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Abstract

Background: Recently differential variability has been showed to be valuable in evaluating the association of DNA
methylation to the risks of complex human diseases. The statistical tests based on both differential methylation level
and differential variability can bemore powerful than those based only on differential methylation level. Anh andWang
(2013) proposed a joint score test (AW) to simultaneously detect for differential methylation and differential variability.
However, AW’s method seems to be quite conservative and has not been fully compared with existing joint tests.

Results: We proposed three improved joint score tests, namely iAW.Lev, iAW.BF, and iAW.TM, and have made
extensive comparisons with the joint likelihood ratio test (jointLRT), the Kolmogorov-Smirnov (KS) test, and the AW
test. Systematic simulation studies showed that: 1) the three improved tests performed better (i.e., having larger
power, while keeping nominal Type I error rates) than the other three tests for data with outliers and having different
variances between cases and controls; 2) for data from normal distributions, the three improved tests had slightly
lower power than jointLRT and AW. The analyses of two Illumina HumanMethylation27 data sets GSE37020 and
GSE20080 and one Illumina Infinium MethylationEPIC data set GSE107080 demonstrated that three improved tests
had higher true validation rates than those from jointLRT, KS, and AW.

Conclusions: The three proposed joint score tests are robust against the violation of normality assumption and
presence of outlying observations in comparison with other three existing tests. Among the three proposed tests,
iAW.BF seems to be the most robust and effective one for all simulated scenarios and also in real data analyses.
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Background
DNA methylation is an epigenetic mechanism that reg-
ulates gene expression without changing genetic codes.
Usually, DNA methylation inhibits the expression of its
nearby gene by adding a methyl group to the fifth carbon
atom of a cytosine ring. Since it is a reversible biolog-
ical process, DNA methylation is now considered as a
potential therapeutic target in cancer treatment due to its
ability to inhibit the expression of oncogenes which can
transform a cell into a tumor cell in certain circumstances.
One major goal in the analysis of methylation data is

to identify disease-associated CpG sites. Many analyses in
the past have been focused on the difference of average or
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mean methylation levels between the disease and the con-
trol group. However, it has not been a common practice
in the classical statistical analysis to test a hypothesis of
equal variances since the difference of population means
between the disease and control group is normally the
inferential interest. Recently, some evidence suggests that
the epigenetic variation is also a very important intrin-
sic characteristic associated with certain diseases [1–6].
These papers in DNA methylation analyses showed that
differentially variable DNAmethylation marks are biolog-
ically relevant to the disease of interest since the genes
regulated by these marks are enriched in the biological
pathways that have been found important to the disease of
interest.
Although there are more than 50 statistical tests for

equal variance [7], several new methods have been pro-
posed especially for the analysis of DNA methylation
data [2, 8]. We recently compared these new methods [4]
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and proposed three improved equal variance tests based
on the score test of logistic regression [6]. Since both
mean and variance are biologically meaningful in DNA
methylation analysis, it is logical to simultaneously test
for equal mean and equal variance. The joint likelihood
ratio test (jointLRT) and the two-sample Kolmogorov-
Smirnov (KS) test are two traditional methods for this
task. Recently Anh and Wang (2013) [8] proposed a new
joint test based on logistic regression (AW), which is
essentially a quadratic form of a vector of two tests. One
of them is to test for equal means; the other is to test
for equal variances. However, they did not provide the
asymptotic distribution of their test statistic nor the com-
parison of their joint test with jointLRT or KS that are the
benchmark tests in the statistical literature.
In this article, we derived the asymptotic distribution of

the AW joint test statistic and made comprehensive com-
parisons between AW, jointLRT and KS tests. Although
a normal distribution is usually assumed for methylation
data, the violation of normality assumption and presence
of outlying points can often be observed in the analysis
of real data. Bi-modal distributions are also encountered
frequently in practice. To improve the power and robust-
ness of the AW joint test, we proposed three tests based
on absolute deviation from mean (iAW.Lev), median
(iAW.BF) and trimmed mean (iAW.TM) respectively.
Results from our simulation studies suggest that the

three improved tests are robust in skewed distributions
and (unimodal) distributions with outliers. Among the
three improved tests, iAW.BF is the most robust in mix-
tures of two normal distributions and also in other sce-
narios. Results of real data analyses presented that iAW.BF
and iAW.TM performed significantly better than AW,
jointLRT, and KS. Although iAW.Lev works well in the
simulation setting, it does not seem to be very stable in
terms of the proportion of true validation in real data
analyses.

Methods
Justification for Ahn andWang’s joint score test
Ahn and Wang (2013) [8] proposed a joint score test
to detect methylation marks relevant to a disease. Their
approach tests for homogeneity of means and variances
simultaneously. Since Ahn and Wang (2013) [8] did not
provide a detailed theoretical proof for the asymptotic dis-
tribution of this joint score test, we now fill this gap in
theory.
Let Xi and Yi denote the methylation value and

the corresponding disease status of subject i, where
i = 1, 2, . . . , n, with n = n0 + n1, n0 is the number of
the non-diseased subjects (controls, Yi = 0) and n1 is
the number of the diseased subjects (cases, Yi = 1). To
detect methylation loci that are relevant to a disease based
on means and variances, the corresponding hypothesis is

formulated as H0 : μ0 = μ1 and σ 2
0 = σ 2

1 versus H1 :
μ0 �= μ1 or σ 2

0 �= σ 2
1 , in which μ0 and μ1 are means of

methylation levels for controls and cases, respectively, and
σ 2
0 and σ 2

1 are the corresponding variances.
Instead of directly testing the above hypothesis, Ahn

and Wang (2013) [8] proposed to test H ′
0 : β1 = β2 = 0

versus H ′
a : β1 �= 0 or β2 �= 0, where β1 and β2 are the

regression coefficients of the following logistic regression:

logit [Pr(Yi = 1|xi, zi)] = β0 + β1xi + β2zi, (1)

and zi is the within-group squared deviation for subject i,
which is defined as

zi =
{

(xi − x̄1)2 , if Yi = 1,
(xi − x̄0)2 , if Yi = 0, (2)

and x̄1 = ∑n
i=1 xiI

[
yi = 1

]
/n1 and x̄0 = ∑n

i=1 xiI[
yi = 0

]
/n0 are the sample means for cases and controls.

The AW test statistic T = UT �̂−1U is a quadratic form
of two score statistics U1 and U2 for the above logistic
regression, where U = (U1,U2)T ,

U1 =
n∑

i=1
xi (yi − ȳ) ,

U2 =
n∑

i=1
zi (yi − ȳ) ,

(3)

and �̂ is the estimate of the covariance matrix Cov(U).
Under H ′

0, the estimated covariance matrix �̂ has the
following form:

�̂ = nȳ (1 − ȳ)
(

σ̂ 2
x σ̂xz

σ̂xz σ̂ 2
z

)
,

where σ̂ 2
x = ∑n

i=1(xi − x̄)2/n and σ̂ 2
z = ∑n

i=1(zi − z̄)2/n
are the sample variances for xi and zi, and σ̂xz = ∑n

i=1
(xi − x̄)(zi − z̄)/n is the sample covariance between xi
and zi.
Note that in logistic regression (1), the random variables

are yi, while xi and zi are fixed (i.e., non-random). Hence,
the (asymptotic) distributions of the U1, U2, and T do not
depend on the distributions of xi and zi. In this sense, we
can say that the AW test statistic T is theoretically robust
against the violation of the normality assumption for the
predictors xi and zi.

Dobson (1990) [9] showed that U
H ′
0→ N(0,Cov(U)).

When the sample size is large, the asymptotic distribution
of T is χ2

2 under H ′
0, based on the Law of Large Numbers

and the relationship between the multivariate normal
distribution and the chi-squared distribution. Ascribed
to limited space, the complete proof is included in the
Additional file 1.
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Three improved joint score tests
Since the within-group squared deviation in (2) might not
be very robust, we propose three improved joint score
tests.
In the first improved joint score test (denoted as

iAW.Lev), we replace the within-group squared deviation
by within-group absolute deviation [10]:

z∗i =
{ |xi − x̄1|, if Yi = 1,

|xi − x̄0|, if Yi = 0. (4)

For the logistic regression logit
[
Pr

(
Yi = 1|xi, z∗i

)] =
β∗
0 + β∗

1xi + β∗
2 z∗i , under the null hypothesis H∗

0 : β∗
1 =

β∗
2 = 0, the joint score test statistic TLev is asymptotically

chi-squared distributed with two degrees of freedom:

TLev = (
ULev)T (

�̂Lev)−1ULev H∗
0→ χ2

2 ,

where ULev = (
U1,U∗

2
)T , U∗

2 = ∑n
i=1 z∗i (yi − ȳ),

�̂Lev = nȳ (1 − ȳ)
(

σ̂ 2
x σ̂xz∗

σ̂xz∗ σ̂ 2
z∗

)
,

where σ̂ 2
z∗ is the sample variance for z∗i , and σ̂xz∗ is the

sample covariance between xi and z∗i . Note that the pro-
posed improved joint test is different from Levene’s test
[10] in that Levene’s test regards z∗i as random and uses
ANOVA, while the proposed improved joint test regards
z∗i as fixed (i.e., non-random) and uses a logistic regression
framework.
In the second improved joint score test, we replace the

sample means in the TLev by sample medians [11]:

zBFi =
{ |xi − x̃1|, if Yi = 1,

|xi − x̃0|, if Yi = 0, (5)

where x̃1 and x̃0 are the sample medians for cases and con-
trols respectively. Under the null hypothesis HBF

0 : βBF
0 =

βBF
1 = 0, the joint score test statistic TBF follows asymp-

totically the chi-squared distribution with two degrees of
freedom:

TBF =
(
UBF

)T (
�̂BF

)−1
UBF HBF

0→ χ2
2 ,

where UBF = (
U1,UBF

2
)T , UBF

2 = ∑n
i=1 zBFi (yi − ȳ),

�̂BF = nȳ (1 − ȳ)
(

σ̂ 2
x σ̂xzBF

σ̂xzBF σ̂ 2
zBF

)
,

where σ̂ 2
zBF is the sample variance for zBFi , and σ̂xzBF is the

sample covariance between xi and zBFi .
In the third improved joint score test, we replace the

sample means in the TLev by trimmed sample means [11]:

zTMi =
{ |xi − x̌1|, if Yi = 1,

|xi − x̌0|, if Yi = 0, (6)

where x̌1 and x̌0 are the 25% trimmed sample means for
cases and controls respectively. The 25% trimmed mean

for a sample is the samplemean after trimming 25% lowest
values and 25% highest values.
For the logistic regression model logit

[
Pr

(
Yi = 1

|xi, zTMi
)] = βTM

0 + βTM
1 xi + βTM

2 zTMi , under the null
hypothesis HTM

0 : βTM
1 = βTM

2 = 0, the joint score test
statistic TTM is asymptotically chi-squared distributed
with two degrees of freedom:

TTM =
(
UTM

)T (
�̂TM

)−1
UTM HTM

0→ χ2
2 ,

where UTM = (
U1,UTM

2
)T , UTM

2 = ∑n
i=1 zTMi (yi − ȳ),

�̂TM = nȳ (1 − ȳ)
(

σ̂ 2
x σ̂xzTM

σ̂xzTM σ̂ 2
zTM

)
,

where σ̂ 2
zTM is the sample variance for zTMi , and σ̂xzTM is the

sample covariance between xi and zTMi .

Results
Simulation studies
We have conducted comprehensive simulations to com-
pare the performances of the three improved tests with
the three existing methods: the joint likelihood ratio test
based on the normal distribution (jointLRT) [12, 13], the
Kolmogorov-Smirnov test (KS) [14], and Ahn and Wang’s
joint score test (AW). We have attained the mathemati-
cal expression and the exact distribution of jointLRT test
statistics under normal distribution [15]. Due to computa-
tional complexity, we used the asymptotic distribution of
jointLRT in our simulation studies.
The simulation studies examined the following four

aspects and their impacts on these six tests: (1) vari-
ous sample sizes, (2) the presence of heterogeneity of
means and variances, (3) the violation of the normal-
ity assumption, and (4) outliers. We considered various
sample sizes: (n0, n1)=(100, 100), (n0, n1)=(50, 50), and
(n0, n1)=(20, 20). Four parametric models were employed
to generate the methylation data: the normal distribution,
the Beta distribution, the chi-square distribution, and
the mixture of two normal distributions. To evaluate the
impact of outliers, we replaced the DNAmethylation level
of one randomly picked disease subject by max{x1,max,
(Q3 + 3(Q3 − Q1))}, where x1,max denotes the maximum
DNA methylation level of the diseased samples, and Q1
and Q3 are the first and third quartiles respectively.
We computed the empirical Type I error rates and the

powers of the six tests under different scenarios: (1) Type I
error scenario (eqM& eqV): distributions of non-diseased
and diseased samples are the same; (2) Power scenario I
(diffM & eqV): distributions of non-diseased and diseased
samples are different in means only; (3) Power scenario II
(eqM& diffV): distributions of non-diseased and diseased
samples are different in variances only; and (4) Power sce-
nario III (diffM & diffV): distributions of non-diseased
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and diseased samples are different in bothmeans and vari-
ances. We conducted 10,000 simulations to estimate Type
I error rates for scenario (1). For the remaining 3 sce-
narios, 5000 simulations are conducted to estimate the
power of a test using the corrected cutoff values obtained
in scenario (1) so that corrected Type I error rates are
approximately equal to the nominal Type I error rates.
Overall, the three improved joint score tests performed

better than the other three methods when methyla-
tion levels contained outliers and had different variances
between diseased and non-diseased samples. Besides,
iAW.BF is the most robust in terms of power among all the
scenarios. The KS test had conservative empirical Type I
error rates and lowest power in many scenarios.
When methylation levels were generated based on nor-

mal distributions without outliers, all tests had the empir-
ical Type I error rates close to the nominal levels, except
for KS (Table 1). For Power Scenarios I, II and III, three
improved joint score tests had similar performances,
but slightly lower power for jointLRT and AW. When

methylation values were from normal distributions with
an outlier, the three improved joint score tests can keep
empirical Type I error rates well at all nominal levels.
Whereas the empirical Type I error rates of jointLRT were
inflated at all nominal levels, AW and KS had very conser-
vative empirical Type I error rates at all levels (Table 1).
For Power Scenarios I, II and III, the three improved tests
had similar or greater power than AW. For Power Sce-
narios II and III (i.e. different variances), KS had poor
estimated power despite the presence or absence of an
outlier. Similar findings about KS are also observed in
other parametric distributions (Tables 2 and 4).
Similar findings were also observed for the Beta distri-

bution setting (Table 2). When the Beta distributions of
two groups were different in variances (Power Scenarios
II and III) and contained outliers, the three improved tests
had significantly greater power than AW.
When methylation values were generated from a

two-component normal mixture distribution without
(Table 3), both iAW.BF and AWhad appropriate empirical

Table 1 The empirical Type I error rates (× 100) and power (× 100) for the six tests when methylation values were generated from
normal distributions without (Outlier=No) or with an outlier (Outlier=Yes). The numbers of non-diseased and diseased samples are
(100, 100)

Scenarios Outlier α(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 5.1 3.4 5.1 5.1 5.0 5.1

(Type I error) No 1 1.0 0.5 1.1 1.0 1.0 1.1

No 0.5 0.5 0.4 0.6 0.6 0.5 0.6

diffM&eqV No 5 97.3 95.5 97.1 97.1 97.2 97.2

No 1 90.2 84.9 89.4 89.8 90.0 89.7

No 0.5 85.3 75.0 84.3 83.1 83.8 83.6

eqM&diffV No 5 90.0 25.1 87.3 84.1 83.8 83.8

No 1 74.3 6.1 65.7 63.5 62.9 62.6

No 0.5 66.3 2.4 55.2 51.6 52.0 52.5

diffM&diffV No 5 83.2 63.9 81.0 79.3 79.2 79.3

No 1 63.7 36.8 59.9 56.9 56.8 56.3

No 0.5 53.9 24.5 48.8 45.5 46.3 46.2

eqM&eqV Yes 5 12.2 3.2 3.7 4.8 4.8 4.8

(Type I error) Yes 1 3.7 0.5 0.5 0.9 0.9 1.0

Yes 0.5 2.3 0.4 0.3 0.4 0.4 0.4

diffM&eqV Yes 5 95.6 94.9 98.4 98.1 98.1 98.1

Yes 1 83.0 86.6 94.5 92.3 92.7 92.4

Yes 0.5 77.5 76.9 91.0 89.4 90.0 89.3

eqM&diffV Yes 5 46.3 16.7 54.3 69.3 68.8 68.9

Yes 1 20.3 5.3 31.5 43.0 43.5 43.2

Yes 0.5 15.1 2.2 22.8 36.0 36.8 36.1

diffM&diffV Yes 5 54.6 58.4 75.5 78.4 78.5 78.7

Yes 1 26.5 38.2 56.9 56.1 57.2 57.0

Yes 0.5 20.3 25.8 47.5 48.4 50.4 49.1
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Table 2 The empirical Type I error rates (× 100) and power (× 100) of the six tests when methylation values were generated from Beta
distributions. The numbers of non-diseased and diseased samples are (100, 100)

Scenarios Outlier α(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 5.7 3.5 5.4 5.4 5.4 5.5

(Type I error) No 1 1.5 0.5 1.0 1.1 1.2 1.1

No 0.5 0.8 0.3 0.5 0.5 0.5 0.5

diffM&eqV No 5 96.8 94.7 97.5 97.2 97.4 97.4

No 1 88.4 86.7 91.7 90.5 91.0 90.9

No 0.5 83.1 77.5 87.8 86.6 87.9 87.4

eqM&diffV No 5 88.1 18.9 86.8 83.1 82.7 83.0

No 1 68.6 6.2 65.8 62.2 60.6 61.3

No 0.5 60.4 2.5 55.6 53.5 52.6 53.2

diffM&diffV No 5 83.5 64.5 88.6 84.9 85.8 85.9

No 1 58.1 42.8 70.4 63.0 64.5 64.8

No 0.5 48.9 30.2 60.6 54.6 57.6 56.8

eqM&eqV Yes 5 11.0 3.6 3.8 5 4.9 4.9

(Type I error) Yes 1 3.3 0.6 0.7 1.0 1.0 1.0

Yes 0.5 1.8 0.3 0.3 0.5 0.5 0.5

diffM&eqV Yes 5 97.6 95.9 98.8 98.6 98.8 98.7

Yes 1 89.2 87.7 94.8 93.4 94.0 93.7

Yes 0.5 82.6 79.6 91.6 89.3 89.9 89.8

eqM&diffV Yes 5 31.9 15.7 24.9 61.2 59.8 60.6

Yes 1 11.5 5.1 6.7 33.0 31.3 32.1

Yes 0.5 6.6 2.0 4.0 23.2 21.3 22.0

diffM&diffV Yes 5 26.4 59.9 36.6 52.6 53.4 53.6

Yes 1 8.4 38.3 15.4 24.9 25.7 25.5

Yes 0.5 4.5 26.0 10.6 16.5 17.2 17.2

Type I error rates. However, iAW.Lev and iAW.TM had
significantly inflated empirical Type I error rates. Addi-
tionally, jointLRT and KS had conservative empirical Type
I error rates. Under all Power Scenarios, iAW.BF had
greater power than AW and jointLRT. When methylation
values were from two-component normal mixture distri-
butions with an outlier, iAW.BF had appropriate simulated
Type I error rates at each level. Although iAW.Lev and
iAW.TM had increased empirical Type I error rates, they
are much smaller than those rates of jointLRT. Whereas
KS and AW had conservative empirical Type I error rates.
All of the three improved tests had significantly greater
power than AW under Power scenarios II (i.e. different
variances only) and III (i.e. different means and different
variances).
When methylation values were generated from a chi-

squared distribution without (Table 4), iAW.BF, iAW.TM
and AW kept empirical Type I error rates well, though
iAW.Lev presented increased empirical Type I error rates.
While jointLRT had inflated empirical Type I error
rates, and KS has rather conservative empirical Type I

error rates. For Power scenarios II and III (i.e. different
variances), iAW.BF and iAW.TM had significantly greater
power than AW. Besides, iAW.Lev had similar power to
AW for three power scenarios. When methylation values
were generated from chi-squared distribution with an out-
lier, the performances of all tests are similar except that
AW had conservative empirical Type I error rates.
From the results of the four tables, we found that

iAW.BF could control empirical Type I error rates well
and have similar or greater power than AW under all sce-
narios including the existence of outliers, skewed distri-
butions and mixtures of two normal distributions. Except
for the scenarios of mixtures of two normal distributions,
iAW.Lev and iAW.TM canmaintain empirical Type I error
rates at proper levels and had similar or greater power
than AW. In comparison, AWcan keep appropriate empir-
ical Type I error rates for any parametric distributions as
designed without outliers. But when the methylation val-
ues were generated from a distribution with an outlier,
AW tended to have conservative empirical Type I error
rates and smaller estimated power. The jointLRT, on the
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Table 3 The empirical Type I error rates (× 100) and power (× 100) for the six tests when methylation values generated from mixtures
of two normal distributions. The numbers of non-diseased and diseased samples are (100, 100)

Scenarios Outlier α(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 2.4 3.8 4.9 9.4 5.4 12.3

(Type I error) No 1 0.4 0.7 0.8 3.2 1.3 4.5

No 0.5 0.2 0.4 0.4 2.0 0.8 2.8

diffM&eqV No 5 16.6 58.4 74.9 56.2 87.0 53.6

No 1 4.0 30.8 55.1 26.6 65.8 25.5

No 0.5 2.3 25.5 45.1 17.8 53.9 19.6

eqM&diffV No 5 34.5 98.1 55.1 88.8 57.8 69.9

No 1 10.5 81.1 36.1 71.6 32.4 47.7

No 0.5 6.4 72.7 28.9 62.5 23.6 40.5

diffM&diffV No 5 37.7 98.7 61.1 92.0 68.3 76.4

No 1 12.0 85.2 41.5 77.2 42.6 54.3

No 0.5 7.8 78.1 34.0 68.3 32.2 46.7

eqM&eqV Yes 5 25.0 3.9 2.8 6.5 4.8 8.1

(Type I error) Yes 1 6.8 0.7 0.4 1.4 1.0 2.1

Yes 0.5 3.7 0.4 0.2 0.7 0.6 1.3

diffM&eqV Yes 5 4.2 59.4 16.3 21.5 78.1 34.9

Yes 1 1.1 32.1 5.1 5.2 55.7 9.8

Yes 0.5 0.5 26.5 3.3 3.5 44.7 5.2

eqM&diffV Yes 5 0.6 97.4 14.4 80.2 49.6 63.3

Yes 1 0.1 79.5 5.1 59.8 27.4 39.4

Yes 0.5 0.0 71.2 3.5 54.1 19.7 31.5

diffM&diffV Yes 5 1.0 98.1 19.5 84.6 61.0 71.1

Yes 1 0.2 83.6 7.5 65.7 37.5 47.0

Yes 0.5 0.1 76.8 5.6 60.1 27.9 38.1

other hand, only performed best for methylation values
generated from normal distributions without outliers. KS
can keep conservative empirical Type I error rates under
all scenarios, and it had poor estimated power in many
scenarios.
Simulation studies were also conducted when sample

size wasmoderate (50, 50) or small (20, 20). The results are
provided in Additional file 1: Tables S2-S9). We observed
that empirical Type I error rates increased and power
decreased when sample size decreased from 100 to 50
subjects per group. Furthermore, the three improved joint
score tests still performed significantly better than AW
under moderate or small sample size.

Real data analyses
We applied all six statistical tests to three publicly
available DNA methylation data sets (GSE37020 [16],
GSE20080 [17] and GSE107080 [18]) from Gene Expres-
sion Omnibus (GEO)(www.ncbi.nlm.nih.gov/geo).
GSE37020 and GSE20080 used Illumina Human-

Methylation27 (HM27k) platform to produce DNA

methylation profiles for 27,578 CpG sites. Both data sets
measured cervical smear samples collected from nor-
mal histology (regarded as normal samples) and changed
tissues with cervical intraepithelial neoplasia of grade
2 or higher (CIN2+) (CIN2+ samples). GSE37020 con-
tains 24 normal samples and 24 CIN2+ samples, while
GSE20080 contains 30 normal samples and 18 CIN2+
samples. GSE107080 contained DNA methylation pro-
files of about 850K sites measured from whole blood
samples using Illumina InfiniumMethylationEPIC (EPIC)
platform. GSE107080 included 100 individuals with illicit
drug injection and hepatitis C type virus (IDU+/HCV+)
and 305 individuals without illicit drug injection and
hepatitis C type virus (IDU-/HCV-). All the individuals
are recruited from a well-established longitudinal cohort,
Veteran Aging Cohort Study.
For GSE37020 and GSE20080, we excluded CpG sites

residing near SNPs or with missing values. Quantile plots
and principal component analysis did not show obvious
and suspicious patterns (for details please refer to [4]).
We then obtained residuals of samples after regressing out

www.ncbi.nlm.nih.gov/geo


Li et al. BMC Bioinformatics  (2018) 19:174 Page 7 of 11

Table 4 The empirical Type I error rates (× 100) and power (× 100) for the six tests when methylation values generated from
chi-squared distributions. The numbers of non-diseased and diseased samples are (100, 100)

Scenarios Outlier α(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 13.8 4.2 5.0 6.3 5.3 5.2

(Type I errror) No 1 6.3 0.7 0.9 1.5 1.3 1.2

No 0.5 4.4 0.4 0.4 0.8 0.5 0.5

diffM&eqV No 5 90.2 99.7 99.8 99.6 99.9 99.9

No 1 53.8 97.1 99.0 97.1 99.4 99.4

No 0.5 40.9 95.9 98.1 94.9 99.2 99.0

eqM&diffV No 5 18.6 10.2 29.2 29.6 35.4 34.6

No 1 5.8 2.1 10.3 11.4 14.7 15.0

No 0.5 3.9 1.3 6.9 7.0 11.1 10.4

diffM&diffV No 5 18.4 42.2 59.9 54.9 70.6 69.0

No 1 3.7 17.9 35.7 27.5 45.5 43.8

No 0.5 2.1 13.9 27.9 18.9 38.9 35.6

eqM&eqV Yes 5 20.1 4.0 4.8 6.7 5.5 5.3

(Type I error) Yes 1 10.3 0.7 0.7 1.7 1.1 1.1

Yes 0.5 7.8 0.5 0.2 0.8 0.5 0.5

diffM&eqV Yes 5 67.9 99.5 99.9 99.4 99.9 99.9

Yes 1 23.7 96.5 99.1 96.4 99.4 99.3

Yes 0.5 12.9 95.0 98.7 94.0 99.0 98.8

eqM&diffV Yes 5 27.5 9.5 34.0 39.7 41.0 41.5

Yes 1 9.9 1.8 11.9 16.6 19.3 19.0

Yes 0.5 6.1 1.1 7.3 11.2 14.0 13.7

diffM&diffV Yes 5 21.9 39.8 65.2 60.4 73.2 72.1

Yes 1 6.3 16.3 39.9 31.7 49.7 47.7

Yes 0.5 3.4 12.2 32.5 23.9 41.8 39.7

the effect of age from DNA methylation levels. We re-did
the principal component analysis on the adjusted data and
did not find any obvious patterns (see Additional file 1:
Figure S2). After data quality control and preprocessing
(for details please refer to [4]), there were 22,859 CpG sites
appearing in both cleaned data sets.
We used cleaned GSE37020 as the discovery set and

cleaned GSE20080 as the validation set to detect CpG
sites differentially methylated (DM) or differentially vari-
able (DV) between CIN2+ samples and normal samples.
For a given CpG site in a given data set, we applied each
of the six joint tests to test for equalities of both means
and variances. For a given joint test, we claimed a CpG
site in the analysis of GSE37020 as significant methylation
candidate (different in means or variances) if the false dis-
covery rate (FDR) [19] adjusted p-value for the CpG site is
less than 0.05. The function p.adjust in the statistical soft-
ware R was used to calculate FDR-adjusted p-value. For a
significant site in the analysis of GSE37020, if the corre-
sponding un-adjusted p-value in the analysis of GSE20080
is less than 0.05 and the difference directions of means and

variances are consistent between the two data sets, then
we claim that the significance in the analysis of GSE37020
is truly validated in the analysis of GSE20080. We use
the differences of medians and mean absolute deviations
between cases and controls to evaluate the directions.
For HM27k data set GSE37020, the numbers of signifi-

cant CpG sites (i.e., CpG sites with FDR-adjusted p-value
< 0.05) obtained by the 6 joint tests are 4556 (jointLRT),
1288 (KS), 1850 (AW), 2041 (iAW.Lev), 1843 (iAW.BF)
and 1838 (iAW.TM). And the truly validated CpG sites are
1705 (jointLRT), 47 (KS), 220 (AW), 666 (iAW.Lev), 296
(iAW.BF) and 342 (iAW.TM).
Table 5 presents the numbers/proportions of truly and

falsely validated significant CpG sites. The three improved
joint score tests have higher true validation ratios than
joint LRT, KS test, and AW test. Among all the tests,
iAW.Lev had the highest true validation rate (89.2%) and
lowest false validation rate (10.8%), followed by iAW.TM
and iAW.BF. And we also applied the 6 joint tests on the
adjusted data sets, the performances of them are similar
(see Additional file 1: Table S1).
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Table 5 The performances of 6 joint tests based on HM27k data
GSE37020 and GSE20080

Test nSig nValidation nTV pTV(%) nFV pFV(%)

JointLRT 4556 2213 1705 77.0 508 23.0

KS 1288 60 47 78.3 13 21.7

AW 1850 262 220 84.0 42 16.0

iAW.Lev 2041 747 666 89.2 81 10.8

iAW.BF 1843 339 296 87.3 43 12.7

iAW.TM 1838 387 342 88.4 45 11.6

nSig: the number of significant CpG sites detected in GSE37020 based on FDR
adjusted p-value <0.05;
nValidation: the number of validated CpG sites in GSE20080 based on unadjusted
p-value <0.05;
nTV: the number of truly validated CpG sites with the same difference directions in
means and variances between the two groups;
pTV: = nTV

nValidation , the proportion of significant CpG sites detected in GSE37020 and
truly validated in GSE20080;
nFV: the number of falsely validated CpG sites in GSE20080 with inconsistent
difference direction in means or variances between the two groups;
pFV: = nFV

nValidation , the proportion of significant CpG sites detected in GSE37020 but
falsely validated in GSE20080

Figure 1 showed the parallel boxplots of DNA methyla-
tion levels versus case-control status for the top CpG site
(i.e. having the smallest p-value among those truly val-
idated CpG sites for testing homogeneity of means and
variances simultaneously) obtained by each of the 6 joint
tests. All these top CpG sites were validated in GSE20080.
It has been found that the high incidence of cervical
lesions is associated to the genes ST6GALNAC3, CRB1
and RGS7, where cg26363196 (jointLRT), cg00321478
(AW) and cg21303386 (iAW.Lev) might reside [20, 21].
Furthermore, the gene PRRG2, where cg2196766 (KS)
might reside, is involved in signal transduction pathway,
which might be a novel biomarker for CIN2+ diagnosis
[22]. And the gene FPRL2, where cg06784466 (iAW.BF,
iAW.TM)might reside, are related to innate immunity and
host defense mechanisms [23].
For GSE107080, we downloaded the processed data set

from GEO database [18]. We first removed the CpG sites
with at least one missing value or with probe name using
“ch” as the prefix. Secondly, CpG sites with detection
p-values larger than or equal to 10−12 are discarded. There
are 378,808 CpG sites in the cleaned data set. We drew the
plot of quantiles across arrays and did a principal com-
ponent analysis for the cleaned GSE107080 data set. The
results did not show any obvious patterns (see Additional
file 1: Figure S3). Additionally, we regressed out the effects
of age and cell type compositions and obtained the resid-
uals. There are 378,808 CpG sites and 309 samples (cases:
95 and controls: 295) left in the data set after the adjust-
ment. Results from the principal component analysis on
the adjusted data did not show any obvious patterns (see
Additional file 1: Figure S4).

For the EPIC data set GSE107080, the samples were ran-
domly split into two sets with approximately equal size
(due to odd numbers of cases and controls) as the train-
ing set and the validation set. The training set contained
148 controls (IDU-/HCV-) and 48 cases (IDU+/HCV+),
and the validation set contained 147 controls and 47 cases.
We use the similar method as above to determine if the
significance of a CpG site is truly validated.
For GSE107080, the numbers of significant CpG sites

(i.e., CpG sites with FDR-adjusted p-value < 0.05)
obtained by the 6 joint tests in the training set are 51,994
(jointLRT), 10 (KS), 12 (AW), 709 (iAW.Lev), 22 (iAW.BF)
and 22 (iAW.TM). And the corresponding numbers of val-
idated CpG sites in the validation set (i.e., CpG sites with
unadjusted p-value < 0.05) are 19,806 (jointLRT), 3 (KS),
5 (AW), 201 (iAW.Lev), 7 (iAW.BF) and 9 (iAW.TM). After
checking the difference directions, the truly validated CpG
sites are 5652 (jointLRT), 1 (KS), 2 (AW), 89 (iAW.Lev), 4
(iAW.BF) and 5 (iAW.TM).
Table 6 presents the numbers/proportions of truly

and falsely validated significant CpG sites based on
GSE107080. The three improved tests have higher true
validation ratios than joint LRT, KS and AW tests. Among
the three improved tests, iAW.BF and iAW.TM have more
than ten percent higher proportion of true validation
than AW.

Discussion
The three improved joint score tests are derived from
generalized linear model framework as AW. Thus they
maintain the strengths of AW in terms of efficiency. Fur-
thermore, the three improved tests use absolute deviation
instead of squared deviation used by AW to enhance the
robustness. For skewed methylation distributions or dis-
tributions with outliers, squared deviation used by AW
can be enormously affected by extreme values and leads
to erroneous results. Thus AW tends to have conser-
vative empirical Type I error rates and smaller power
in some scenarios. Our proposed methods rectify this
problem and can maintain good power even if the distri-
bution is skewed or contains one ormore outliers. Besides,
when compared to squared deviation, absolute deviation
retains the same magnitude of the original measurement
scales and consequently more interpretable. The iAW.Lev
tends to have inflated empirical Type I error rates under
skewed andmixture distributions. In comparison, iAW.BF
and iAW.TM employ median and trimmed mean as cen-
tral tendency respectively to calculate absolute deviation.
Both of them are robust and can minimize the impact of
outliers and skewed distributions in evaluating the overall
dispersion of the sample data.
The performance of the jointLRT was highly depen-

dent on the validity of normality assumptions. How-
ever, the empirical distribution of methylation data often
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Fig. 1 Paired parallel boxplots of DNA methylation levels (y axis) versus case-control status (x axis) for the 5 unique top CpG sites acquired by the 6
joint tests based on HM27k data sets. The dots indicate subjects.1A and 1B are for cg26363196 (jointLRT). 2A and 2B are for cg2196766 (KS). 3A and
3B are for cg00321478 (AW). 4A and 4B are for cg21303386 (iAW.Lev). 5A and 5B are for cg06784466 (iAW.BF, iAW.TM). 1A,2A,3A,4A,5A are based on
GSE37020. 1B,2B,3B,4B,5B are based on GSE20080

demonstrates skewness and presence of outlying obser-
vations. The KS test was inclined to have conservative
empirical Type I error rates and lowest power under many
scenarios. Therefore it might not be suitable for DNA
methylation analysis as expected.
We would like to address one limitation of our simu-

lation studies. Since the analytical form of the underly-
ing probability distribution of methylation data is rarely
known, we have applied various settings in an attempt to
mimic the reality. We also tried to evaluate our methods
in four different aspects. However, our simulation study
might not cover all cases that one might encounter in
reality. Nevertheless, the results from real data analyses
provide strong evidence to support the thesis that our pro-
posed tests are in general more robust in comparison with
the AW test.

Another remark is that the AW test and our improved
tests are motivated and connected to the logistic regres-
sion. Potentially, these tests could be applied for predic-
tion of disease. The difference of performances of our
three proposed tests could be disease-related. In other
words, one test might be more suitable for one specific
type of disease.
We would also like to make some remarks about the

important issue of striking a delicate balance between
controlling the false positive rate and increasing testing
power. In genomic data analysis, controlling false posi-
tive is an important issue. This is why the adjustment of
p-values is required to control for multiple testing that
could result in highly inflated type I error rates. However,
when sample size is small (e.g., in pilot studies), we usu-
ally have to make some assumptions in order to carry out
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Table 6 The performances of 6 joint tests based on EPIC data
GSE107080

Test nSig nValidation nTV pTV(%) nFV pFV(%)

JointLRT 51994 19806 5652 28.5 14154 71.5

KS 10 3 1 33.3 2 66.7

AW 12 5 2 40.0 3 60.0

iAW.Lev 709 201 89 44.3 112 55.7

iAW.BF 22 7 4 57.1 3 42.9

iAW.TM 22 9 5 55.6 4 44.4

nSig: the number of significant CpG sites detected in the training set of GSE107080
based on FDR adjusted p-value <0.05;
nValidation: the number of validated CpG sites in the validation set of GSE107080
based on unadjusted p-value <0.05;
nTV: the number of truly validated CpG sites with the same difference directions in
means and variances between the two groups;
pTV: = nTV

nValidation , the proportion of significant CpG sites detected in the training set
and truly validated in the validation set;
nFV: the number of falsely validated CpG sites in validation set with inconsistent
difference direction in means or variances between the two groups;
pFV: = nFV

nValidation , the proportion of significant CpG sites detected in the training set
but falsely validated in the validation set

statistical inference. In this case, we can make the normal-
ity assumption and apply an F-test to detect differentially
variable CpG sites.
Finally, we would like to remark that we can further vali-

date the differentially methylated/variable (DM/DV) CpG
sites, which were identified in our real data analysis, by
technical validation. In the technical validation, we can
use pyrosequencing technology to measure more accu-
rately the DNA methylation levels of the identified CpG
sites for a subset of cases and controls. If one specific CpG
site is detected as DM/DV based on the pyrosequenced
data, then we gain more evidence that this CpG site is
DM/DV. Pathway enrichment analysis could also provide
further evidence that the identified CpG sites are relevant
to the disease of interest.

Conclusion
Results from simulation studies and real data analyses
have demonstrated that the three proposed joint score
tests performed better than the existing methods (AW,
jointLRT, and KS) for testing equal means and variances
simultaneously when methylation levels contained out-
liers or had different variances between diseased and
non-diseased samples.
In general, iAW.BFwas themost robustmethod in terms

of power among all the scenarios considered in our sim-
ulation study. It also has significantly better performance
when compared with the AW test. For the cases of mix-
tures of two normal distributions, iAW.Lev and iAW.TM
performed similarly to or better than AW. In addition, the
proposed tests can be easily applied to very large methy-
lation data sets, eg. data sets from the platforms HM27k
and EPIC.
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simulation results. (PDF 365 kb)
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