
RESEARCH Open Access

Evaluation of pooling operations in
convolutional architectures for drug-drug
interaction extraction
Víctor Suárez-Paniagua* and Isabel Segura-Bedmar

From The 11th International Workshop on Data and Text Mining in Biomedical Informatics
Singapore, Singapore. 10 November 2017

Abstract

Background: Deep Neural Networks (DNN), in particular, Convolutional Neural Networks (CNN), has recently achieved
state-of-art results for the task of Drug-Drug Interaction (DDI) extraction. Most CNN architectures incorporate a pooling
layer to reduce the dimensionality of the convolution layer output, preserving relevant features and removing
irrelevant details. All the previous CNN based systems for DDI extraction used max-pooling layers.

Results: In this paper, we evaluate the performance of various pooling methods (in particular max-pooling,
average-pooling and attentive pooling), as well as their combination, for the task of DDI extraction. Our experiments
show that max-pooling exhibits a higher performance in F1-score (64.56%) than attentive pooling (59.92%) and than
average-pooling (58.35%).

Conclusions: Max-pooling outperforms the others alternatives because is the only one which is invariant to the special
pad tokens that are appending to the shorter sentences known as padding. Actually, the combination of max-pooling
and attentive pooling does not improve the performance as compared with the single max-pooling technique.

Keywords: Deep learning, Convolutional neural network, Pooling, Attention model, Drug-drug interaction extraction

Background
Clinical trials are an essential phase of drug development
process. They aim to test the safety and effectiveness of
new drugs, however, these studies are not able to capture
all the possible adverse drug reactions, and in particular,
the drug-drug interactions (DDIs). A drug-drug inter-
action occurs when two or more drugs are taken at the
same time and one of them alters the action or the effect
of the others [1].
Doctors have at their disposal several databases and

abundant pharmacovigilance literature that allow them to
detect and prevent DDIs [2]. Every week, around 20,000
articles are published in PubMed (http://www.nlm.nih.-
gov/pubs/factsheets/medline.html). Pharmacology is one
of the areas of biomedical research with a growing num-
ber of publications (300,000 articles per year) [3].

Natural Language Processing and Information Extrac-
tion (IE) techniques can help to lighten the workload of
doctors by developing automatic systems capable to
detect and extract relevant information from biomedical
texts. The DDIExtraction shared tasks [4, 5] were two
challenges organized for building systems and testing
their performance in the extraction of DDIs from bio-
medical texts. Support Vector Machine (SVM) with lin-
ear and non-linear kernels were the most used systems
and the techniques that obtained the state-of-the-art
results with 77.5% for detection and 67% for classifica-
tion [6], both in F1-score. A detailed description of the
systems tested in the DDIExtraction-2013 challenge task
can be found in [7]. SVM uses a large set of features pre-
defined by text miners in order to get domain expert
knowledge and generate a prediction. In the SVM sys-
tems for the DDI, the linguistic feature set was manually
chosen consuming time and effort of the participants.* Correspondence: vspaniag@inf.uc3m.es

Computer Science Department, Carlos III University of Madrid, 28911
Leganés, Spain

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209
https://doi.org/10.1186/s12859-018-2195-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2195-1&domain=pdf
http://www.nlm.nih.gov/pubs/factsheets/medline.html
http://www.nlm.nih.gov/pubs/factsheets/medline.html
mailto:vspaniag@inf.uc3m.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


One of the main advantages of deep learning is its cap-
acity to automatically infer the most informative feature
set for a given task, such as text classification, named
entity recognition or Relation Extraction (RE). The first
deep learning model applied to RE was the Matrix-Vector
Recursive Neural Network (MV-RNN) [8]. Concretely,
this model outperformed the state-of-the-art techniques
on the SemEval-2010 Task 8 dataset [9]. However,
MV-RNN is not suitable for biomedical text because the
parse trees generated by the Stanford Parser, which are
used as the input, are often wrong due to the complexity
of the sentence structures in this domain [10].
Recently, Convolutional Neural Networks (CNN) has

received a big impact in many NLP tasks such as sen-
tence classification [11], semantic clustering [12] and
sentiment analysis [13]. This model uses filters to a
matrix representation of the sentence in order to create
a vector representation that learns the most relevant fea-
tures for the task automatically. In the end, a classifier,
like a softmax layer, is used to generate a prediction of a
label to each vector. CNN was tested for an RE task in
Zeng et al. [14] using the SemEval-2010 Task 8 dataset
[9]. They used each word of the sentence and their rela-
tive position to the target entities transformed into a
vector to create the input matrix for the CNN. They ob-
tained a performance of 69.7% in F1-score and 82.7% by
adding external lexical features before the classification.
Liu et al. [15] used the CNN model for the DDI corpus

outperforming the rest of machine-learning techniques
with an F1 of 69.75%. The architecture applied the con-
volutional function using the word embedding and the
position embedding of each word of the DDI sentences
in order to predict a possible relation between drugs.
Recently, Suárez-Paniagua et al. [16] performed a de-
tailed study of each CNN hyper-parameters for the DDI
task. Furthermore, this work explored the random
initialization of the word vectors, the use of different
word embedding models and detail the results for each
DDI type and for the two datasets of the DDI corpus,
i.e. DDI-MedLine and DDI-DrugBank. The best per-
formance was obtained with the random initialization of
the input word vectors, the filter sizes (2, 4 and 6) and
10 dimensions for the position embeddings.
Liu et al. [17] extended their previous work [15] by

performing the convolution operation on adjacent words
in dependency parsing trees instead of on adjacent
words in word sequences of candidate DDI instances
[17]. Texts were tokenized by the NLTK toolkit [18] and
the BLLIP parser [19] was used to obtain the constituent
parsing trees for each candidate DDI instances. Then,
these trees were transformed into dependency parsing
trees by using the python package PyStanfordDependen-
cies [20]. In the convolution layer, three convolution
operations were performed. The first convolution

operation has just been described above. The second
convolution operation takes a word and its ancestor
nodes in the dependency tree of the candidate DDI
instance. Then the hyperbolic tangent function is applied
on the concatenation of the word embeddings of the
word and its ancestors. Similarly, the third convolution
operation transforms a word, its father node and its
sibling nodes in the dependency parsing tree. They com-
bined their previous CNN and the Dependency CNN
(DCNN), obtaining an F1 of 70.8%.
Likewise, Zhao et al. [21] also embed syntactic infor-

mation into a CNN model for the DDI extraction task
(SCNN). Concretely, the word embeddings are extended
by including the position and part speech of each word.
In the softmax layer, the convolutional features are
combined with traditional features, the drug names,
their surrounding words, the biomedical semantic types
and the dependency types. This system achieved an F1
of 68.6%.
Most of the systems for relation extraction based on

deep learning architectures take as input word embed-
dings. A word embedding model takes as input a large,
unannotated text corpus (such as the last release of
MedLine or a dump of the Wikipedia), constructs a
vocabulary from the corpus and learns a vector repre-
sentation for each word in the vocabulary. Based on dis-
tributional hypothesis [22], words which occur in similar
contexts usually have similar meanings and will have
similar vector representation. Therefore, these vectors
(or word embeddings) are able to capture syntactic and
semantic properties of words in the corpus. The work
described in [23] presents, for the first time, an interest-
ing CNN-based approach that combines five different
word embedding models trained from five different cor-
pora such as PubMed, PMC, MedLine and Wikipedia in
a Multi-Channel Word Embedding (MCCNN). The
combination of these models ensures a maximum cover-
age decreasing vocabulary gaps. The systems achieve an
overall F1 of 70.2%.
To the best of our knowledge, there is only one work

[24] that has applied a recurrent neural network with
Long Short-Term Memory cells (LSTM) for DDI classifi-
cation. This network is a sequential model that can keep
information about the dependencies of the previous
steps, which is very valuable in case of long sentences.
In this work, they present three different LSTM based
models for encoding the word embeddings pretrained
on a PubMed corpus and position embeddings of the
DDI sentences: B-LSTM computes the forward and
backward states of the sentence, later a max-pooling
operation is applied to the resulting matrix; AB-LSTM
uses an attentive pooling layer on the LSTM output, and
Joint AB-LSTM concatenates the outputs of these
two previous systems before the classification. The

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 40 of 84



experiments showed that attentive pooling method did
not provide better results than those ones provided by a
max-pooling layer. In addition, the combination of both
operations provided a small improvement with respect to
the use of a single max-pooling operation.
Several works have already been applied deep learning

models to detect and classify DDIs, however, little attention
has been paid to the pooling operations which are often in-
corporated into these architectures. Pooling is used to
achieve more compact representations, preserving relevant
features while removing irrelevant details. This layer can
be performed in several ways, for example, calculating the
average, taking the maximum, or as a linear combination
of its inputs. All the previous CNN based systems for DDI
extraction used max-pooling layers. Therefore, in this
work, we aim to assess the effect of different pooling
methods (such as max-pooling, average-pooling and atten-
tive pooling) on the results of the task separately, but also
their combination. Summing up, the main contribution of
this paper is to give a comparative study of different pool-
ing operations and their combination, on the performance
of a CNN architecture for DDI classification.
Our hypothesis is that max-pooling for CNN is a very

strong operation in which a lot of information of the
generated filters is lost. For this reason, we explore and
compare the effect of different pooling operations to try
to combine all the filters extracted by the CNN in order
to get all the information. In spite of LSTM models are
suitable for sequence data as sentences, we think that
the ability of the CNN for generating features from
filters can generate a better representation of the
sentences.
Table 1 summarizes the deep learning based systems

for the task of DDI extraction. None of them has studied
the effect of pooling operation on the performance of a
CNN architecture for DDI classification task.
The paper is organized as follows: we describe in detail

our architecture as well as the dataset used (see Method).
Later, the experimental results are showed and a

discussion section presents the possible reasons behind
and the effects of each pooling operation on the task per-
formance. Finally, we summarize our main conclusions
and propose our future work.

Method
Dataset
The DDI corpus [25] is considered a benchmark dataset for
evaluating DDI extraction systems. It contains a total of
1025 documents, 233 Medline abstracts (DDI-MedLine)
and 792 texts from the DrugBank database (DDI-Drug-
Bank), which were manually annotated with 18,502 drugs
and 5028 DDIs. In Fig. 1, the reader can find some examples
of the DDI corpus in brat format (http://brat.nlplab.org/).

CNN model
The proposed model is a CNN model based on [11],
which was the first work to use this model for the sen-
tence classification task. CNN is capable to transform
each sentence into a vector in order to predict their class
without the use of external resources. Concretely, the
model applies filters to the input with different window
size and create an output vector that describes the rele-
vant part of the whole sentence. In the end, a classifier
takes this vector as input to assign one of the labels.
In this section, we present the CNN model for the

classification of DDI sentences. Fig. 2 shows the entire
architecture from taking a sentence with marked entities
until the classification of each sentence into a DDI class.

Pre-processing phase
A sentence with two drug names represents a relation
instance, which is used as input to the CNN model. The
training dataset contains a total of 27,792 relations in-
stances. Only 4020 instances belong to the DDI category
(that is, there is a total of 23,772 negatives instances).
The test dataset contains a total of 5716 relations
instances with only 979 positive instances and the
remaining instances (4737) are negatives.

Table 1 Deep learning based systems results on the DDI corpus for the DDI classification task (best results in italic)

Systems Approach P R F1

Sahu and Anand [24] Combined B-LSTM + AB-LSTM 73.41% 69.66% 71.48%

Liu et al. [17] Combined CNN + DCNN 78.24% 64.66% 70.81%

Sahu and Anand [24] B-LSTM 75.97% 65.57% 70.39%

Liu et al. [17] MCCNN 75.99% 65.25% 70.21%

Liu et al. [17] DCNN 77.21% 64.35% 70.19%

Liu et al. [15] CNN with MEDLINE word embedding 75.72% 64.66% 69.75%

Zhao et al. [21] Two-stage SCNN 72.5% 65.1% 68.6%

Zhao et al. [21] One-stage SCNN 69.1% 65.1% 67%

Sahu and Anand [24] AB-LSTM 67.85% 65.98% 66.9%

Suárez-Paniagua et al. [16] CNN with random word embedding 69.86% 56.1% 62.23%

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 41 of 84

http://brat.nlplab.org/


A relation instance can involve a discontinuous
mention of a drug. For example, the following noun
phrase “ganglionic or peripheral adrenergic blocking
drugs” contains the drug name of “peripheral adrenergic
blocking drugs” and the discontinuous mention of
“ganglionic adrenergic blocking drugs”. There are some

discontinuous drug mentions in the DDI corpus (only
47), which only produce a few numbers of instances
(0.47%, 129 instances in the train set and 28 instances in
the test set). In our CNN architecture, the representa-
tion of this kind of instances is not a trivial task and we
decided to remove them.

Fig. 1 Some examples of sentences in the DDI corpus [7]. (a) describes a mechanism-type DDI between the drug (4-methylpyrazole) and the
substance (1,3-difluoro-2-propranol). (b) describes an effect-type DDI between the drugs (estradiol) and (endotoxin) obtained in an experiment
with animals. (c) describes several effect-type DDI with the drug (Inapsine) with five groups of drugs in the first sentence and (c) also describes an
advice-type DDI of this drug with another group of drugs (CNS depressant drugs) in the third sentece

Fig. 2 CNN model for DDIExtraction task

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 42 of 84



Firstly, the DDI sentences were preprocessed as [11]
using a tokenizer, converting them to lower-case and re-
moving the special characters with regular expressions.
In addition, the numbers are replaced by the label NUM.
Moreover, we used the entity blinding, which guarantees
the generalization of the model, replacing the target
drug names that are interacting in each instance by the
words “drug1” and “drug2”, and the remaining drug
names by the word “drug0”. For example, the DDI sen-
tence: “Interaction on the antinociceptive effect between
neurotensin and enkephalins or tuftsin” should be trans-
formed into the following relation instances:

1. “Interaction on the antinociceptive effect between
drug1 and drug2 or drug0” for the relation
(neurotensin, enkephalins)

2. “Interaction on the antinociceptive effect between
drug1 and drug0 or drug2” for the relation
(neurotensin, tuftsin)

3. “Interaction on the antinociceptive effect between
drug0 and drug1 or drug2” for the relation
(enkephalins, tuftsin)

However, we can claim that the last instance (enkepha-
lins, tuftsin) cannot be a DDI because these drugs are
conjuncts in the same coordinate structure. Therefore,
we can rule out all of the instances that their drugs
occur in a coordination. Similarly, we also discard all of
the instances that their drugs occur in a hyponymous
apposition [26]. An apposition is a noun phrase that fol-
lows another noun phrase and further describes or
explains it. In a hyponymous apposition, the noun
phrases are related by the relation of hyponymy. The fol-
lowing sentence shows an example of this kind of struc-
ture where the apposition is written in bold letters:
“Anticoagulants, such as heparin and warfarin, are often
given prophylactically to prevent DVT”. The relation in-
stances (Anticoagulants-heparin), (Anticoagulants-war-
parin) and (heparin-warfarin) can be directly removed
from the set of instances. Following the beneficial re-
sults of using a negative filtering preprocessing on DDI
[6, 15, 27], we define a set of regular expressions that
describe the structure of the most frequent coordina-
tions and hyponymous appositions in the DDI corpus.
Moreover, we also lighten the imbalance problem of the
DDI corpus (almost 85% of instances are negatives).
These regular expressions achieve to automatically

identify and rule out around 35% of negative instances
(8409) from the training dataset and approximately 29%
(1670) from the test dataset, whilst mistakenly filter out
150 and 32 positive instances from training and test
datasets, respectively. At the end of this process, we got
19,233 relation instances (positives and negatives) to
train the network and 4018 to test its performance.

Word table layer
The pre-processed sentences are transformed into a
matrix and are the inputs for the CNN model. These
matrices should have the same length for being suit-
able for this architecture. We extended all the sen-
tences adding an auxiliary token “0” until reaching
the maximum length of a sentence in all training in-
stances (denoted by n).
In addition, all the words in the sentences are repre-

sented by a vector taken from the word embedding
matrix randomly initialized:We∈RjV j�me where V is the
vocabulary size and me is the word embedding dimen-
sion. After this process, we joined the word embedding
vectors of all the words in the sentence in a matrix x
= [x1, x2,…, xn] for each instance.
The relative position of each word with respect to the

two interacting drugs are calculated as i − p1 and i − p2,
where p1 and p2 are the positions of the two target drugs
and i is the word position in the sentence. Furthermore,
the range (−n + 1, n − 1) is regrouping to (1, 2n − 1) in
order to avoid negative values. In the sentence shown in
Fig. 2, the distances of the word “metabolism” to the two
target drug entities “Grepafloxacin” and “theobromine”
are 4 and − 2, respectively. Later, these relative distances
are mapped into a real value vector using two position
embedding Wd1∈Rð2n−1Þ�md and Wd2∈Rð2n−1Þ�md . At the
end of this process, we created a matrix X∈Rn�ðmeþ2mdÞ

concatenating the word and the two position embed-
dings for each word in the sentence.

Convolutional layer
The main operation of the convolutional neural network
is performed in the convolutional layer. In this layer, we
used a filter matrix f ¼ ½ f 1; f 2;…; f w�∈Rw�ðmeþ2mdÞ to a
context window of size w for each instance represented
by a matrix in order to generate features with a higher
level of representation. We computed the score se-
quence s = [s1, s2,…, sn − w + 1] ∈ R

(n − w + 1) × 1 for each filter
applied to the sentence as

si ¼ g
Xw

j¼1
f jx

T
iþ jþ1 þ b

� �

where g is a non-linear function and b is a bias term. In
Fig. 2, the total number of filters m with the same size of
filter w is represented in a matrix S ∈ R(n − w + 1) ×m.
Nevertheless, in the case we use more than one size of
filters, we would concatenate the resulting matrices of
each filter size and fill each matrix with 0 for having the
same size of the sentence length. Finally, we obtain a
matrix S∈Rðn�kÞ�m where k is the total number of differ-
ent filter length.

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 43 of 84



Pooling layer
The main goal of the pooling operation is to extract the
most representative features of the sentence using a
function that aggregates the output of each filter. It is a
very important part of the architecture because it com-
pacts the filtered information into a vector representa-
tion. This vector may capture the salient parts of the
text and can be directly used as input of the classifier
layer. For this reason, the selection of a correct pooling
layer improves the final classification of the model.
The aim of this article is to explore and select the
best pooling operation for DDI and create a vector
z = [z1,z2,…,zm*k], whose dimension is the total num-
ber of filters m by the number of different filter
length k that represents the relation instance. In this
study, we chose the following three different pooling
layers that are applied to the output matrix of the
convolutional layer.

Max-pooling
The max function is the most common choice for the
pooling layer in CNN architectures. This operation gen-
erates for each filter a single value as zf = max {s} =
max {s1, s2,…, sn}.

Average-pooling
The average pooling is commonly used in image classifi-
cation tasks but it is not very popular in NLP tasks. In
this paper, we measure its performance for DDI extrac-
tion. In this case, the operation computes the average of
each filter values: zf =mean{s} =mean{s1, s2,…, sn}.

Attentive pooling
The attentive pooling is a neural attention mechanism
which focuses on the relevant words, capturing the
important semantic information without using lexical
resources or NLP tools. For this work, we follow the at-
tentive pooling method proposed by [28] for the relation
extraction task with LSTM. We have to adapt the atten-
tive pooling model for a CNN architecture.
In the case of CNN, the operation uses a weight vector

wT ∈ Rm × 1 which is multiplied by a filter normalization
M∈Rðn�kÞ�m . The resulting vector α ∈ Rn × 1 determinates
the relevant values of each word in the sentence for the
classification.

M ¼ tanh Sð Þ

α ¼ Softmax Mwαð Þ

Finally, the vector α is multiplied by the filter matrix S
to reduce its dimensionality given by the relevancy of
their words.

z� ¼ tanh αTS
� �

Softmax layer
In order to prevent overfitting, we performed a dropout
before the classification. Firstly, we reduced the vector
zd randomly dropping some of the elements of z (z* in
the attentive pooling) with a probability p given by a
Bernoulli distribution. Then, the prediction for each
class is computed with the reduced vector in a softmax
layer with weights Ws ∈ R

m × k as.

o¼zdWs þ d

where d is a bias term; we have k = 5 in the dataset, cor-
responding to the classes mechanism, effect, advice, int,
and non-DDI. The vector z is classified at test time by
the softmax layer without a dropout for new examples.

Learning
The CNN parameter set trained in the training phase
are Θ = (We,Wd1,Wd2,Ws, Fm), where Fm are all of the
m filters f. We used the conditional probability of a rela-
tion r obtained by the softmax operation as

p r x;Θjð Þ ¼ exp orð Þ
Pk

l¼1 exp olð Þ

to minimize the log-likelihood function for all instances
(xi, yi) in the training set T as

J Θð Þ ¼
XT

i¼1
logp yi xi;Θjð Þ

In the training phase, we used the stochastic gradient
descent to reduce the error of the objective function
over shuffled mini-batches and the Adam update rule
[29] to learn the parameters. In addition, we added
l2-regularization in order to prevent over-fitting for the
weights of the softmax layer Ws.

Results
Our previous work [16] aimed to provide an in-depth
study of the influence of the CNN hyper-parameters. In
this paper, we apply the same CNN architecture, but also
explore the effect of new pooling operations (average
and attentive). We use the same hyper-parameters values
provided by [16] because they were obtained using the
same dataset and architecture.

� Maximal length n = 128.
� Word embedding initialization We=random.
� Word embedding size me=300.

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 44 of 84



� Position embedding initialization Wd1, Wd2 =
random.

� Position embedding size md=5.
� Filters for each window size m = 200.
� Filter size w = (2,4,6).
� Mini-batch size =50.
� l2-regularization =3.
� Dropout rate p = 50%.
� Rectified Linear Unit (ReLU) as the non-linear func-

tion g.

In this previous work, it was needed to randomly
select 2748 instances (10%) from the training dataset as
our validation set. Due to the fact that we already know
the best values for the hyper-parameters, we do not need
to validate our model. Therefore, we can use the entire
training set to train our CNN model. The results for all
of the categories in the classification were measured
using the Precision (P), Recall (R) and F1-score (F1).
Tables 2 and 3 show the performance of the

max-pooling layer without and with negative instance
filtering, respectively. Tables 4 and 5 show the results
using the average-pooling and the attentive pooling, re-
spectively, and Table 6 shows the performance obtained
using the combination of two parallel CNN models with
the max-pooling layer and the attentive pooling.

Discussion
In this section, we evaluate the different pooling opera-
tions, their combination and also study the effect of
negative filtering on the performance.

Max-pooling
The results using the max-pooling CNN without nega-
tive filtering are very similar to [1818] because we use
exactly the same configuration (see Table 2). However,
we now obtain a higher F1 (62.93%) because we use the
entire training dataset.
Table 3 shows the results with the negative filtering,

which increases the overall performance in F1 over the
previous experiment (+ 1.63%). Negative filtering also
improves the performance of three of the four DDI clas-
ses, except for the advise type, where F1 is slightly lower
and not significant. In the remaining experiments, we
decided to apply negative filtering.

Average-pooling
As can be seen in Table 4, all performance measures
present a drastic decrease, especially in recall, when we
used average pooling layer instead of a max-pooling one.
A possible reason may be the padding operation. In
shorter sentences, the average-pooling may disrupt the
representation caused by the appending of the special
pad tokens.

Attentive pooling
Similarly to the average-pooling results, the attentive
pooling layer (see Table 5) does not achieve better re-
sults than those obtained with max-pooling. Even so, the
results are better than those ones using average-pooling
results. In this case, the negative effect of padding on the
results may be much lower than in the average-pooling
because the weight of PAD tokens is possibly much
smaller than the rest of the tokens.

Table 2 Results obtained for max-pooling CNN on the test
dataset without negative filtering

Classes P R F1

Advise 79.33% 64.25% 71.00%

Effect 68.90% 54.17% 60.65%

Int 81.08% 31.25% 45.11%

Mechanism 58.29% 70.57% 63.84%

Overall 67.13% 59.22% 62.93%

Table 3 Results obtained for max-pooling CNN on the test
dataset with negative filtering

Classes P R F1

Advise 80.36% 61.09% 69.41%

Effect 62.06% 64.15% 63.09%

Int 62.32% 44.79% 52.12%

Mechanism 67.24% 66.11% 66.67%

Overall 67.19% 62.14% 64.56%

Table 4 Results obtained for average-pooling CNN on the test
dataset with negative filtering

Classes P R F1

Advise 66.99% 63.35% 65.12%

Effect 58.14% 63.03% 60.48%

Int 66.67% 31.25% 42.55%

Mechanism 61.90% 47.99% 54.06%

Overall 61.70% 55.35% 58.35%

Table 5 Results obtained for attentive pooling CNN on the test
dataset with negative filtering

Classes P R F1

Advise 78.74% 61.99% 69.37%

Effect 58.29% 57.14% 57.71%

Int 79.07% 35.42% 48.92%

Mechanism 60.75% 54.03% 57.19%

Overall 64.42% 55.14% 59.42%

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 45 of 84



Pooling combination
We train two separated models using two different pool-
ing operations (in particular, max-pooling and attentive)
and concatenate the two pooling vectors into a single
vector, which is the same method of [24] but applied to
the CNN output. The resulting vector of this operation
is the input of the softmax layer for the final classifica-
tion of each instance. Table 6 shows the results of this
combination. Neither the combination of the max and
attentive pooling operations overcomes the use of a sin-
gle max-pooling layer.

Conclusions
In this work, we compare three different pooling opera-
tions for the task of DDI extraction. Our experiments
show that the best operation is max-pooling. Attentive
and average pooling operations provide worse results pos-
sibly caused by the negative effect of special pad tokens
that are appending to the shorter sentences. In future
work, we plan to ignore the pad tokens in the implemen-
tation of our attentive and average pooling operations.
Contrary to other previous works we are using the ran-
dom initialization of the word embeddings, thus we plan
to explore pretrained word embedding over some biomed-
ical resources to the attention model. We also plan to use
a multi-channel word embedding by integrating several
word embeddings models.

Abbreviations
AB-LSTM: Attention pooling B-LSTM; B-LSTM: Bidirectional long short term
memory network; CNN: Convolutional Neural Network; DCNN: Dependency
CNN; DDI: Drug-Drug Interaction; DNN: Deep Neural Network; F1: F1-score;
IE: Information extraction; MCCNN: Multi-channel CNN; MV-RNN: Matrix-
Vector Recursive Neural Network; NLP: Natural Language Processing;
P: Precision; R: Recall; RE: Relation Extraction; ReLU: Rectified Linear Unit;
SCNN: Syntax CNN; SVM: Support Vector Machine

Funding
Publication of this article was supported by the Research Program of the
Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR
project TIN2017-87548-C2-1-R) and the TEAM project (Erasmus Mundus
Action 2-Strand 2 Programme) funded by the European Commission.

Availability of data and materials
The corpus DDI is freely available from: http://labda.inf.uc3m.es/ddicorpus

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 8, 2018: Proceedings of the 11th International Workshop on Data
and Text Mining in Biomedical Informatics (DTMBIO 2017). The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.com/
articles/supplements/volume-19-supplement-8.

Authors’ contributions
Both authors conceived the presented idea. VSP performed the computations
and carried out the experiments. ISB supervised the findings of this work. Both
authors discussed the results and contributed to the final manuscript. Moreover,
they have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 13 June 2018

References
1. Stricker BHC, Psaty BM. Detection, verification, and quantification of adverse

drug reactions. Br Med J. 2004;329(7456):44–7.
2. Hansten PD. Drug interaction management. Pharm World Sci. 2003;25(3):94–7.
3. Duda S, Aliferis C, Miller R, Statnikov A, Johnson K. Extracting drug-drug

interaction articles from MEDLINE to improve the content of drug
databases. In: AMIA annual symposium proceedings, vol. 2005; 2005. p. 216.

4. Segura-Bedmar I, Martínez P, Sanchez-Cisneros D. The 1st DDIExtraction-
2011 challenge task: extraction of drug-drug interactions from biomedical
texts. In: Proceedings of the 1st challenge task on drug-drug interaction
extraction 2011; 2011. p. 1–9.

5. Segura-Bedmar I, Martínez P, Herrero-Zazo M. Semeval-2013 task 9:
extraction of drug-drug interactions from biomedical texts. In: Proceedings
of the 7th international workshop on semantic evaluation (SemEval); 2013.

6. Kim S, Liu H, Yeganova L, John Wilbur W. Extracting drug-drug interactions
from literature using a rich feature-based linear kernel approach. J Biomed
Inform. 2015;55:23–30. ISSN 1532-0464

7. Segura-Bedmar I, Martínez P, Herrero-Zazo M. Lessons learnt from the
DDIExtraction-2013 shared task. J Biomed Inform. 2014;51:152–64. ISSN
1532-0464

8. Socher R, Huval B, Manning CD, Ng AY. Semantic compositionality through
recursive matrix-vector spaces. In: Proceedings of the 2012 conference on
Empirical Methods in Natural Language Processing (EMNLP); 2012.

9. Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DÓ, Padó S, Pennacchiotti
M, Romano L, Szpakowicz S. Semeval-2010 task 8: multi-way classification of
semantic relations between pairs of nominals. In: Proceedings of the 5th
international workshop on semantic evaluation, SemEval ‘10. Stroudsburg:
Association for Computational Linguistics; 2010. p. 33–8.

10. Suárez-Paniagua V, Segura-Bedmar I. Extraction of drug-drug interactions by
recursive matrix-vector spaces. In: Proceedings of the 6th international
workshop on combinations of intelligent methods and applications (CIMA
2016); 2016. p. 65.

11. Kim Y. Convolutional neural networks for sentence classification. In:
Proceedings of the 2014 conference on Empirical Methods in Natural
Language Processing (EMNLP); 2014. p. 1746–51.

12. Wang P, Xu B, Xu J, Tian G, Liu C-L, Hao H. Semantic expansion using word
embedding clustering and convolutional neural network for improving
short text classification. Neurocomputing. 2016;174:806–14. ISSN 0925-2312

13. Dos Santos CN, Gatti M. Deep convolutional neural networks for
sentiment analysis of short texts. In: Proceedings of the 25th
international conference on Computational Linguistics, (COLING 2014),
technical papers; 2014. p. 69–78.

14. Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation classification via convolutional
deep neural network. In: Proceedings of the 25th international conference
on computational linguistics (COLING 2014), technical papers. Dublin:

Table 6 Results obtained for the combination of max-pooling
and attentive pooling CNN on the test dataset corpus with
negative filtering

Classes P R F1

Advise 79.23% 65.61% 71.78%

Effect 65.28% 61.62% 63.40%

Int 80.49% 34.38% 48.18%

Mechanism 69.23% 60.40% 64.52%

Overall 70.40% 59.47% 64.47%

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 46 of 84

http://labda.inf.uc3m.es/ddicorpus
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-8
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-8


Dublin City University and Association for Computational Linguistics; 2014.
p. 2335–44.

15. Liu S, Tang B, Chen Q, Wang X. Drug-drug interaction extraction via
convolutional neural networks. Comput Math Methods Med. 2016;2016:8.

16. Suárez-Paniagua V, Segura-Bedmar I, Martínez P. Exploring convolutional
neural networks for drug–drug interaction extraction. Database. 2017;2017:
bax019. https://doi.org/10.1093/database/bax019.

17. Liu S, Chen K, Chen Q, Tang B. Dependency-based convolutional neural
network for drug-drug interaction extraction. In: Bioinformatics and
Biomedicine (BIBM), 2016 IEEE international conference on: IEEE; 2016b. p.
1074–80. https://doi.org/10.1109/BIBM.2016.7822671

18. Loper E, Bird S. NLTK: The Natural Language Toolkit. In: Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics. Philadelphia:
Association for Computational Linguistics. 2002;:163–70. https://doi.org/10.
3115/1118108.1118117.

19. Charniak E, Johnson M. Coarse-to-fine N-best Parsing and MaxEnt
Discriminative Reranking. In: Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. Ann Arbor: Association for
Computational Linguistics; 2005. p. 173–80. https://doi.org/10.3115/1219840.
1219862.

20. Python. PyStanfordDependencies 0.3.1, 2015. https://pypi.python.org/pypi/
PyStanfordDependencies. Accessed 17 July 2017.

21. Zhao Z, Yang Z, Luo L, Lin H, Wang J. Drug drug interaction extraction from
biomedical literature using syntax convolutional neural network.
Bioinformatics. 2016;32:3444.

22. Harris ZS. Distributional structure. Word. 1954;10(2-3):146–62.
23. Quan C, Hua L, Sun X, Bai W. Multichannel convolutional neural network for

biological relation extraction. Biomed Res Int. 2016;2016:1850404.
24. Sahu SK, Anand A. Drug-Drug Interaction Extraction from Biomedical Text

Using Long Short Term Memory Network. CoRR. 2017. http://arxiv.org/abs/
1701.08303.

25. Herrero-Zazo M, Segura-Bedmar I, Martínez P, Declerck T. The DDIcorpus: an
annotated corpus with pharmacological substances and drug-drug
interactions. J Biomed Inform. 2013;46(5):914–20. ISSN 1532-0464

26. Meyer CF. Apposition in Contemporary English. Cambridge: Cambridge
University Press; 1992. https://doi.org/10.1017/CBO9780511597824

27. Chowdhury MFM, Lavelli A. Fbk-irst: a multi-phase kernel based approach
for drug-drug interaction detection and classification that exploits linguistic
information. In: 7th international workshop on semantic evaluation
(SemEval 2013); 2013. p. 351–5.

28. Zhou P, Shi W, Tian J, Qi Z, Li B, Hao H, Xu B. Attention-based bidirectional
long short-term memory networks for relation classification. In: ACL; 2016.

29. Kingma DP, Adam JB. A method for stochastic optimization. CoRR. 2014:
abs/1412, 6980.

Suárez-Paniagua and Segura-Bedmar BMC Bioinformatics 2018, 19(Suppl 8):209 Page 47 of 84

https://doi.org/10.1093/database/bax019
https://doi.org/10.1109/BIBM.2016.7822671
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://pypi.python.org/pypi/PyStanfordDependencies
https://pypi.python.org/pypi/PyStanfordDependencies
http://arxiv.org/abs/1701.08303
http://arxiv.org/abs/1701.08303
https://doi.org/10.1017/CBO9780511597824

	Abstract
	Background
	Results
	Conclusions

	Background
	Method
	Dataset
	CNN model
	Pre-processing phase
	Word table layer
	Convolutional layer
	Pooling layer
	Max-pooling
	Average-pooling
	Attentive pooling
	Softmax layer
	Learning

	Results
	Discussion
	Max-pooling
	Average-pooling
	Attentive pooling
	Pooling combination

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	References

