

where k is a random value in [0,1] and C = C1 + C2,
C ≥ 4. According to Clerc [18], using a constriction
coefficient results in particle convergence over time. This
latter, denoted as PSO version II, updates the velocity as
formalized in Eq. (2).

A simulated annealing approach
General presentation The original Simulated Annealing
(SA) method is a local search based threshold class algo-
rithm. Basically, a threshold algorithm is a loop in which
a move is either done or not, according to a given crite-
rion and until reaching a freeze [19]. Specifically, after an
initialization step, this loop is composed by (a) a move in
the neighborhood of the current solution, (b) an evalua-
tion of this new position by a real-valued scoring function,
then (c) a test, given a well chosen criterion, to store this
position as the new best one. Various criteria can be con-
sidered. For instance, if a position is evaluated as a better
solution than the best existing one, it becomes the ref-
erence solution for next iterations when the acceptation
criterion is “only if best cost (score)” algorithm, which is
a variant of a classical greedy local search [20]. The “all
is accepted” algorithm produces, for its part, a random
walk. Finally, between these two extremes situations, an
acceptation criterion allows to store sometimes too posi-
tions with poorer scores than the best solution, which is
an upward move via a stochastic component to avoid local
minima. Such a stochastic approach facilitates theoretical
analysis of asymptotic convergence. As such algorithms
can be successfully used for a broad range of optimiza-
tion problems, SA has been largely covered in the litera-
ture during the last decades [20, 21], for both empirical
[22, 23] – typically onNP-hard problems – and theoretical
perspectives [20, 24].
In simulated annealing, the criterion is inspired by

the Metropolis-Hastings statistical (Markov chain Monte
Carlo) thermodynamics algorithm [20]. SA simulates the
cooling of a material in a heat bath until a steady (frozen or
thermodynamic equilibrium) state. When the solid mate-
rial is heated over its melting point, its solidification rate
induces its structural properties. Two major antagonis-
tic strategies are commonly used. On the one hand, after
a fast cooling (quenching), the steady state is constituted
by different thermodynamic free level areas. This cor-
responds to a local minimum for a local search, when
considering energy as a score. On the other hand, after
a slow cooling (annealing), almost one sole thermostatic
level is expected, which corresponds to a global minimum.
As feasible solutions of SA are system states, the structural
proximity of the latter leads to the concept of solution
neighborhood.

Thermodynamic laws show that at temperature t, the
probability to increase in energy of the value δE is given
by p(δE) = exp(−δE/kt) with k equal to the Boltzmann’s
constant. Metropolis simulations [25] consist in the gen-
eration of a state perturbation, in the evaluation of energy
modification, and finally in the decision to reject or not
the new state according to the probability p(δE). That is,
the probability to keep a better (lower) level of energy is
1, while the one to keep an infinitely worst level of energy
is equal to 0. Or, in other words, the likelihood to save
a given state decreases as the energy level increases. A
criterion to increase the probability to reach convergence
is the so-called logarithmic fading of control parameter
(i.e., temperature). The simplest choice is tn+1 = C · tn,
where C ∈ [0, 1] is a constant. A best global solution
is reached by searching series of equilibria. Each equilib-
rium is obtained by series of Metropolis thresholds. The
stop condition is typically an arbitrary duration or a num-
ber of loop iterations. Then the temperature is decreased
and the last obtained equilibrium becomes the starting
state for a new series of thresholds. The final stop is trig-
gered if no improvement has been found since an arbitrary
number of equilibria. Let us finally notice that, as a large
set of temperature cooling schedules (decreasing function
[26, 27]), of moving functions, of criteria, of strategies
regarding initial values, of improvements on score func-
tion, of stop criteria, and even of theoretical modeling [20,
28–30] have been proposed in the literature [29, 31, 32],
simulated annealing should be regarded more as a large
family of algorithms than as a single one. Some members
of the family including Basin Hopping [33] are themselves
described as frameworks for ad-hoc global optimization
algorithms.
A general overview of our proposal can be found in

Fig. 2, while algorithm details are provided hereafter.

Designing SA for phylogenetic studies The objective
is now to apply the simulated annealing method to find
the largest subset of core genes that leads to the most
supported phylogenetic tree. Intermediate computations
of subsets will help to understand, using regressions, the
effects of given genes on both topology and supports.
However, SA is complex to set up in practice, and find-
ing new optima in finite time cannot be guaranteed, as
reported by Aarts, Korst, and van Laarhoven [19]. To
enlarge the probability of success, we targeted the follow-
ing requirements during our experiments:

• a cooling schedule fitting with complexity, time,
convergence, and precision considerations (cf. the
temperature scheduling paragraph below);

• a concise representation for the problem under
consideration (detailed in “About a relevant
configuration of SA according to the state space”);
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(a)

(c)

(b)

Fig. 2 Simulated annealing as a threshold class algorithm. a Generic threshold class algorithm. bMetropolis algorithm. c Simulated annealing algorithm

• a moving function adapted to the state solution space
(same paragraph as above);

• and, similarly, an acceptation function adapted to the
state space (see the “Proposed SA optimization”).

These four requirements are discussed hereafter.

Temperature scheduling. A criterion to increase the
probability to reach convergence is the so-called logarith-
mic fading of control parameter (i.e., temperature). The
most simple choice is tn+1 = Cṫn, where C ∈[ 0, 1] is a
constant. However, according to our experiments, such a
solution is not able to produce relevant results in the phy-
logenetic problem under consideration. This is why the
control parameter has been updated following a tiered
approach, leading to an inhomogeneous Markov model:
the temperature decreases only after the end of its asso-
ciated Markov chain. Additionally, near an equilibrium,
the Markov chain length must increase when the control
parameter decreases. But, as above, at low temperature
the computation time may become prohibitive without

any synchronisation between the control parameter and
the Markov chain characteristics. To solve such an issue,
various schedule solutions proposed in the literature link
these two parameters. After having tested classical bench-
marking functions like the well known three-hump camel,
Levi, and Booth, we finally have chosen:

tn+1 =
⎛

⎝
tf

t
1

nm−1
i

⎞

⎠ × tn

where t is the control parameter, ti and tf are respectively
the maximum (initial) and minimum (final) of allowed
control parameter values for the SA computation, while
nm is the maximal number of Markov chains (equal to the
temperature steps) allowed during computation.

About a relevant configuration of SA according to
the state space. As in the other methods, the state
space is constituted by Boolean vectors Xi of the form
(Xi1, . . . ,Xin), where n is the number of core genes. Xij
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is equal to 1 if and only if gene number j in alpha-
betic order is in the alignment provided to the phylo-
genetic tool. We thus navigate again on the n-cube on
which each node (that is, each state) corresponds to
a subset of core genes and has additionally a labeled
value provided by the subset scoring function which is
again the average between the lowest bootstrap and the
number of selected core genes. We can easily define a
distance between two points inside this cube, like anHam-
ming distance between Boolean vectors, and the node
score can be considered as the altitude of the current
position.
To sum up, there is a topology on the state space, with

neighborhood notion between two states, while the alti-
tude (the score of a subset of genes, which is related to
the SA energy) is varying between two locations. Both
the density and the form of energy peaks are varying
through the landscape. Neighborhoods andmoves, accep-
tation probability, temperature scheduling functions, and
their related initial values are dependant on the character-
istics, or the topology, of this state space. Obviously, there
is no general way to set up the parameters of the simulated
annealing in this situation, as usually with such heuris-
tics. Even choosing close configurations of closely related
problems like similar chloroplasts is not a guarantee of
success.
Having these considerations in mind, we have stated

some hypotheses at the basis of the neighboring notion.
First of all, we assume that a solution is better if it is closer
to the whole core genome, so improving the number of
1’s in the Boolean vector is a desired trend. Secondly, we
assume no correlation between genes, and so removing
(or adding) one gene cannot modify so much the scor-
ing function. As a consequence, the next investigated state
should be near the previous one, in terms of Hamming
distance, and most likely with a similar or larger num-
ber of active genes. In particular, moves in the state space
cannot be randomized as what occurs in the original SA
algorithm. Furthermore, the starting state must be the
Boolean vector constituted by 1’s (that is, the whole core
genome), while the scoring function must preferably tend
to add genes in the considered subset (if possible). With
such requirements, the neighborhood function has been
designed as follows:

• A number between 1 andmove_distancemax
(a parameter to set) is randomly chosen, following a
Gaussian law. It corresponds to the number of
coordinates that may possibly change.

• A subset of distinct coordinates are chosen
accordingly, defining this move.

• For each Boolean coordinate, if the associated gene is
inactive (0), it is activated (1). Otherwise, the gene is
inactivated with a probability equal to nz

nc × α, where

nz is the number of inactivated genes in the best
current solution, nc is the total number of core genes
in the problem, and α is a user-defined parameter.

Proposed SA optimization. Scores in this proposal are
obtained using RAxML [3]. As an inference of a boot-
strapped and rooted phylogenetic tree may take times,
and as we need to compute several trees, each calculated
state is tagged so that it is never recomputed without an
explicit user demand. Associated and detailed results are
buffered on disk. Then a simple, reliable, and not really
space-characteristics dependent solution is the synchro-
nization of some SAs after the end of a Markov chain [34].
In order to do so, a batch of SAs is launched with the same
configuration. After a chain, each running SA shares its
own best known solution to a server. Then, it demands to
this server if a better state has been found before starting
the next chain. Finally, each SA halts after n local non opti-
mizing chains. So a stopped SA is not restarted, even if a
better solution is found elsewhere (i.e., the proposed SA
stops as soon as possible).
Acceptance function is also selected to take advantage

of previous moves, to allow some (not too large) jumps.
This is an adaptation of the so-called Tsallis acceptance
probabilities [31] with a control parameter normalization:

(

1 − (1 − q) ∗ �

�̄ ∗ t

) 1
1−q

,

where � is the score difference between the previous and
current states, �̄ their mean, t is a control parameter, and
q is a user-defined factor.

How to stop the SA. To fix a predefined control (tem-
perature) value needs to know some state space character-
istics, so we choose an end criterion related to the absence
of progression in scores. In other words, the proposed
simulated annealing algorithm stops after n consecutive
Markov chains without any score improvement. As SA is
very slow on low temperatures, the choice has been to
choose a small value for n. Then, a greedy local search can
be launched on SA best states.

Results
Data generation
Genomes recovery and annotations
Seven hundred eighty complete genomes of chloroplasts
have been downloaded from the NCBI, constituting the
set of all available complete chloroplastic genomes at the
date of the beginning of our study [8]. Various gene pre-
diction methods have been previously tested, in order to
translate these complete genomes in lists of annotated
coding sequences. These methods encompass the single
use of NCBI annotated genomes, the use of automatic
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annotation tools specific to organelles like DOGMA [1],
and the mix of both.
Indeed, annotations fromNCBI website are of very vari-

able quality: humanly well-curated genomes go together
with genomes having a lot of annotation errors, con-
cerning either the gene names (classification or spelling
errors) or DNA sequences (start and stop position,
length). As the number of well annotated genomes
was not enough to constitute a testing set for our
experiments, we are then left to find an acceptable
way to annotate the whole 780 complete genomes. As
stated above, we tested various ways to annotate the
genomes, and we evaluated them by checking their abil-
ity to recover the annotations (sequence positions and
gene names) of the subset of humanly, well-curated
genomes.
According to our experiments, there was no way to

improve enough the quality of NCBI annotations [35].
Neither by cross-validating them using automatic anno-
tation tools, nor by trying to correct errors in gene
names and positions with these tools and some edit
distances [36, 37]. Furthermore, to cluster the whole
NCBI DNA sequences fail in separating well annotated
genes in well separated clusters, due to junk DNA in
the NCBI sequences. The large number of obvious errors
in the NCBI annotated complete chloroplastic genomes
can be explained by the large variety of annotation tools
used during sequence submission, most of them being
not specific to this kind of genomes (unlike DOGMA),
to a misuse of these tools, or due to errors in man-
ual annotations. The absence of a clear norm in the
gene naming process adds difficulties, so that the sole
method to provide accurate annotations to these 780
complete genomes was to constitute a basis of knowl-
edge, with a subset of well curated genomes that repre-
sent well the plant diversity. And, to blast each genome
against the basis, which is indeed what is done by
DOGMA.
We finally have written a script that automatically

send requests to the DOGMA web service, and recov-
ers the annotated genomes. Due to this automatic pro-
cess, the gene name spelling issue is resolved, and we
can recover the clusters of homologous coding sequences
by simply considering gene names. By applying the
same tool for coding sequence prediction and nam-
ing process, we have resolved the problem of quality
variability in annotations. And as DOGMA has been
specifically designed for chloroplasts, errors in sequence
positions have been reduced as possible. At this stage,
and using our script on DOGMA web service, we have
then a collection of 780 complete and “well” annotated
chloroplastic genomes, from which gene names can be
used to recover core and pan genomes of any subset of
genomes.

Extracting subsets of genomes for simulations
To test the ability, for the three proposed metaheuristics
methods, to find the largest subset of core genes that leads
to the most supported trees, we needed to extract, from
the set of annotated genomes, various distinct subsets that
are such that:

• Using the whole core genome in the alignment, we
cannot obtain a well supported tree.

• The time to compute this tree is reasonable, as we
want to compute a lot of trees using a lot of subsets of
core genes. For a given subset of core genes, this
computation time encompasses:

1. the multi-alignment of each core gene using
Muscle [11],

2. the concatenation of each aligned sequence to
reconstruct the “sub” genome of each considered
species (i.e., the part corresponding to the
considered subset of core genes),

3. the computation of the best phylogenetic tree
corresponding to this alignment (with RAxML [3]),

4. the addition of bootstrap supports to this best tree
using RAxML again,

5. and finally the verification that one of these
supports is lower than 95 at least. If so, this tree is
considered as not well supported.

Given a subset of genomes, the multi-alignment of
each core gene can be computed only once, prior to
the research of the best subset of core genes leading to
the most supported tree. So we do not have to consider
the alignment stage when searching subsets of genomes
with: (a) problematic phylogenies and (b) a time to infer
their tree as low as possible. We stopped the process
above before Stage 4 and we randomly pick another
subset of species if the time to find their best phyloge-
netic trees using their whole core genome (i.e., Stage 3)
exceeds 10 seconds. If this computation time is below
this threshold, we then compute 50 bootstraps and we
check if the best bootstrapped tree has a problem of
supports. If so, we have found a convenient subset of
annotated genomes, on which we can test the three
metaheuristics.

A simple comparison in small dimensions
After having executed the three metaheuristics previously
described, we have validated them on test examples. We
have first performed a 1D/2D comparison of the three
proposals, to obtain an easy-to-understand representa-
tion of the convergence of the optimization algorithms.
Figure 3 represents the output evolution of the simulated
annealing, with the consecutive ends of theMarkov chains
and the evolution of acceptation density. From the results,
we can deduce that the desired convergence behavior is
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Fig. 3 Illustration of output provided by simulated annealing approach: three-hump camel function, one instance of paralleled SA with final greedy
local descent (iteration time on the abscissa)

well obtained, and that the comparison seems fair: no
algorithm seems to underperform the other ones, and
the general evolution of the energy seems to be compa-
rable for the three algorithms. Such results allow us to
further investigate simulated annealing, particle swarm
optimization, and genetic algorithm for their ability to find
the largest subset of core genes that leads to the most
supported tree.

Experimenting the heuristics on small collections of
genomes
We first focus on small sets of species with unresolved
phylogenies, for computational reasons and because small
trees are easier to compare. Even in such small sets, as the
core genome contains more than 100 genes, the number
of combinations to test is far from what is tractable using
a brute force approach. We will see that it is easy to obtain
various opposed but very well supported trees using large
subsets of core genes, leading to the necessity to optimize
both parameters.

A first family of algae
We have first considered the family listed in Table 2. The
detailed taxonomy information is provided hereafter.

• Cylindrotheca closterium. Stramenopiles;
Bacillariophyta; Bacillariophyceae; Bacillariophycidae;
Bacillariales; Bacillariaceae.

• Thalassiosira oceanica CCMP1005. Stramenopiles;
Bacillariophyta; Coscinodiscophyceae;
Thalassiosirophycidae; Thalassiosirales;
Thalassiosiraceae.

• Cerataulina daemon. Stramenopiles;
Bacillariophyta; Mediophyceae; Biddulphiophycidae;
Hemiaulales; Hemiaulaceae.

• Pelargonium cotyledonis. Viridiplantae;
Streptophyta; Embryophyta; Tracheophyta;
Spermatophyta; Magnoliophyta; Eudicotyledons;
Gunneridae; Pentapetalae; Rosids; Malvids;
Geraniales; Geraniaceae.

• Fistulifera solaris. Stramenopiles; Bacillariophyta;
Bacillariophyceae; Bacillariophycidae; Naviculales;
Naviculaceae.

• Leptocylindrus danicus. Stramenopiles;
Bacillariophyta; Coscinodiscophyceae;
Chaetocerotophycidae; Leptocylindrales;
Leptocylindraceae.

This family is constituted by 6 genomes, of length rang-
ing from 120,144 to 166,111 nucleotides. The number of
detected genes, for its part, ranges from 138 to 271, with a
core genome of 122. The phylogeny with the alignment of
these core genes leads to a small weakness in one branch
(bootstrap of 94), as depicted in Fig. 4. Indeed, inside this
bacillariophyta phylum (eukaryotic algae), C.closterium,
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Table 2 Family number 1 (Pelargonium cotyledonis as outgroup)

Accession Nb Name Nb. of genes Length (nuc.)

GenBank:[NC_024082.1] Cylindrotheca closterium 257 165,809

GenBank:[NC_014808.1] Thalassiosira oceanica CCMP1005 138 141,790

GenBank:[NC_025313.1] Cerataulina daemon 195 120,144

GenBank:[NC_028052.1] Pelargonium cotyledonis 271 166,111

GenBank:[NC_015403.1] Fistulifera solaris 192 134,918

GenBank:[NC_024084.1] Leptocylindrus danicus 155 125,213

and F.solaris are naturally in the same clade, being both in
the same class of bacillariophyceae, while the three other
species are in three different classes inside this phylum.
To wonder whether some genes may be responsible

of such weak uncertainty, we have firstly launched the
genetic algorithm: its systematic mode (in population ini-
tialization stage) indeed first tries to remove each core
gene separately. This GA has stopped after 29 iterations,
in systematic mode, leading to 2 topologies:

• Topology 0, depicted in Fig. 5a, has occurred 27 times.
The best obtained tree has a lowest bootstrap of 96,
while in average the lowest bootstrap is equal to 86.

• Topology 1, for its part (see Fig. 5b), has occurred
twice, with a non supported branch of 64 in its best
tree.

As during these experiments, we have not leaved the ini-
tialization phase, it is useless to detail here the parameters
set to configure the GA. The PSO, for its part, has been
configured as follows: 3 particles, a fitness lower than 0.05
to freeze the runs, and all constants that define the velocity

Fig. 4 Phylogeny of family Number 1 with the whole core genome

equal to 1. This heuristics has rapidly found a first well
supported phylogenetic tree in a third different topology,
and with all supports equal to 100, see Fig. 5c. However,
the PSO has used only 47.5% of the core genes to reach
such a tree. According to our stop criterion, this tree has
not been returned by the algorithm. Indeed, this example
illustrates the ability of the particle swarm optimization
algorithm to more globally visit the whole space at the
beginning, in order to discover regions of interest.
If we compare for instance the behavior of the PSO dur-

ing the same time than the one required to finish the GA
(29 iterations), we discovered 5 topologies, two of them
having all their supports equal to 100 (Topologies 0 and
2 in Fig. 5, occurring respectively 17 and 7 times). They
however used only between 44.26% and 48.36% at this
starting point in the PSO. Bit by bit, over iterations, the
percentage of core genes is enlarging, and the swarms
tend to prefer the Topology 0. Finally, after 350 computed
trees (which was the stopping condition), this topology
has been obtained in 53.42% of the cases, and its best tree
has a lowest bootstrap of 100 using 66.39% of core genes.
The number of occurrences of the other topologies has
growth more slowly and, even if all the bootstraps of their
best representatives exceed the value of 98, the latter fails
in the attempt to significantly increase the number of con-
sidered core genes in these representatives (always lower
than 55.8%).
The simulated annealing, for its part, raised 3 topolo-

gies, exactly the ones depicted in Fig. 5. It has been
launched with an initial temperature equal to 100, a final
one of 1e-10, and an optimal exponential temperature
function. Acceptation function was the Tsallis normal-
ized one, with a q factor of 0.25, and initial (resp. final)
acceptance of 0.7 (resp. 1e-05). A remarkable element is
that these 3 topologies have the whole bootstraps equal
to 100. Furthermore, Topology 2 appears as the best
one according to the produced result (it was Topology 0
according to the GA, while PSO has not succeeded in
separating these two topologies). With details, the SA
has stopped after 364 computed trees with 6 occurrences
of Topology 0, 43 of Topo. 1, and 315 for the Topol-
ogy 2. Similarly, the percentage of core genes leading to
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(a)

(c)

(b)

Fig. 5 Obtained topologies with the first family. a Topology 0. b Topology 1. c Topology 2

the best representative in each topology is respectively of
56.56% (Topo. 0), 74.59% (Topo. 1), and 94.98% (Topo. 2),
which thus outperforms the other ones according to these
simulations.
Obviously, both PSO and SA have converged to local

minima that are not global ones if we consider that
both minimum bootstraps and proportion of core genes
must be maximized. Launching them again with other
initial values and parameters may select other opti-
mal positions in the cube. The genetic algorithm with
this family is emblematic, as during its initial popu-
lation generation it has returned Topology 0 that is
totally supported with 99.18% of the core genome.
This topology seems to be an acceptable represen-
tation of the phylogenetic relationship between these
chloroplasts. But it is remarkable that, using the same
large proportion of core gene, we can break in the
sister relationship between L.danicus and C.daemon.
Indeed, this behavior has been obtained frequently with
various collections of data, which will be illustrated
below.

Up to now, we only have considered one problematic
bootstrap, which may be easy to resolve when remov-
ing genes. New difficulties are added when there are at
least two problems in the list of bootstraps, as improv-
ing the first one may lead to a decrease in the second
value. We have investigated this point in the second tested
family.

A second family with two problematic bootstraps
The second small set of genomes is constituted by 4 Bacil-
lariophyta plus an Alveolata as outgroup, as listed in
Table 3. Taxonomic details are provided hereafter, while
the phylogenetic tree based on the alignment of the core
genome is provided in Fig. 6.

• Cylindrotheca closterium. Stramenopiles;
Bacillariophyta; Bacillariophyceae; Bacillariophycidae;
Bacillariales; Bacillariaceae.

• Thalassiosira oceanica CCMP1005. Stramenopiles;
Bacillariophyta; Coscinodiscophyceae;
Thalassiosirophycidae; Thalassiosirales;
Thalassiosiraceae.
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Table 3 Family number 2 (Chromera velia as outgroup)

Accession Nb Name Nb. of genes Length (nuc.)

GenBank:[NC_024082.1] Cylindrotheca closterium 257 165,809

GenBank:[NC_014808.1] Thalassiosira oceanica CCMP1005 138 141,790

GenBank:[NC_027721.1] Pseudo-nitzschia multiseries 267 111,539

GenBank:[NC_024084.1] Leptocylindrus danicus 155 125,213

GenBank:[NC_014340.2] Chromera velia 265 120,426

• Pseudo-nitzschia multiseries. Stramenopiles;
Bacillariophyta; Bacillariophyceae; Bacillariophycidae;
Bacillariales; Bacillariaceae.

• Leptocylindrus danicus. Stramenopiles;
Bacillariophyta; Coscinodiscophyceae;
Chaetocerotophycidae; Leptocylindrales;
Leptocylindraceae.

• Chromera velia. Alveolata; Chromerida

The phylogenetic tree is not well-supported, having
two bootstrap values of 86. Furthermore, T.oceanica and
L.danicus are not sisters in this tree, while they belong in
the Coscinodiscophyceae class of diatom. More seriously,
the two other species belong to the Bacillariaceae fam-
ily, which is in contradiction with this tree. It is not a
necessity to recover exactly the known taxonomy, as we
focus on chloroplasts, but this tree is at least suspicious if
we consider both supports and taxonomy. This example
illustrates the fact that to use the largest common sub-
set of sequences is not sufficient enough to guarantee a
well conducted phylogenetic study. Conversely, and obvi-
ously, to have good supports is not enough, as all best
trees in the different topologies of the previous family are
well supported in the SA case: the largest number of core

genes must be thus coupled with the research of the best
supports.
Once again, the genetic algorithm has stopped rapidly,

in the systematic mode. The 22 first genes have been
tested (i.e., removed) before finding Topology 0 of
Fig. 6a with a lowest bootstrap equal to 96 (and 99.18%
of the genes), thus stopping the GA, while a new
topology (Topology 1, see Fig. 6b) has occurred three
times (best tree having twice 94 as bootstraps). Com-
pared with the first family, the genetic algorithm stops
here before succeeding to reinforce the confidence put
in Topology 0, which justifies to test the two other
approaches.
PSO heuristics produces the same two topologies after

1165 computed trees, with all supports equal to 100, and
approximately the same number of trees (632 for Topo. 0
and 533 for Topo. 1) and of genes (70.49% versus 74.59%).
We stopped the swarm manually, as these two scores
have not been improved during the last 500 iterations.
Obviously, the 3 particles have been blocked in two local
extrema, and the way we configured their velocity (0.9
and 0.8 for φ1 and φ2) does not allow them to leave these
optima. So we still cannot choose definitively the topology
number 0.

(a) (b)
Fig. 6 Obtained topologies with the second family. a Topology 0 with the whole core genome. b Topology 1 obtained by GA
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Finally, the simulated annealing has produced 400 trees
before convergence. They all belong to the two topolo-
gies detailed above. However, produced results show that
Topology number 1 must be preferred, according to the
SA, and this latter is neither the one obtained with the
whole core genome, nor the best one according to GA.
Indeed, after convergence, all bootstraps here are equal
to 100 in the best tree found inside each topology. But
topology of Fig. 6b has been obtained in 88.5% of the cases.
More significantly, best tree in Topology 1 is obtained
using 96.72% of the core genome, while for Topology 0,
the best tree uses 90.98% of it. Remark that using the nine-
tenths of the core genome, you can obtain a first topology
with all supports equal to 100, while using more than 96%
you can find a different topology with again all supports
equal to 100. And, if we consider the average between
the lowest bootstrap and the proportion of core genes as
a score, the best topology according to GA has a score
of 97.59/100, while it is of 98.36 for Topology 1 found
by the SA.

Discussion
We will now further investigate the simulated annealing
convergence process, before studyingmore deeply the two
other algorithms in a next section.

Early analysis on SA computed problem: an illustration
An example of a SA batch run (three clients on the first
family described previously) is depicted in Fig. 7. For easy
understanding, only some outputs have been reported in
the figure.
On the lower part, all moves of the simulated annealing

are reported with their nature : synchronized move in yel-
low (i.e., copy, from a shared memory, of the best known
solution found in the three SAs), move with an accepted
status in orange, and rejectedmoves in black. Active genes
are filled squares and not selected ones are white squares.
Other important data for analysis are reported, such as:
temperature, accepted score of other SAs (green and pur-
ple), and Hamming distance between two consecutive
positions (moving behavior indicator).
On the upper part, a graph of accepted scores from

the three SAs is provided, with the temperature varia-
tions due to move iterations (a lower score is a better
one). As we represented the first run on a new collec-
tion of genomes, no previous configurations were avail-
able to set up the parameters. Consequently, a broad
range of temperatures has been considered. The Markov
chains are short, in order to reduce the computation
time. From this beginning of an experiment, it can be
deduced that:

• the temperature ranges well, allowing further
experiments on the same set of data;

• even with a poor configuration, SAs have found a
score “not so bad”, which is associated to a topology
that other heuristics have considered as a good one.

Another SA evolution is provided in Fig. 8, in which the
three main curves do not represent moves, but “moves of
locally selected moves”, which are stabilized over time.

A further comparison of the distributed versions of GA and
BPSO performance
During the experiments of the previous section, it was
impossible to evaluate in practice the behavior of the
genetic algorithm, as this latter found an optimum during
the initialization stage. Similarly, BPSO has underper-
formed the two other algorithms, while SA always pro-
duced interesting results. This is why we decided, after
having studied the SA evolution on the first family, to fur-
ther investigate both BPSO (with its two velocity versions)
and GA in large collections of experiments, distributed in
a supercomputer facilities. To do so, 12 groups of plant
genomes have been extracted from our set of annotated
genomes. They have been applied on our two swarm ver-
sions, and results have been compared to the genetic
algorithm ones.
Comparisons are provided in Tables 4 and 5. In these

tables, Topo. column stands for the number of topologies,
NbTrees is the total number of obtained trees using 10
swarms, b is the minimum bootstrap value of selected w,
100 − p is the number of missing genes in w and Occ. is
the number of occurrences of the best obtained topology
from 10 swarms. As can be seen in these tables, the two
versions of BPSO did not provide the same kind of results:

• In the case of Chlorophyta, Pinus, and Bambusoideae,
the second version of the BPSO has outperformed
the first one, as the minimum bootstrap b of the best
tree is finally larger for at least one swarm.

• In the Ericales case, the first version has produced
the best result.

We can also remark that Malpighiales has better b
in GA than the two versions of BPSO. Pinus data set
has got maximum bootstrap b larger than what has
been obtained using the genetic algorithm, while Picea
and Trebouxiophyceae have got the same values of b
than with genetic algorithm. Further comparison results
between GA and both versions of BPSOs are provided in
Fig. 9.
According to this figure, we can conclude that the two

approaches lead to quite equivalent bootstrap values in
most data sets, while on particular subgroups obtained
results are complementary. In particular, BPSO often pro-
duces better bootstraps than GA (see Magnoliidae or
on Bambusoideae), but with a larger number of removed
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Fig. 7 Illustration of clade analysis with a 3-parallelized SA

genes. Finally, using 15 particles instead of 10 does not
improve so much the obtained results (see Fig. 9 and
Table 6).

Conclusion
This article has presented three metaheuristics to produce
a well supported phylogenetic tree based on the largest

possible subset of core genes. These methods are, namely,
genetic algorithm, binary particle swarm optimization,
and simulated annealing. They have been evaluated on
various sets of chloroplast species and deployed on a
supercomputer facilities. Given the average between the
percentage of core genes and the lowest bootstrap as scor-
ing function, we have shown on simple examples that,
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Fig. 8 Illustration of convergence on 3-parallelized SA

Table 4 Groups from BPSO version I

Group Topo. NbTrees b |c| 100 − p′ Occ. Swarms Particles

Pinus 3 508 98 79 32 462 1,2,3,4,5,6,7,8,9,10 10

Pinus 3 530 94 79 11 129 1,2,3,4,5,6,7,8,9,10 15

Picea 1 100 100 85 42 100 1,2,3,4,5,6,7,8,9,10 10

Picea 1 428 100 85 13 428 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 750 100 79 20 613 1,2,3,4,5,6,7,8,9,10 10

Magnoliidae 3 845 100 79 19 707 1,2,3,4,5,6,7,8,9,10 15

Ericales 30 344 53 84 26 185 1,2,3,4,5,6,7,8,9,10 10

Ericales 34 555 54 84 5 363 1,2,3,4,5,6,7,8,9,10 15

Bambusoideae 8 496 72 94 37 456 1,2,3,4,5,6,7,8,9,10 10

Bambusoideae 11 694 69 94 18 621 1,2,3,4,5,6,7,8,9,10 15

Eucalyptus 16 828 86 83 7 632 1,2,3,4,5,6,7,8,9,10 10

Eucalyptus 20 1073 86 80 4 845 1,2,3,4,5,6,7,8,9,10 15

Malpighiales 34 327 65 78 35 233 1,2,3,4,5,6,7,8,9,10 10

Malpighiales 38 483 69 78 40 326 1,2,3,4,5,6,7,8,9,10 15

Chlorophyta 25 191 70 24 11 109 1,2,3,4,5,6,7,8,9,10 10

Chlorophyta 29 94 68 24 11 1 1,2,3,4,5,6,7,8,9,10 15

Euglenozoa 3 450 100 26 7 292 1,2,3,4,5,6,7,8,9,10 10

Euglenozoa 3 520 100 26 4 491 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 2 23 100 81 0 23 1,2,3,4,5,6,7,8,9,10 10

Ehrhartoideae 3 455 100 81 0 451 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 409 100 41 2 405 1,2,3,4,5,6,7,8,9,10 10

Trebouxiophyceae 3 415 100 41 8 354 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 971 100 80 9 971 1,2,3,4,5,6,7,8,9,10 10

Poeae 1 1399 100 80 20 1399 1,2,3,4,5,6,7,8,9,10 15
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Table 5 Groups from PSO version II

Group Topo. NbTrees b |c| 100 − p′ Occ. Swarms Particles

Pinus 3 615 98 79 14 275 1,2,3,4,5,6,7,8,9,10 10

Pinus 3 628 100 79 12 558 1,2,3,4,5,6,7,8,9,10 15

Picea 1 635 100 85 14 635 1,2,3,4,5,6,7,8,9,10 10

Picea 1 821 100 85 15 821 1,2,3,4,5,6,7,8,9,10 15

Magnoliidae 3 494 100 79 16 73 1,2,3,4,5,6,7,8,9,10 10

Magnoliidae 3 535 100 79 42 384 1,2,3,4,5,6,7,8,9,10 10

Bambusoideae 6 952 84 81 23 94 1,2,3,4,5,6,7,8,9,10 10

Bambusoideae 9 1450 82 81 18 113 1,2,3,4,5,6,7,8,9,10 15

Eucalyptus 17 972 88 80 18 618 1,2,3,4,5,6,7,8,9,10 10

Eucalyptus 23 1439 92 80 10 843 1,2,3,4,5,6,7,8,9,10 15

Chlorophyta 25 529 71 24 6 397 1,2,3,4,5,6,7,8,9,10 10

Chlorophyta 46 1500 82 24 11 397 1,2,3,4,5,6,7,8,9,10 10

Ericales 30 97 51 84 11 56 1,2,3,4,5,6,7,8,9,10 10

Ericales 34 1257 52 84 7 800 1,2,3,4,5,6,7,8,9,10 15

Malpighiales 35 725 72 79 25 445 1,2,3,4,5,6,7,8,9,10 10

Malpighiales 86 1464 84 79 45 359 1,2,3,4,5,6,7,8,9,10 15

Euglenozoa 3 197 100 26 1 165 1,2,3,4,5,6,7,8,9,10 10

Euglenozoa 3 450 100 26 10 393 1,2,3,4,5,6,7,8,9,10 15

Ehrhartoideae 1 24 100 81 10 24 1,2,3,4,5,6,7,8,9,10 10

Ehrhartoideae 1 20 100 81 9 20 1,2,3,4,5,6,7,8,9,10 15

Trebouxiophyceae 3 319 100 41 1 313 1,2,3,4,5,6,7,8,9,10 10

Trebouxiophyceae 3 818 100 41 2 81 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 991 100 80 22 991 1,2,3,4,5,6,7,8,9,10 15

Poeae 1 1490 100 80 26 1490 1,2,3,4,5,6,7,8,9,10 15

given a set of species, various global optima with contra-
dictory topologies can be reached. These first experiments
emphasize that sometimes the phylogeny of chloroplasts
cannot perfectly be resolved using a tree: a phylogenetic
network may be more close to the reality, branches within

this network being as strong as the associated tree topol-
ogy is frequent.
Phylogenetic networks can be obtained bymerging gene

trees. In future work, we will propose a way to obtain
such networks with large subsets of random core genes,

(a) (b)
Fig. 9 BPSO with 10 and 15 particles vs. GA. a BPSO with 15 particles vs. GA. b BPSO with 10 particles vs. GA
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Table 6 Comparison between the two versions of binary
particule swarm optimization (with 10 or 15 particles) and the
genetic algorithm

BPSO version I BPSO version II GA

Group of species 10 15 10 15

Ericales 53 54 51 52 67

Bambusoideae 72 69 84 82 80

Pinus 98 94 98 100 80

Chlorophyta 70 68 71 82 81

Eucalyptus 86 86 88 92 90

Malpighiales 65 69 72 84 96

Magnoliidae 100 100 100 100 98

Ehrhartoideae 100 100 100 100 100

Euglenozoa 100 100 100 100 100

Picea 94 100 100 100 100

Poeae 80 80 100 100 100

Trebouxiophyceae 100 100 100 100 100

and will show that such ways reinforce the stability and
the confidence of the network. We intend to provide too
criteria to decide if either a tree or a network is prefer-
able for a given set of DNA sequences. We will measure
the impact of this choice and of the coexistence of dif-
ferent well-supported topologies on works like ancestral
genome reconstruction. Finally, the various ways to set
up the metaheuristics proposed here will be systemati-
cally investigated, to find the best manner to configure
these ones when targeting the largest subset of core genes
leading to the most supported tree or network.
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