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Abstract

Background: There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer
vision in histopathology. While accumulating studies highlight expert-level performance of convolutional
neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores
with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to
visualize histology-based deep learning inferences and decision making are scarce.

Results: Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and
depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative
and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing
the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test
images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive
outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar
to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification
approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and
anomaly detection tool less reliant on post-hoc tuning.

Conclusion: Routine incorporation of this convenient approach for quantitative visualization and error reduction in
histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where
unanticipated and previously untrained classes are often encountered.

Keywords: Digital pathology, Deep learning, Convolutional neural networks, t-SNE, Diagnostics,
Neuropathology, Cancer, Glioblastoma, Artificial intelligence, Machine learning

Background
Need for visualization and outlier detection tools in
histopathologic deep learning models
The personalization of medical care has substantially
increased the diagnostic demands, workload, and sub-
specialty requirements in pathology. As a result, there is

an emerging interest in leveraging artificial intelligence
(AI), and especially deep convolutional neural networks
(CNNs), to augment the diagnostic capabilities of pa-
thologists [1–3]. Numerous studies have already shown
expert-level performance of CNNs [4–6] in a diverse
array of histopathologic classification tasks [7–9].
However, bias for narrow, often binary readouts limit
application for more generalizable classification work-
flows involving multiple output and unanticipated clas-
ses. Most CNN classification approaches so far have
relied on empirically generated probability distribution
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scores that are described to lack transparency (e.g. “black
box”) and generalizability. When using CNNs optimized
for only two classes, high probability scores (ap-
proaching a value of 1.0), signify a strong likelihood of a
given diagnosis (high specificity). Using such high cutoff
values, however, can compromise sensitivity. Similarly,
lower probability score cutoffs for a specific class,
although improve sensitivity, risk misclassification. For
binary and highly focused tasks, “cutoff” values can be
empirically optimized through receiver operator charac-
teristic (ROC) curves generated on post-hoc analysis.
Challenges to this binary approach arise when multiple
output classes are considered. Similarly, in practical
“real-world” scenarios, unanticipated technical artifacts
and previously untrained or validated classes can
compromise extrapolation of these chosen cutoff values.
Recent attempts in colon cancer [10] highlight these
challenges. While accuracy rates for distinguishing two
classes reached 98.0%, generalizing classification to five
different colon cancer subtypes (conventional, mucinous,
serrated, papillary and cribriform comedo-type adeno-
carcinoma) and normal tissue reduced accuracy to 87.5%
[10]. In the later multi-class example, probability score
cutoffs become exceedingly more context-specific and
highly dependent on the relative distribution of scores
amongst the available classes. Although the performance
of these complex and generalized tasks can be theoretic-
ally resolved with massive and comprehensive training
examples, development of transparent approaches to
visualize and efficiently detect anomalies offers a more
immediate and global solution to accelerate adoption of
CNNs into practical everyday use.
Here we show how nonlinear dimensionality reduction

using t-distributed stochastic neighbor embedding (t-SNE)
[11–14] can provide informative planar representations of
high dimensional histologic data structures of CNNs prior
to softmax transformation. As relationships between pairs
(local) and clusters (global) of images are organized
in t-SNE space using distance metrics, how a com-
puter perceives intra- and inter-class morphologic
similarities can be easily visualized and inferred. Fur-
thermore, we demonstrate how t-SNE plots can be
leveraged to visualize CNN-driven histological classifi-
cations. Importantly, unlike the continuous probability
distribution scores that are divided only amongst the
defined classes as a continuous sum, this approach
allows images to be categorized in both learned and
undefined classes within the t-SNE plot. We show
that this discretized information can be leveraged to
provide an innate and statistically driven approach for
classification and outlier detection that is less
dependent on post-hoc ROC curve-based tuning.
Moreover, despite being derived from the same train-
ing data, we show a composite approach to classification

(t-SNE + probability score) can serve to further improve
the performance in novel settings. These novel enhance-
ments serve as generalizable tools to improve adoption of
more diverse and unsupervised classification tasks in diag-
nostic pathology.

Surgical neuropathology as a model for complex
histopathological decision making
Diagnostic neuropathology, the branch of pathology
focused on the microscopic examination of neurosurgi-
cal specimens, is a challenging skill requiring multiple
years of training for humans to reach adequate profi-
ciency. Firstly, because of their location, neuropatho-
logical specimens are usually small, often intermixed
with non-lesional tissue (e.g. normal brain, blood, surgi-
cal cloth) and represent only a small sample of the over-
all disease. Classification is further challenged by the
brain’s multiple anatomical structures (e.g. white matter,
gray matter and cerebellar cortex) that each have distinct
morphology. To the non-subspecialized pathologist,
even normal tissues can be sometimes be mistaken as an
abnormality. Once the lesion is correctly located, the
pathologist must then determine if the abnormality rep-
resents a neoplastic or non-neoplastic lesion. The most
common primary brain neoplasms encountered include
gliomas (tumors of resident brain cells), meningiomas
(tumors arising from the brain’s leptomeningeal cover-
ing), and schwannomas (tumors arising from the nerve’s
Schwann cells). It is also very common for tumors ori-
ginating outside the brain to form deposits within the
nervous system (metastases). Differentiating these tu-
mors is an important task as some can be managed ef-
fectively with surgery alone, while others require
additional chemo- and radiation therapy. Although less
common, it is essential for a pathologist to rule out the
presence of a lymphoma, a form of blood cancer in
which patients do not benefit from aggressive surgery
and should be triaged to early initiation of chemotherapy.
To reach one of these biologically distinct diagnoses, a
pathologist first uses microscopic information from tissue
stained with hematoxylin and eosin (H&E). This staining
technique accentuates the resolution of distinctive cellular
patterns that are characteristic of the different diseases.
Gliomas and lymphomas, for example, tend to be “disco-
hesive” and grow as individual cells within the brain tissue.
Meningiomas and metastasis on the other hand, tend to
grow as cohesive collections and clusters of cells. Men-
ingiomas can also sometimes resemble schwannomas
when they take on a more spindled arrangement. While
the integration of multiple features usually allows a path-
ologist to arrive at a specific diagnosis, oftentimes, the par-
tially overlapping patterns can make this a challenging
task. In many cases where a specific diagnosis cannot be
reached, the pathologist can devise a “differential
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diagnosis”. This short list of diagnostic possibilities can
then be further differentiated using more definitive mo-
lecular techniques (e.g. sequencing, immunohistochemis-
try). Sometimes, for rare and very atypical cases,
pathologists can initially label a case as “undefined” and
perform a broader workup to reach a final diagnosis.
While these five tumor types discussed represent the ma-
jority of cases typically encountered in diagnostic practice
(~ 75–80%), there are in fact over 100 different brains
tumor subtypes and many more non-neoplastic diseases
that need to be considered [15, 16]. Some of these sub-
types/variants are exceedingly rare with pathologists en-
countering a single case once every decade (or lifetime).
Similarly, new diseases (e.g. Zika encephalitis) continually
arise. To the unsuspecting pathologist, these rare and
evolving cases, that together amass to a relatively common
diagnostic group, often lead to misclassifications. The abil-
ity to identify these rare and anomalous cases and help tri-
age appropriate molecular testing is a highly valuable and
cost-effective skill. This logical and “graded” approach to
classification (e.g. diagnosis, differential, undefined) thus
provides an attractive blueprint to designing practical
“real-world” decision support tools for pathologists. In
addition to confirming diagnoses of common tumor types,
machine classifiers, like humans, should be able to signal
these different degrees of uncertainty, especially for rare
and novel classes that may not have been encountered
during model training.

Methods
Development of an image training set
Slides from our neuropathology service were digitized
into whole slide images (WSI) on the Aperio AT2
whole slide scanner at an apparent magnification of
20× and a compression quality of 0.70. We reviewed
a collection of 122 slides to generate a growing class
list of common tissue types and lesions encountered
in our practice (Additional file 1: Table S1, Fig. 1a-b).
For each tissue class, based on availability, we manu-
ally generated a collection of 368–18,948 images
patches (dimensions: 1024 × 1024 pixels). For some
classes, such as surgical material, only a small num-
ber of high quality tiles could be generated. For other
more abundant classes, we limited training tile num-
bers to 7000 to avoid skewed representation of spe-
cific groups that could affect overall training and
performance. For this study, we focused our lesion
categories on the most common and important ner-
vous system neoplasms (Additional file 1: Table S1):
gliomas, metastatic carcinomas, meningiomas, lymph-
omas, and schwannomas. We chose a tile size (image
patch) of 1024 × 1024 pixels (0.504 μm per pixel,
516 μm2) to carry out training and classification, a
tile size over 10 times larger than most other

approaches [2]. We found this larger size excels at
complex classification tasks by providing multiple levels of
morphologic detail (single cell-level and overall tumor
structure) without significantly affecting computation
times. We found larger tile sizes significantly impede
training efficiency without improving accuracy. Similarly,
many of the distinguishing architectural features of tu-
mors where not appreciable at smaller patch sizes and
compromised performance. All tile annotations were car-
ried out by board-certified pathologists. Only the diagnosis
relating to the lesional tissue on each slide was extracted
from the medical records and all images were otherwise
anonymized. The University Health Network Research
Ethics Board (REB) approved our study.
Our CNN was designed with 2 specific objectives in

mind. Firstly, we chose a collection of training cases that
included the most common tumor and tissue elements
found in routine practice. We felt this would help de-
velop a relatively well-performing classifier that encom-
passed most of the expected classes it would encounter.
As the main objective of our study was to develop a
workflow that could handle the different degrees of
uncertainty described above (diagnosis, differential diag-
nosis, undefined), we did not include an authoritative
collection of additional uncommon tumor types. This
more focused classifier would allow us to encounter a
sufficient number of “novel” and untrained classes in
our unselected group of test cases. By including lesions
that comprise about 75–80% of cases typical seen in our
validation cohort, we expected 20–25% of randomly se-
lected test cases to collectively represent an aggregated
class of “outlier cases”. Our goal was to see if we could
develop an approach to efficiently flag this group of
cases as “anomalous” (differential diagnosis or un-
defined) rather than erroneously misclassifying them.

Convolutional neural network (CNN) optimization
To make our workflow more generalizable to others in
the field, we specifically chose to use a pre-trained and
widely available CNN rather than developing our own
CNN architecture. Specifically, we took advantage of the
pre-trained VGG19 CNN [17] for lesion segmentation
and classification. VGG19 is a popular 19-layer neural
network comprising of repetitive convolutional layer
blocks previously trained on over 1.2 million images in
the ImageNet database. This network architecture, simi-
lar to other CNNs, outperforms conventional machine
learning algorithms at computer vision tasks such as
classifying images containing 1000 common object clas-
ses. Importantly, VGG19 has a strong generalizability
with the ability to transfer learned image features (e.g.
edges, lines, round shapes, etc.) to other image classifica-
tion tasks through fine-tuning with additional task-
specific images. To carry out this process, we loaded
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VGG19 into Keras with a Tensorflow backend and
retrained the final 2 convolutional layer blocks of the
network using our collection of annotated pathology im-
ages. While there are multiple training approaches, fo-
cusing on the final layers substantially reduces training
times and effectively tunes and optimizes CNNs for catered
pattern recognition tasks including pathology [18]. Specific-
ally, this VGG19 CNN was retrained using 8 “non-lesional”
object classes commonly found on neuropathology tissue
slides: hemorrhage, surgical material, dura, necrosis, blank

slide space and normal cortical gray, white and cerebellar
brain tissue. In addition to this, image tiles of the most
common nervous system tumor types (gliomas, meningi-
omas, schwannomas, metastases and lymphomas) were
included either separately (13 class model) or as a single
common lesion class (9 class model). We used the 9-class
model to separate “lesional” regions from normal tissue
and then used the 13-class model to classify the identified
regions. These respective training image sets were used to
retrain and optimize the VGG19 neural network to act as

a b

c

g

d e f

Fig. 1 Development of a multi-class classification model of CNS tissue using CNNs. a H&E-stained WSI of a glioblastoma containing a
heterogeneous mixture of tumor, necrosis, brain tissue, blood and surgical material. Black scale bar represents 4 mm. b Examples of image tiles for the
13 classes used for CNN training are shown. Images have been magnified to ~ 250 μm2 to highlight key diagnostic features. c-e WSI-level annotations
are carried through automated tiling and classification of 1024 × 1024 pixel image patches using our trained CNN. Class activation maps (CAMs) are
generated by reassembly of classified tiles to provide a global overview of lesion localization (brown). Black scale bar represents
2 mm. f Immunohistochemistry for IDH1-R132H shows the associated “ground truth” for this glioma. g H&E section of a metastatic
carcinoma (left panel), associated ground truth (middle panel, p40 immunostaining) and the lesional coordinates (brown) predicted by
the CNN. The aggregate probability scores generated by the final softmax function allows for global estimates of the various tissue
types found on each WSI. Black scale bar represents 3 mm

Faust et al. BMC Bioinformatics  (2018) 19:173 Page 4 of 15



a lesion segmentation and classification tool. Specifically,
training images were partitioned into training and val-
idation set in a 85:15 ratio and optimized through
back-propagation over a series of 300 potential
epochs (Additional file 2: Figure S1). The best per-
forming model was selected for further independent
testing. Testing, highlighted in Figs. 1 and 2, was car-
ried out by averaging the resulting probability distri-
bution scores generated by the CNN’s final softmax
function. All steps, including random tile selection,
training, and validation were automated using the Py-
thon programming environment and powered by an
NVIDIA Titan Xp graphical processing unit (GPU).

Development of a multi-class CNN-based histologic
classifier
To develop a baseline level of performance for multi-
class histopathologic decision making in a practical
(“generalized”) environment, we trained the widely avail-
able VGG19 CNN on 13 common tissue and lesion clas-
ses encountered in surgical specimens of the central
nervous system (CNS) (Fig. 1a-b). Our training set was
comprised of a local, randomly selected cohort of 47,531
pathologist-annotated hematoxylin and eosin (H&E)-
stained image patches taken from a larger pool of 84,503
images (Additional file 1: Table S1, training set can be
downloaded from https://zenodo.org/). We used these

a

b c

d

e

Fig. 2 Probability score-based classification workflow and performance. a Automated lesion segmentation and classification workflow for
180 prospective and randomly selected WSIs of cerebral lesions. Only image tiles with a lesional probability score of > 85% were used for
class predictions. To reduce noise, classification was only carried out on WSIs with > 15 lesional tiles (n = 147). The majority of unclassified
WSIs (n = 33) represented non-neoplastic processes (e.g. epidermoid cysts, hemorrhage, normal brain tissue). b Multi-class ROC curves were
empirically generated by deriving the sensitivity (fraction of detected true positives) and specificity (fraction of detected true negatives) at
different probability score distribution thresholds. The displayed AUC is a measure of performance with a minimum value of 0.50 (random
predictions) and 1.0 (all correct predictions). c Relationship of the accuracy of the top classification output at different minimum probability score cutoffs. If
this cutoff value is not reach, the case is deemed “undefined” and not included in the scoring. This empirical post-hoc analysis highlights a specific
threshold where the error rate substantially rises. d A H&E-stained validation WSI of a gliosarcoma (glioma subtype), confirmatory special
stains and the CAM showing the top CNN probability score-based prediction. In this study, we define these misclassification between
lesion types as Type B errors. Black scale bar represents 4 mm. e An example of an erroneously classified tumor type (hemangioblastoma)
that was not included in this 13-class model (“Type C error”). Black scale bar represents 3 mm
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images to retrain the final layers of the VGG19 CNN
(Fig. 1d). During this process of transfer learning, our
additional images served to help fine-tune and customize
previously learning patterns and CNN weights towards
the histopathologic features found within our 13 tissue
classes. Our model reached a validation accuracy of 94.8%
after 300 epochs (Additional file 2: Figure S1). Compared
to more focused approaches that train CNNs with 2–3 tis-
sue classes, our 13-class model demonstrates that deep
neural networks can be effectively trained to differentiate
between a large number of histological classes.

t-distributed stochastic neighbour embedding (t-SNE)
visualization and classification
t-distributed Stochastic Neighbour Embedding (t-SNE)
[11] was used to help visualize the high-dimensional
relationships of the 13 learned classes on a two dimen-
sional plane. Specifically, we plotted a random selection
of approximately 350–600 training image tiles for each
class. Further optimization was carried out to automate
removal of potentially misclassified training images or
tiles containing features of multiple classes. To remove
these potentially anomalous points, we compared each
point on the t-SNE plot to its nearest 300 neighbors to
determine if points substantially deviated from their
labeled class cluster. This provided a refined visual plot
highlighting the learning relationship of representative
tiles and classes to one another.
Specifically, for this study, we wanted to use this initial

map to develop a visual classification and anomaly de-
tection tool. Towards this, we used the spatial distribu-
tion of up to 100 representative tiles generated from
each test/validation image to carry out classification at
the tile and WSI level. For this, we leverage the gener-
ated t-SNE to visualize where new image tiles lie within
the two-dimensional plot. This discretized approach
allowed determination of what cluster (class) each test-
ing tile belonged to, or whether it represented an un-
defined “outlier” image. Using the tile images that were
fed into the earlier t-SNE, we add the new tiles and re-
generated the t-SNE for each WSI. Although the result-
ing t-SNE is slightly altered from the original with the
addition of new data, the spatial structure and clustering
of classes remains largely preserved. To classify new tile
points, we first assess if each image tile represents an
outlier. This is achieved by looking at its closest 25
neighboring points to determine if at least 85% of them
fall into a single class. If the condition is satisfied, the
tile is discretized (categorized) to represent this class for
classification; otherwise it is labeled as an outlier/anom-
alous data point. We felt this relatively conservative ap-
proach would allow classification to only rely on
information from the slide that most closely resembles
the previously trained examples.

For t-SNE classification on the WSI-level, up to 100
random lesional tiles extracted from each test image
were plotted on the CNN’s t-SNE map. As slides may
contain a few “background” non-lesional tissue and arte-
facts that may focally resemble pathology, we did not
carry out classification on a slide if less than 15
“lesional” tiles were generated. Instead, our workflow
flags these slides and provides a handful of lesional tiles
for manual inspection by the pathologist (See Add-
itional file 2: Figure S2). Otherwise, using the above
approach, we determined the classes of each image
tile and exported them to a contingency table to sta-
tistically analyze their distribution. We use the distri-
bution of these 15–100 tiles to carry out an iterative
χ2 testing process, where the class with the fewest
tiles is systematically removed and the remaining
distribution is retested. This process continues until
the χ2 score (p-value) is no longer significant (p ≥ 0.01).
This process either leads to a single diagnosis (Fig. 3) or a
list of classes (“differential diagnosis”, Additional file 2:
Figure S3) where the distribution of tiles is not significantly
different when compared to a random, equally partitioned
distribution amongst the remaining cases. If a statistically
significant distribution of plotted tiles (χ2 test, p < 0.01) are
labeled as “undefined/outliers” on the first iteration, the
WSI is deemed to contain too many novel/anomalous
features to render a confident diagnosis. These slides are
thus classified as “undefined”. This p-value can be tuned a
priori to the tolerable α error. Given the size of our testing
set (180 slides), we chose a cutoff score of p < 0.01. As a
comparative analysis, we carried out the same classification
approach using principle component analysis, another
commonly used dimensionality reduction and visualization
tool (Fig. 6). Similarly, to highlight the effect of using low
testing tiles thresholds for classification, we reanalyzed out
testing cohort with a minimum tile cutoff of 5 instead of 15
(Additional file 2: Figure S4).

Performance testing
Performance of the same CNN was evaluated in a num-
ber of ways on a prospective, randomly selected set of
cases comprising of 180 WSIs (Table 1). To improve
generalizability, we chose not to bias test case selection
or to focus on a specific anomaly. To maximize inter-
and intra-case diversity, when available, we included up
to 5 slides of any single case. This resulted in a testing
set with both prevalent and less common lesion types
(representative WSI testing images can be downloaded
from www.zenodo.com). Similar to the generation of the
training set, this validation set was restricted to cases in
which consensus was reached by at least 3 board-certified
pathologists with extensive neuropathology training (years
of practice: 2, 15, 22, 31). The rendered diagnosis was used
as the “integrated clinicopathologic diagnosis” for
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performance testing. All cases and diagnoses also bene-
fited from confirmatory immunostaining (Figs. 1 and 2)
and/or corroborating clinical correlates (e.g. location,
radiological impression). We felt this integrated approach
would help reduce subjective interpretive errors and es-
tablish a well-approximated “ground truth” [19, 20].
For each WSI, a diagnosis was generated using the

probability distribution scores of the CNN’s final soft-
max output layer or the tile distribution overlaid on the
t-SNE or PCA plot of the CNN’s final hidden layer. We
also generated composite-based predictions (combined
and hybrid approaches) post-hoc to understand if errors
between the different approaches overlapped. To test the
performance of these different classifiers, the various

multi-class metrics were used to generate a ROC curve
and calculate the occupied areas under the ROC curve
(AUC). While some approaches collapse multiple out-
puts of a multi-class classifier into a binary readout for
ROC and AUC analysis, we found that the distribution
of probabilities and tiles amongst the classes substan-
tially influenced the confidence of a specific diagnosis.
We thus opted to use the distribution of probability
scores and tiles to approximate the multiclass ROC
(mROC) as previously described [21]. In addition to
AUC analysis, we also assessed the performance of each
approach by computing the proportion of cases classified
correctly or incorrectly (accuracy) compared to the con-
sensus clinicopathologic diagnosis for each WSI.

Fig. 3 Visualization of CNN-based histological data structure and classification using t-SNE. a t-SNE plot showing the planar representation of the
internal high-dimensional organization of the 13 trained tissue classes within the CNN’s final hidden layer. 350–600 training tiles from each class
are plotted so that each point within the t-SNE represents a 1024 × 1024 pixel training image. Tiles belonging to each class are labeled with a
unique colour for convenience. Insets show representative images from each cluster/class. b Dimensionality reduction techniques (like t-SNE) position
data so that points close together represents images the CNN perceives as have a similar pattern. This plot therefore allows visualization
of what classes the computer perceives to be closely related. Learned features appear to qualitatively organize in a biology-inspired manner similar to
the framework shown in Fig. 1b. In addition to anuclear (yellow region), normal (red region) and lesional (blue region) tissue regions,
there is an additional trend towards cohesive lesions (meningioma and metastasis) being arranged close together as one moves upward
within the large blue cluster. Understanding such configurations could provide more transparency into computer-driven learning of
medical images. c-e Examples of t-SNE-based visualization and classification of test WSIs. For each prediction, we overlay 100 images patches
extracted from testing images (represented by the red diamonds) to carry out classification. A k-nearest neighbor approach is used to assign individual
tiles to clusters or undefined regions. In addition to qualitative visual predictions, the distribution of testing tiles (χ2 test) allows for quantitative
statistically driven classification scores. Clinicopathological classes: schwannoma (c), glioma (d) and metastasis (e)
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Throughout the text, these performance values are
quoted without the use of specific cut-offs derived from
the ROC curve. These and other post-hoc analyses are,
however, provided as a reference (Figs. 2c & 4d). For
simplicity, when comparing between different parame-
ters and approaches, we use the class with the highest
probability score to represent the diagnosis. For t-SNE
performance testing, WSI images that were classified as
“undefined” or as a “differential diagnosis” were not in-
cluded in the testing as they were deemed outliers.

Results
Probability distribution score-based classification
performance
We explored the baseline performance of this 13-class
CNN on a prospective set of 180 randomly selected and
digitized neuropathology whole slide images (WSIs)
from our department (Fig. 2a). Given the expected fre-
quencies of the 5 trained lesion types, this would provide
a relatively large fraction of cases that the CNN would

be able to correctly classify. At the same time, it would
allow for a good proportion of untrained cases (~ 20%)
to be encountered. Collectively, this later group would
allow us to understand how novel and untrained histo-
pathologic classes are handled by our CNN.
To visually monitor which regions of the WSI our

CNN used for diagnosis, we systematically tiled WSIs
into 1024 × 1024 pixel patches and overlay class activa-
tion maps (CAMs). These CAMs color code the tissues
types and location, found within each tile. Reassembly of
these tiles helped create fully annotated WSIs to qualita-
tively assess lesion segmentation performance. Comparison
to expert pathologist-annotations and immunohistochemi-
cal staining showed strong concordance (Fig. 1c-g,
Fig. 2d-e). This suggested that our 13 class CNN
could efficiently differentiate lesion and non-lesion
tissue classes for downstream analysis. We also aver-
aged the confidence scores generated from each tile
to provide a global estimate of the different tissue
types detected by the CNN (Fig. 1g).

Table 1 Distribution of WSI in validation cohort

Diagnosis Unique
Slides

Unique Cases > 15 Lesion
Tiles)

Misclassified by
Prediction score

Misclassified by
t-SNE

Misclassified by
both

Trained Classes

Glioma 47 15
12 Glioblastoma, WHO IV, IDH-wt
1 Anaplastic Astrocytoma, WHO III
1 Anaplastic Oligo, WHO III
1 Gliosarcoma, WHO IV

43/47 8/43 4/25 2/23

Meningioma 57 18
15 Meningioma, WHO I (Meningothelial,
Angiomatous, Fibrous, Transitional)
3 Atypical Meningioma, WHO II

55/57 1/55 1/47 1/47

Schwannoma 23 7
Conventional Type, WHO I

23/23 0/23 0/22 0/22

Metastasis 12 7
3 Lung Adenocarcinoma
1 Lung Squamous Cell Carcinoma
1 Breast Adenocarcinoma
1 Esophageal Adenocarcinoma
1 Squamous Cell Carcinoma, NYD

12/12 3/12 0/9 0/9

Lymphoma 2 1 Diffuse Large B-Cell Lymphoma 2/2 0/2 0/1 0/1

Hematoma 15 3 3/15 2/3 1/1 N/A

Brain Tissue 3 2 1/3 1/1 N/A N/A

Dura 1 1 1/1 1/1 0/1 N/A

Novel Classes

Hemangioblastoma 5 2 5/5 5/5 N/A N/A

Radiation necrosis 3 1 2/3 2/2 N/A N/A

Focal Cortical Dysplasia 5 1 0 N/A N/A N/A

Cartilaginous Material 5 2 0 N/A N/A N/A

Epidermoid Cyst 2 1 0 N/A N/A N/A

Total: 13 Class 180 61 82 23 6 3

WSI were randomly selected from prospective cases from our local surgical neuropathology service. All cases selected had diagnostic consensus amongst 3 board
certified neuropathologists and had confirmatory immunohistochemical staining patterns. Up to 5 slides of the same cases were used when available
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Clinically, a pathologist’s overall diagnosis is typically
driven by the most abnormal tissue elements found
within a slide. To steer classification (AI-based deci-
sions) to these diagnostic (“lesional”) areas, we incorpo-
rated a more directed approach to classification testing
(Fig. 2a). Rather than using the average of the WSI (e.g.
Fig. 1g), we focused on image tiles that the CNN per-
ceived to be enriched in lesional tissue (> 85% probabil-
ity score) for averaging and classification. To avoid
classification errors arising from focal artifacts, we fur-
ther limited classification to WSIs in which at least 15
“lesional” tiles were identified (Additional file 2: Figure
S2 & S4). Using this approach, 147 of the total 180 test
slides met the threshold for classification by the CNN’s
initial pass. As anticipated, the vast majority of the slides
that were not classified by this approach comprised

either of normal tissue or dramatically different patholo-
gies that do not show any resemblance to trained classes
(e.g. epidermoid cyst, Additional file 2: Figure S2). Using
the distribution of prediction scores across the 13 classes
for each WSI, this approach achieved a performance, as
assessed by the areas under the multi-class receiver op-
erator curve (AUC, mROC), of 0.99 (Fig. 2b). We also
compared the accuracy of the class with the highest pre-
diction score (“diagnosis”) to the integrated clinicopath-
ologic diagnosis (Table 1). From the 147 slides
examined, 84% were correctly classified (error:16%) by
using the top ranked class type without knowledge of
the optimal cut-off score (Fig. 2c). Three types of
classification errors were identified. Misclassification
of normal tissue for lesion (“Type A error”) was rare.
This was likely due to the conservative pre-selection

a b

c d

Fig. 4 Detection and visualization of histopathologic outliers using t-SNE. a-b t-SNE-based WSI visualization and classification of a gliosarcoma (rare glioma
subtype) (a) and a hemangioblastoma (b). Unlike previous examples, these lesions represent patterns and tumor types never previously encountered by
the CNN. Localization of the vast majority of lesional tiles within the unoccupied space allows confident visual and statistical classification as an “outlier”
without the need for a reference ROC curve. Insets (lower right) magnify the localization of tiles in unoccupied space. These examples demonstrate how
the properties of the t-SNE plot can be leveraged to detect erroneous classification of novel/challenging cases. c. ROC performance summary on the same
set of test WSIs used in Fig. 2. Classification using t-SNE tile distributions yields a similar performance (AUC) metric to the probability score-based approach.
d relationship of t-SNE accuracy at different defined “outlier” cutoffs for comparison. Although more conservative in WSI classification, this t-SNE approach
shows a more uniform performance (orange; error rate) across different “cutoff scores”. This distinct feature improves its generalizability when cut-off values
cannot be reliably or empirically estimated
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filter applied (> 15 lesional tiles of > 85% probability).
This initial filter likely also helped flag some previ-
ously untrained lesions (e.g. epidermoid cysts) with
distinct morphologic features. The error rate of the
top class rose to 20% when we lowered this “lesional
tile” cutoff for classification from 15 to 5 “lesional”
tiles. (Additional file 2: Figure S4). The most notable
Type A error identified was the CNN mistaking the
normal, yet relatively cellular, cerebellar granular cell
layer for a glioma. The true lesion in this specific
WSI was a relatively small focus of metastatic carcin-
oma that was sub-optimally sampled due to the abun-
dance of cellular cerebellar tissue. Such errors could
likely be mitigated by more comprehensive sampling
of normal cellular tissue types for training (Additional
file 1: Table S1). A more common error type was
misclassification between lesion types (“Type B error”).
These largely represented misclassification of rare atypical
variants of trained classes in our dataset (e.g. glioma vs
gliosarcoma, Fig. 2d). In this example, the dominating
spindled “sarcomatoid” component of the glioma was mis-
taken for meningioma; a tumor type that more often
shows a similar morphology. Similarly, an atypical men-
ingioma (WHO grade II) found in the test set, had prom-
inent nucleoli and was not well represented in the initial
training set of more benign meningioma images. This
likely explained the misclassification as a metastasis. The
third encountered error type (“Type C error”) was attrib-
uted to misclassification of novel and previously untrained
tumor classes (e.g. hemangioblastoma, Fig. 2e). Type C er-
rors in this validation set represented 5% of errors. The
remaining misclassifications (11%) were largely attributed
to the described “Type B” errors.
There are many approaches that can be used to ad-

dress these different error types and improve perform-
ance. These include massive expansion of training
images. Additional sampling of variants of existing clas-
ses (e.g. atypical meningioma) could potentially help find
distinct and subtle differences between classes that are
often misclassified. This could help reduce “Type B” er-
rors (Fig. 2d). Similarly, incorporation of additional, pre-
viously untrained, classes can be incorporated into the
CNN to reduce “Type C errors” (Fig. 2e). Another com-
monly used approach to increase specificity of an exist-
ing classifier is the use of post-hoc ROC-selected
classification thresholds. While effective in their own
right, these approaches poorly generalize beyond highly
“controlled” tasks. While developing an alternative
classification tool, we therefore chose to devise a
more generalizable and a priori statistically-driven ap-
proach to anomaly detection and error reduction.
Such an approach could offer more immediate solu-
tions to help implement CNNs into more practical
environments.

Visualizing CNN data structure and classification decisions
using dimensionality reduction
Most CNN-based histologic classification tasks commonly
rely on probability distribution scores to categorize new
image patches. Although convenient, averaging probability
scores of image patches, especially when multiple classes
exist, can introduce noise and reduce transparency of clas-
sifications. Moreover, optimization of classification thresh-
olds is challenging when novel or atypical cases are often
encountered in “real-world” settings.
Towards developing a more translucent and statisti-

cally driven approach to classifying cases in subopti-
mal settings, we take advantage of a complementary
visualization tool to depict how histologic learning is
organized within CNNs. For this, we chose to project
representative training image tiles from each of the
13 tissue classes onto planar representations of the
CNN’s higher-dimensional coordinates using t-SNE
[11] (Fig. 3a, Additional file 3: Movie S1). Intri-
guingly, in addition to showing local organization of
image tiles, this t-SNE plot also provided a more glo-
bal two-dimensional arrangement of how the entire
dataset is organized within the CNN. Qualitative in-
spection of the t-SNE plot shows an organizational
framework within the CNN that mirrors understood
biologic properties of the different tissue classes (Fig.
3b). For example, there is a prominent “cluster of
clusters” (red circle) that arranges normal neural tis-
sue types in close proximity to one another. This
could represent the regular repeating pattern of these
tissue types. This cluster appears to bisect the remaining
tissue classes based on cellularity. This organizes hypocellu-
lar tissue classes on the left (yellow circle) and hypercellular
lesional classes, forming a 3rd distinct cluster on the right
(red circle). Further examination of the clusters suggests
additional levels of a rational (and somewhat “humanoid”)
organizational framework with discohesive lesions such as
lymphoma and gliomas showing a close relationship. Not-
ably, intrinsic brain tumors (gliomas) show the closest pos-
ition to the included normal nervous system tissue
elements (red cloud). Similarly, images of more cohesive
neoplasms (e.g. metastases, meningiomas, schwannomas)
cluster close together at the upper bound of the blue
cloud on the t-SNE plot. This steady state representa-
tion map was generated in independent sampling and
training experiments, suggesting convergence towards
a stable learned global data structure for these in-
cluded class types (Fig. 3c-e).
In addition to providing visual insights into CNN-

based histologic learning, we investigated if t-SNE plots
could provide more transparent decision-support out-
puts to humans when presented with new histological
images. While this technique has been used by others to
qualitatively visualize classifications and outliers [22], we
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wanted to develop a more automated, quantitative and
statistically-driven approach to classification and anom-
aly detection. By overlaying representative lesional image
tiles of new WSIs onto the 13-class t-SNE plot, we found
that classifications could be made in a much more visual
and intuitive manner (Fig. 3c-e). Similarly, since predic-
tions of each tile can be discretized into single classes
based on their proximity to neighboring training tiles (k-
nearest neighbors), tile distributions can be statistically
interrogated a priori for each case with less reliance on
post-hoc ROC-generated cutoffs. Specifically, we used
highly skewed class tile distributions (χ2 test, p < 0.01) to
provide classifications (Fig. 3c-e). In a similar manner,
less skewed test tile distributions in the observed class
frequencies could be used to represent diagnostic
“uncertainty” in the form of a “differential diagnosis” of the
most populated classes (Additional file 2: Figure S3).
Moreover, when a significant distribution (p < 0.01) of tiles
localize to “undefined” space, outliers can be efficiently
labeled as “undefined” without the need for empirical
cutoff scores (Fig. 4a-b). Collectively, this novel approach
offers a balance of visually intuitive, objective and “graded”
performance metrics for routine histomorphologic analysis.

t-SNE-based classification performance
To test the performance of this alternative approach, we
subjected the same 180 cases through a similar workflow
but substituted probability-based predictions with our t-
SNE-driven metrics (Fig. 2a). For each test slide, how-
ever, this approach, in addition to rendering diagnoses,
also had the flexibility to signal uncertainty (“undefined”
or “differential diagnosis”). Similar to the probability
scores, for cases where a single diagnosis could be statis-
tically reached (based on χ2 testing), the distribution of
tiles among the different tissue classes was used to
generate a mROC curve. The AUC, similar to using
probability scores, was high (AUC = 0.99, Fig. 4c).
Perhaps more importantly, this conservative and
statistically-driven metric disproportionally reduced er-
rors (mostly Type B & C) without the need for post-hoc
tuning of cut-off scores [t-SNE: 4% error, 68% correct vs.
probability distribution scoring: 16% error, 84% correct)
(Fig. 4d). Error reduction was largely attributed to a
strong buffer against “Type C errors” (untrained classes)
which were enriched with “undefined” lesional tiles on t-
SNE plots (Fig. 4a-b). Intriguingly, even though these
two different approaches stemmed from the same
trained CNN, the slightly different approaches to classifi-
cation led to non-overlapping errors. In a post-hoc ana-
lysis, we found that composite approaches, where both
tests were in agreement, could be leveraged to further
reduce error rates (combined: 2% error, 67% correct)
and/or improve overall classification rates (Hybrid,
mROC: 1.00, Fig. 5). Minor customized optimizations of

this generalizable classification approach offers new
quantitative visualization tools for large-scale morpho-
logic analysis and quality control in practical real-world
settings.
As a final analysis, we compared the performance of

our t-SNE approach to principal component analysis
(PCA), the most common linear dimensionality reduc-
tion techniques (Fig. 6). Similar to t-SNE, PCA can de-
pict high-dimensional data stored in CNNs on a two-
dimensional plane. We hypothesized, however, that the
lack of exaggerated spacing between classes would pre-
clude effective discretization of classification boundaries
as we observed on our t-SNE plot (Fig. 6a-b). This hy-
pothesis was indeed correct (Fig. 6c). The proximity of
the classes and lack of an “undefined” category to buffer
challenging cases led to a substantial reduction in the
performance of how slight variants of already trained
(and untrained) classes were handled (Fig. 6c-d).

Discussion
Although a well-established visualization tool for high di-
mensional data [6, 11], utilization of t-SNE for interpreting
histomorphologic machine learning is scarce. We demon-
strate novel and generalizable applications of t-SNE as a
tool to provide informative insight of how histology-based
learning is stored within neural networks. Unique to our
study, we show how this organizational structure can be
used to generate alternative classification outputs that can
be visualized and help substantially reduce errors. Notably,
these benefits were afforded without the need for add-
itional CNN training or significant adjustments to stand-
ard CNN-based histologic workflows. Our t-SNE-based
classification approach showed very similar classification
performance to more traditional and less transparent
probability-based distribution scores. Although slightly
more conservative in classification, unclassified cases were
substantially enriched for outliers. Together, the improved
transparency of visual outputs and lower tolerance for un-
familiar features could provide value for industries (e.g.
healthcare, autonomous driving) where the benefits of
error/outlier detection outweigh other performance pa-
rameters (e.g. % correct on first pass). Overall, even with-
out post-hoc tuning, we were able to substantially reduce
erroneously classified cases (both Type B/C errors) (4% vs.
16%). The non-overlapping errors of the different ap-
proaches could allow development of additional compos-
ite metrics that further reduce errors without the need for
cutoff optimization. The error rates achieved by our tool
are in line with baseline reports of inter-pathologist dis-
crepancies. We thus believe this composite approach,
when coupled with final expert human review, could be
an especially valuable companion in improving efficiency
and quality control at remote under-serviced centers. “Un-
defined” classifications could also be utilized to prioritize
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challenging cases for extended subspecialist-, immunohis-
tochemical-, and molecular-based diagnostic interrogation.
There are some important considerations to highlight

regarding our approach. The vast majority of residual
misclassified cases by the conservative t-SNE approach
represented tumor subtypes (e.g. atypical meningiomas,
small cell glioblastomas) that were not found in the
training set (“Type B errors”). These cases often had
subtle features that resembled the erroneously chosen
class. Clinically, these more challenging cases often
prompt confirmatory immunostaining, molecular stud-
ies, and/or supportive clinical history to confidently re-
solve. We believe that some of these “Type B errors”
could be further reduced, or appropriately labeled as
“differential diagnosis”, with additional training exam-
ples. It was beyond the scope of the study to optimize
performance and reduce errors by tuning these diverse
variables or adding additional, relatively rare classes. In-
stead, we aimed to develop an alternate visual and
statistically-driven classification approach that is applic-
able to scenarios that extend outside of the CNN’s ori-
ginal training environment. Moreover, although our test
set included rare subtypes of tumors never seen by our
classifier, it is likely still an under-representation of the
true diversity and challenges seen in more “practical”
real-world settings. Firstly, assembly of the presented
test set spanned a relatively short timeframe (3–
4 months) and was limited to cerebral lesions in which
pathologist reached consensus. Long-term application of
such generalized decision support tools in pathology are
likely to encounter many additional temporally dependent,
technically-derived artefacts and outliers. Moreover, other
rare non-neoplastic and extra-cranial neuropathologies not
integrated into the classifier routinely arise. This diversity
makes comprehensive CNN training and empirical cutoff
selection an extremely challenging and perhaps futile task

in the short term. Our t-SNE classification approach, that
we show is extremely resilient to unanticipated outlier
cases, provides a more immediate solution to many
histology-based classification tasks.
While classification of images using neural networks

has been extremely successful, there are important
caveats to be mindful of. Unlike controlled competitions,
like the ImageNet challenge, in which there is a fixed
and pre-defined number of classes, pathologists rou-
tinely encounter extremely rare cases in which they may
see once or twice in their whole career. Moreover, dis-
ease morphologies and classification of more common
lesions could dramatically change with the introduction
of new surgical and diagnostic procedures, medical ther-
apy and early screening. The lack of training images for
these rare and changing morphologies may challenge
use of CNNs in clinical practice. Similarly, in the Ima-
geNet challenge, having an object listed in the “top 5” by
probability score is considered “correct”. In diagnostic
pathology however, only the favored diagnosis often adds
value and is actionable by the clinician. Error rates (~ 20–
25% errors) of CNNs in ImageNet challenges when only
the class with the highest probability (“Top-1”) is used to
calculate performance is still far from the level needed for
clinical use. Current state of the art pathology workflows
substantially reduce this error rate through the use of mo-
lecular testing and additional clinical information. It is
therefore likely that, at least in the short term, CNN path-
ology workflows should be designed to serve as decision
support tools that improve the throughput of pathologists
rather than replacing them. We believe our novel classifi-
cation is well suited from this role.
Lastly, we believe our visual and quantitative approach

for classification and anomaly detection will likely benefit
from further optimization of variables. These include
image patch size, number of trained classes,

a b c

Fig. 5 Composite approaches to WSI classification. a ROC curves generated using a hybrid prediction score comprised of a blend of the percentage of
tile distribution and probability scores across the different classes. This approach achieved an even higher AUC. b Relationship of accuracy (y-axis) of
this hybrid classifier at different “undefined” score cutoffs of the t-SNE component (% of tiles in undefined space). c Relationship of accuracy of another
more conservative scoring approach where only concordant cases are classified at different “undefined” score cutoffs. This approach further reduces
the overall error rate with a minimal change to the number of classified cases compared to t-SNE alone
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understanding the degree of pattern differences between
classes, CNN architectures/training approaches and differ-
ent threshold cutoffs within the workflow. We highlight
some of these considerations within our manuscript (See
Additional file 2: Figure S4). In our experience, however,
the principles and error reduction properties we outlined in
our classification approach are largely conserved. Our ap-
proach thus serves as a strong and generalizable framework
that can be easily be adapted for anomaly detection in other
disciplines of histopathology and related fields.

Conclusion
Currently, most deep learning solutions in pathology rely
on probability distribution score outputs. We introduce

an alternative classification approach that provides
highly visual, intuitive, and graded classification metrics.
We highlight how our novel approach helps substantially
reduce errors by efficiently labeling outliers without the
need for extensive post-hoc optimization of cutoff values.
This simple approach could therefore accelerate adop-
tion of CNN-based technologies into pathology and
other sectors where high error rates compromise effi-
ciency, cost-effectiveness, and safety. Our workflow can
be theoretically applied to multiple tissue and disease
classes across the diverse pathology subspecialties. We
thus present a highly generalizable approach to quantita-
tively visualize AI-based decision making and anomaly
detection in practical real-world settings.

a b

c d

Fig. 6 Alternative dimensionality reduction approaches. a-b Hypothetical cartoon depicting advantages of the t-SNE plot as a “graded”
and complementary classification tool. a Representative image spaces within a CNN as organized by different dimensionality reduction techniques.
Unlike linear representations (e.g. PCA) with discrete and adjacent decision borders, the exaggerated separation of classes on the t-SNE
plot provides more distinct categorical classes for testing. This key difference has significant advantages for evaluating the distribution
of test tiles amongst previously trained classes. As shown, this could allow more effective handling of variants of already trained cases
(“blue square variant”, Panel a) and true “undefined” classes (green square, Panel b). c-d For comparison, we show the PCA depiction
of our trained CNN. Although similar in the overall arrangement of classes, there is notably little separation between tissue types. This
difference leads to the vast majority (71%) of cases being classified as “differential” and a substantial decrease in performance (13%
correct and 16.2% errors compared to both t-SNE and probability distribution scoring (Prob). Correct cases of the “combined” analysis
represents those where both the t-SNE and Prob score were in agreement. The undefined class in the “combined” analysis represents
cases with classification discordance between the two methods
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